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Abstract

Modified GSLIB FORTRAN 77 routines are given in this paper for estimating and modeling space-time variograms.

Two general families of models are incorporated in the programs: these are the product model and the product-sum

model, both based on the decomposition of the space-time covariance in terms of a space covariance and a time

covariance. The GSLIB kriging program has also been modified to incorporate these space-time models. One of the

programs detects and removes temporal periodicities in the data. The program removes them and generates residuals

for all monitoring stations, in order to estimate and model the spatial-temporal variogram using residuals. The modified

kriging program also allows the use of cross-validation in conjunction with fitting of space-time variogram models. The

trend component and the residual variogram model can be used for prediction. To illustrate the use of the programs,

hourly averages of NO2 for the first ten months of 1998 in Lombardy were used. # 2002 Elsevier Science Ltd. All rights

reserved.
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1. Introduction

Recently considerable attention has been given to

methods for analyzing spatial-temporal phenomena

(Host et al., 1995; Meiring et al., 1998; Rouhani and

Wackernagel, 1990; Solna and Switzer, 1996). For

example, a large number of environmental data sets

(Bilonick, 1985; Christakos and Vyas, 1998; Eynon and

Switzer, 1983; Le and Petkau, 1988; Soares et al., 1993)

have been treated as realizations of space-time random

functions. A recent review of geostatistical space-time

models was given by Kyriakidis and Journel (1999). De

Cesare et al. (2001) include a brief comparison of the

product-sum covariance model and other classes of

spatial-temporal covariance models that have appeared

in the literature. These include the metric model

(Dimitrakopoulos and Luo, 1994), the product model

(Rodriguez-Iturbe and Meija, 1974), the linear model

(Rouhani and Hall, 1989), the product model (De

Cesare et al., 1997) and the Fourier product model

(Cressie and Huang, 1999).

FORTRAN 77 programs are described for estimating

and modeling the product and the product-sum covar-

iance models (in variogram form). To simplify determin-

ing the three coefficients in the product-sum model, two

constraints are imposed on these coefficients. These

constraints ensure that the model is valid and simplify

estimating the coefficients, i.e., fitting the model to the

data.

$Code available from server at http: //www.iamg.org/

CGEditor/index.htm.
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Although geostatistics offers a variety of methods to

extend existing spatial techniques to the space-time

domain, there are a number of theoretical and practical

issues that must be addressed prior to successful

application of geostatistical methods to space-time data.

These include

* identification and removal of daily cycles and

seasonal trends, in order to estimate and model the

space-time variogram of the residuals,
* choosing valid space-time covariance and variogram

models,
* applying some form of validation, to check the fit of

the variogram model versus the estimated variogram

values (Cressie, 1993; Myers, 1991).

The data is treated as a non-random sample from a

realization of a spatial-temporal random field

ðZðs; tÞ; s 2 D; t 2 TÞ ð1Þ

with D � R2 and T � N, which allows (1) to be viewed

as a time series of spatial processes, each process

occurring at equally spaced time points. Assuming that

the first and second moments of Z exist, Z can be

decomposed as

Zðs; tÞ ¼ mðs; tÞ þ Yðs; tÞ; ð2Þ

where Y is a second order stationary stochastic process

with

EðYðs; tÞÞ ¼ 0

and mðs; tÞ is the mean function of Z; the spatial-

temporal covariance function

CstðhÞ ¼ CovðYðsþ hs; tþ htÞ;Yðs; tÞÞ; ð3Þ

where h ¼ ðhs; htÞ 2 R2 � R; ðs; sþ hsÞ 2 D2 and

ðt; tþ htÞ 2 T2 and the spatial-temporal variogram

gstðhs; htÞ ¼
VarðYðsþ hs; tþ htÞ � Yðs; tÞÞ

2

depend solely on the lag vector h, and not on the

location in space or time.

2. Missing values and removal of seasonal components

A space-time data set can be viewed as a collection of

long time series, one for each spatial location. For

example, hourly data available for one or more years.

For this kind of data set there are likely two

deterministic cycles, namely the annual cycle (due to

the alternation of seasons) and the diurnal one with

period d. Hence, to take into account the above features,

it is possible to split the time series for each location in p

pieces (i.e. months). That is, the time interval T is

partitioned such that T ¼ ½t0; t1½[½t1; t2½[ � � � [ ½tp�1; tp�
where t05t15 � � �5tp, then the trend mðs; tÞ can be

modeled in the following way:

1. aiðs; tÞ ¼ aiðs; tþ dÞ 8s 2 D 8t; tþ d 2 ½ti�1; ti½;
i ¼ 1; . . . ; p.

2.
Pd

j¼1 aiðs; jÞ ¼ 0 8s 2 D; i ¼ 1; . . . ; p.
3. mðs; tÞ ¼ aiðs; tÞ þ mi 8s 2 D 8t; tþ d 2 ½ti�1; ti½;

i ¼ 1; . . . ; p.

aiðs; tÞ is called seasonal component for the ith ‘‘month’’

and mi is a constant trend for the same ‘‘month’’. In

order to estimate the seasonal component, time series

analysis can be applied to each monitoring station using

the standard technique of moving average estimation

(MAE) (Brockwell and Davis, 1987). To implement such

a technique, values are needed at equally spaced time

points.

In many data sets there are missing values, hence

interpolation in time is required in order to apply the

time series analysis. The FORTRAN routine REMO-

VE.FOR performs time interpolation and removes the

trend component.

Input parameters for the program REMOVE

* the number p of ‘‘months’’,
* the values t0; t1; . . . ; tp,
* the period d of the seasonal component,
* the minimum number n of consecutive values to

which the MAE method is applied,
* the maximum number k of consecutive missing

values to which the linear interpolation is applied.

Procedure description

(a) Sequences with fewer than k consecutive missing

values are linearly interpolated (there is no inter-

polation if there are more than k consecutive

missing values).

(b) The MAE method is applied to sequences with more

than n consecutive values: for each of these sequences

the seasonal components are separately computed.

Sequences with fewer than n consecutive values are

not considered: for such sequences there are not

enough values to estimate the seasonal component.

3. Some space-time covariance models

For the process Y denote by:

gst, the spatiotemporal variogram, gt, the temporal

variogram, gs, the spatial variogram, Ct, the temporal

covariance, Cs, the spatial covariance, Cstð0; 0Þ, the

‘‘sill’’ of gst, Csð0Þ, the sill of gs; Ctð0Þ, the sill of gt.
The FORTRAN 77 programs described in this paper

incorporate the following spatial-temporal covariance/

variogram models for Y .

* The Product model. One of the simplest ways to

model a covariance in space-time is to separate the

L. De Cesare et al. / Computers & Geosciences 28 (2002) 205–212206



dependence in space and in time (Rodriguez-Iturbe

and Meija, 1974; De Cesare et al., 1997). The product

spatial-temporal covariance model is:

Cstðhs; htÞ ¼ kCsðhsÞCtðhtÞ: ð4Þ

The product covariance model could be re-written in

terms of the spatial-temporal variogram

gstðhs; htÞ ¼ kðCtð0ÞgsðhsÞ þ Csð0ÞgtðhtÞ � gsðhsÞgtðhtÞÞ:

The parameter k is determined by Eq. (4):

k ¼
Cstð0; 0Þ

Csð0ÞCtð0Þ
:

Hence, it can be estimated by estimating Cstð0; 0Þ
(called the ‘‘global’’ sill) and the spatial and temporal

sills Csð0Þ and Ctð0Þ, respectively.

If in Eq. (4) Cs is a positive-definite function in Rd

and Ct is a positive-definite function in R, then the

product model is positive definite in space-time

(Cressie, 1993). However, the class (4) is severely

limited, since for any pair of spatial locations the

cross-covariance function of the two time series

always has the same shape. In fact, for any two fixed

spatial lags h1 and h2

Cstðh1; htÞ / Cstðh2; htÞ:

A similar result holds for any pair of time points and

the cross-covariance function of the two spatial

processes.
* The Product-sum model. The product model can

easily be extended as follows:

Cstðhs; htÞ ¼ k1CsðhsÞCtðhtÞ þ k2CsðhsÞ þ k3CtðhtÞ: ð5Þ

This is a valid model in space time if the separate

space and time models are valid and if k1 > 0. This

model can be re-written in terms of the spatial-

temporal variogram

gstðhs; htÞ ¼ ðk1Csð0Þ þ k3ÞgtðhtÞ þ ðk1Ctð0Þ þ k2ÞgsðhsÞ

� k1gsðhsÞgtðhtÞ: ð6Þ

In order to assure the admissibility of model Eq. (4),

Cs and Ct must be positive-definite functions (Cressie,

1993). In addition, the coefficients k2 and k3 must be non

negative while k1 must be strictly positive.

The following condition is implicit in the transforma-

tion from covariance form to variogram form:

k1Csð0ÞCtð0Þ þ k2Csð0Þ þ k3Ctð0Þ ¼ Cstð0; 0Þ: ð7Þ

Note also from Eq. (6) that

gstðhs; 0Þ ¼ ½k2 þ k1Ctð0Þ�gsðhsÞ: ð8Þ

and

gstð0; htÞ ¼ ½k3 þ k1Csð0Þ�gtðhtÞ: ð9Þ

To determine the coefficients, three equations

are needed. Two of these are generated by assuming

that

k2 þ k1Ctð0Þ ¼ 1

k3 þ k1Csð0Þ ¼ 1: ð10Þ

Thus to estimate and model gsðhsÞ and gtðhtÞ it is

sufficient to estimate and model gstðhs; 0Þ and gstð0; htÞ,
respectively.

From Eq. (7), and Eq. (10) we obtain

k1 ¼ ½Csð0Þ þ Ctð0Þ � Cstð0; 0Þ�=Csð0ÞCtð0Þ;

k2 ¼ ½Cstð0; 0Þ � Ctð0Þ�=Csð0Þ;

k3 ¼ ½Cstð0; 0Þ � Csð0Þ�=Ctð0Þ: ð11Þ

In modeling the separate spatial and temporal

variograms it is necessary to ensure that the sills are

chosen so that the numerators in Eq. (11) remain

positive.

The main advantage of using models Eqs. (4) and

(5) is that these are completely determined by the

temporal variogram gt and the spatial variogram gs.
The severe shortcomings of model Eq. (4) were men-

tioned above; on the other hand, restrictions Eq. (10)

on model Eq. (5) impose a form of symmetry on the

same model, i.e., symmetry between the impact of the

spatial component and the temporal correlation com-

ponent.

The spatial-temporal sill Cstð0; 0Þ can be estimated

from a plot of the spatial-temporal variogram surface

gst: this variogram surface can be obtained by using

a modified version of the GAMV routine of the

GSLIB package (Deutsch and Journel, 1997). This

modification computes the values of the sample space-

time variogram, gst, at the spatial lag hs and temporal lag

ht. The empirical spatial and temporal variograms can

be then be easily extracted (put ht ¼ 0; hs ¼ 0, respec-

tively).

The COVA3 routine of the GSLIB package,

which computes the covariance function, has been

modified. The new routine allows the use of a product

variogram model (4) or a product-sum variogram

model Eq. (5). The input parameters for this routine

include the ‘‘global’’ sill Cstð0; 0Þ, the spatial and

the temporal nugget effect and the spatial and the

temporal variograms. The corresponding parameter

file and the input routine READPARM have been

modified in order to take into account the above

corrections.

4. Cross-validation and prediction

To implement cross-validation and spatial-temporal

prediction using a product or a product-sum variogram
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model, the KT3D GSLIB program is modified by

substituting the new COVA3 subroutine. The only other

modification to KT3D concerns the substitution at

the beginning of the line code covmax=c0(1) with

covmax= cc(nst(1)+1) because the maximum covar-

iance actually is the ‘‘global’’ sill. As noted above this

parameter can be estimated by plotting the spatial-

temporal variogram surface.

Because space and time are treated quite differently, it

is necessary to choose the search radii and the

anisotropy ratios separately. The variogram models

available for use either as space variograms or as time

variograms are the same ones as in the GSLIB software

library. In the program code the spatial variogram

models are identified by the GSLIB code number, while

the temporal ones are specified by adding 5 to the

previous code number.

5. A numerical example

The data collection network, planned to the standards

and information provided by the Lombardy Region’s

Environmental Town Council, consists of 52 survey

stations for hourly averages of NO2 measured from the

1st to the 31st of October 1998.

Residuals were generated for all stations after removal

of the seasonal component by the standard technique of

moving averages described in Section 2. The parameter

file used by the FORTRAN routine REMOVE.FOR is

shown in the Appendix.

Fig. 1(a) shows the sample temporal variograms of

the original data and the residuals with the fitted model:

Note the periodic structure at 24 h exhibited by the

variogram of the original data. Fig. 1(b) shows the

sample spatial variogram of the residuals with the fitted

model.

The ‘‘global’’ sill value Cstð0; 0Þ of gst has been

estimated through the spatial-temporal variogram sur-

face of the residuals (see Fig. 2).

Cross-validation, using the modified KT3D routine,

was used to check the fit of the above variogram model

versus the sample variogram(s). The parameter file used

for cross-validation is shown in the Appendix: The

correlation coefficient between the residual values and

the predicted ones is r ¼ 0:9.

5.1. Spatial-temporal prediction

The hourly average data for NO2 measured during

October 1998 together with the product-sum variogram

model given in (6) were used to predict the hourly

averages of NO2 on the 1st of November 1998, using

ordinary kriging at the same monitoring stations

available on the first of November. The daily averages

of the predicted hourly values were then compared to

the daily averages of the true hourly values (Fig. 3); this

latter data was not used in making the predictions. The

correlation coefficient between true and predicted values

is 0.9.

In order to evaluate the evolution of the hourly

averages of NO2 for the 1st of November 1998, the

predicted values, at the same locations where the true

values are available, were computed in the following

way:

1. the residual product-sum variogram model was used

to predict by ordinary kriging the residuals for the 1st

Fig. 1. Sample temporal variograms of original data and residuals with fitted model (a); sample spatial variogram of residuals with

fitted model (b).
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of November 1998 at the same locations where the

true values are available,

2. the seasonal component corresponding to October

1998, which was previously estimated, has been

added to the predicted residuals in order to obtain

the predicted values.

In the above, it is assumed that the trend component

does not change from one month to the next.

Fig. 4 shows the spatial plots of the daily averages

of the true hourly values and the daily averages of

the predicted hourly values on the 1st of November

1998. The highest values are clearly localized in

the central part of the graph, corresponding to the city

of Milan and outlying districts, while the peripheral

parts of the district are characterized by the lowest

values.

Fig. 2. Spatial-temporal variogram surface of residuals.

Fig. 3. Daily averages of true hourly values versus daily averages of predicted hourly values on 1st November 1998.
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Appendix

6.1. GAMV.PAR

6.2. KT3D.PAR

Fig. 4. Postplots of daily averages of true hourly values and daily averages of predicted hourly values on 1st November 1998.

Parameters for GAMV

*********************

START OF PARAMETERS:

ott-98.dst \datafile

2 3 4 \column for x, y, t coordinates

1 4 \nvar; column numbers . . .
�9000. 1.0e21 \tmin, tmax (trimming limits)

vmapdest.var \output file for variograms

18 \nlag - the number of spatial lags

1700 \xlag - unit separation distance

850 \xltol - lag tolerance

144 \ntlag - the number of temporal lags

1. \tlag - unit separation distance

1 \ndir - number of directions

0:0 90:0 15000: 0: 0: 0: \azm, atol, bandh, dip, dtol, bandv

1 \standardize sills? (0=no, 1=yes)

1 \number of variograms 1 1

1 \tail, head, variogram type

Parameters for KT3D

*********************

START OF PARAMETERS:

ott-98.dst \file with data

1 2 3 4 0 \columns for X, Y, Z, var, sec var

�2000 1.0e21 \trimming limits

1 \option: 0=grid, 1=cross, 2=jackknife

xvk.dat \file with jackknife data

1 2 0 3 0 \columns for X, Y, Z, vr and sec var

2 \debugging level: 0, 1, 2, 3

ckt3d.dbg \file for debugging output
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6.3. REMOVE.PAR
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