EFFICIENCY OF DIFFERENT EQUATION SOLVERS IN COKRIGING

James R. Carr ${ }^{1}$ and Donald E. Myers ${ }^{2}$
${ }^{1}$ Department of Geological Sciences, University of Nevada-Reno, Reno, NV 89557 and
${ }^{2}$ Department of Mathematics, University of Arizona, Tucson, AZ 85721, U.S.A.

(Received 22 August 1989; accepted 11 December 1989)

Abstract

When the system of equations for cokriging is written in matrix form the sample-sample covariance matrix may be considered either as an $m n \times m n$ matrix of scalar entries, where n is the number of sample locations and m is the number of variables, or as an $n \times n$ matrix whose entries are $m \times m$ matrices. Similarly, the point-sample covariance matrix may be considered as m column vectors or as a single column whose entries are $m \times m$ matrices. The formulation in the original program assumed that the submatrix structure should be preserved, but this is not necessary. The scalar matrix formulation allows for the use of a standard Gaussian elimination to reduce the matrix to diagonal form or for reduction to upper triangular form together with back substitution. Both methods result in significant reductions in computing time.

Key Words: Cokriging, COKRIG, Gauss elimination, Banded equation solution.

INTRODUCTION

Programs for solving kriging equations generally use a Gauss elimination algorithm for the reduction of the sample-sample covariance matrix and the pointsample covariance vector. In developing a computer code for cokriging (Carr, Myers, and Glass, 1985), Gauss elimination was not used at first because of the nature of the sample-sample covariance matrix and point-sample covariance vector as well as memory limitations. In cokriging, each entry in these arrays is a square matrix whose dimension is the number of variables. The initial program for solving the cokriging equations used an algorithm which maintained this submatrix structure.

Originally, Carr, Myers, and Glass (1985) used an extension of the algorithm known as ART (algebraic reconstruction technique from Herman, Lent, and Rowland, 1973). This method is iterative and is adapted easily to equation solving wherein submatrix structure is present. It was soon determined that in this form ART converges slowly; at least 200 iterations are required per estimate. Moreover, ART requires a beginning estimate for the solution; Carr, Myers, and Glass (1985) use an estimate of zero (more precisely, the null vector for weights is used). A different initial guess based on the point-sample covariance values reduces the number of iterations required.

Because the ART algorithm is slow when the initial solution is the null vector, a modified Gauss elimination technique was incorporated. In kriging, the sample-sample covariance matrix has the largest numerical values on the diagonal. In the Gauss elimination algorithm, these diagonal values are
used to normalize and reduce this matrix, and the point-sample covariance vector, as a prelude to back substitution. This reduction requires division operations using diagonal covariance entries. In cokriging, the diagonal entries in the samplesample covariance matrix are matrices, and it was desired to maintain this submatrix structure in original computer code development. A global Gauss elimination algorithm, subroutine EQSOLV in the original program, was used in which a second Gauss elimination algorithm performs the normalization and reduction using the diagonal square matrices.

Subsequently, it was noted that the submatrix structure need not be maintained in the samplesample covariance matrix and the point-sample covariance column vector. The sample-sample covariance matrix can be treated as a large matrix of scalar entries and reduced as such in a Gauss elimination procedure. The point-sample column vector likewise is treated as m column vectors, where m is the number of variables being estimated. These vectors are reduced individually. Back substitution using each of the column vectors and the reduced covariance matrix yields the solution for the weights, one column vector at a time. It then is of interest to compare the efficiency of the two equation solvers.

COKRIGING EQUATIONS

As shown in Myers (1982), the ordinary cokriging system of equations can be written as:

$$
\begin{equation*}
U Y=D \tag{1}
\end{equation*}
$$

where U is the sample-sample covariance matrix:

$$
U=\left[\begin{array}{cccc}
\bar{C}\left(x_{1}-x_{1}\right) & \ldots & \bar{C}\left(x_{1}-x_{N}\right) & I \tag{2}\\
\vdots & & \vdots & \vdots \\
\bar{C}\left(x_{N}-x_{1}\right) & \ldots & \bar{C}\left(x_{N}-x_{N}\right) & I \\
I & \ldots & I & 0
\end{array}\right]
$$

Y is the solution vector:

$$
Y=\left\{\begin{array}{c}
\Gamma_{1} \tag{3}\\
\vdots \\
\Gamma_{N} \\
\bar{\mu}
\end{array}\right\}
$$

and D is the point-sample covariance vector:

$$
D=\left\{\begin{array}{c}
\widetilde{C}\left(x_{1}-x_{0}\right) \tag{4}\\
\vdots \\
\widetilde{C}\left(x_{N}-x_{0}\right) \\
I
\end{array}\right\}
$$

In each of these arrays, I is an identity matrix and N is the number of nearest known sample locations used for estimation.

As noted in Myers (1988), the coefficient matrix (sample-sample covariance matrix) is the same whether estimating all variables or only one. This reinforces the approach utilized in the new equation solver described herein.

EQUATION SOLVERS

The original procedure in Carr, Myers, and Glass (1985) for computation of the sample-sample covariance matrix uses considerable disk access. The coefficient matrix is formed and written row by row to disk. Prior to solution, this matrix is brought into core (for the modified Gauss elimination approach: subroutine EQSOLV in Carr, Myers, and Glass, 1985). This disk I/O procedure was necessary to
conform to the ART equation solvers. Because disk I / O is less efficient than in core computation of the sample-sample covariance matrix, examples are presented comparing the efficiency of the original disk I/O procedure with a modified procedure which forms this matrix in core. New or modified versions of original subroutines are listed in Appendix 2.

Numerical results

Three studies are presented. The first compares the computational efficiency of the two approaches (maintaining submatrix structure or treating all matrices as having scalar entries) using the original method of disk I/O formation of the sample-sample covariance matrix. The second repeats this comparison using in core formation of this covariance matrix. Finally, a third study is presented to show the increase in efficiency of Gauss elimination equation solution for the method in which submatrix structure is not retained. Each study uses the data set presented in Appendix 1, and preliminary output for each study is shown in Figure 1. Computational efficiency is given in Table 1.

All computations reported in this table were obtained on an IBM PC/XT computer upgraded with a 12 MHz 80286 Turbo Card with 80287-10 math coprocessor and hard disk. All programs were compiled using Microsoft FORTRAN Optimizing Compiler Version 4.0. References to IBM and Microsoft are made for information purposes only and do not imply any endorsements.

Only the method which does not maintain the submatrix structure is considered in the third and final study (the fifth column of Table 1 headed III/VI). It is clear from Table 1 that this is the most efficient method for solving the cokriging system. These results are obtained by modifying the Gauss elimination method to produce a modified, banded

Table 1. Number of locations at which estimates are made per minute; two variables are estimated per location in this example

CO-KRIGING PROGRAM

MO OF RONS IN KRIGED ARRAY	$=$	10
NO OF COLS IN KRIGED ARRAY	$=$	10
MAXIMU Y COORDINATE	$=$	250.000
MAXIMUM X COORDINATE	$=$	250.000
INCREMENT ON X	$=$	25.000
INCREMENT ON Y		
A TOTAL OF 2 VARIABLE(S) WILL BE ESTIMATED		

Figure 1. This printout of preliminary information results for examples shown in Figures.
algorithm. This method is described in the next section.

Analogy between cokriging and finite element analysis

The Gauss elimination algorithm is used in many finite element programs, but is modified for banded matrices. Increased memory and equation solving efficiency is the result. Appendix 5 is rewritten for banded matrices after a computer algorithm given in Cook (1974, p. 45). Use of the banded matrix approach for kriging was proposed by Davis and Culhane (1984). Furthermore, Davis and Grivet (1984) propose using an LU decomposition and provide a FORTRAN subroutine for this method. The modified banded equation solver described next extends the methods previously described. Davis and Culhane (1984) correctly note that the banded matrix algorithm as implemented in finite element programs is useful only for certain covariance models and simple kriging. The modified banded algorithm presented herein, however, is applicable to any diagonalized, symmetric matrix. The code is given in Appendix 6.

In finite element analysis, arrays are formed to yield the system $A X=B$. If the finite element analysis is used to solve Hooke's law, A is a square, symmetric, diagonalized matrix of system stiffnesses, B is a column vector of forces, and X is the solution vector of deflections. A "band" (and hence the term, banded equation solver) is the area of array A on either side of the diagonal where nonzero entries are located.

In geostatistics, the kriging or cokriging system also is an $A X=B$ problem. Furthermore, the matrix A is a square, symmetric, and diagonalized matrix of covariance values. The term, "band", however, really does not have meaning for this covariance matrix because, in many instances, all entries in this matrix are nonzero. Therefore, the algorithm presented in Cook (1974, p. 45) is modified slightly to use the entire upper triangle and diagonal of the covariance matrix rather than a banded region of the upper triangle. The bandwidth is allowed to change in this modification, whereas it is a constant in finite element analysis.

This modification is presented in Appendix 6. This equation solver, used in COKRIG with AFORM replaced by Appendix 3, yields nine estimates in 1 min without a math coprocessor, 90 estimates per minute using a coprocessor. Therefore, this third and final study represents the greatest efficiency.

DISCUSSION OF SUBROUTINES

The program reported in Carr, Myers, and Glass (1985) is COKRIG. No modifications are required to reproduce the first column of Table 1 using the data of Appendix 1. To obtain the second column in this table, COKRIG is modified by simply replacing the original subroutines, EQSOLV and SCALG, with Appendix 2.

To produce the results shown in the third column of Table 1 , COKRIG is modified by replacing the original subroutine, AFORM, by Appendix 3; and, the original subroutine, EQSOLV, is replaced by Appendix 4. Note that original subroutines SCALG and MATMUL are required when using Appendix 4.

To produce the results shown in the fourth column of Table 1 , COKRIG is modified by replacing the original subroutine, AFORM, by Appendix 3; then, the original subroutines, EQSOLV and SCALG, are replaced by Appendix 5.

Finally, to produce the results shown in the fifth column of Table 1, COKRIG is modified by replacing the original subroutine, AFORM, by Appendix 3; then, the original subroutines, EQSOLV and SCALG, are replaced by Appendix 6.

If using the version of COKRIG from Carr and Myers (1986), do not delete subroutine, SCALG, as described. This subroutine is required for the ART algorithm in this 1986 version of COKRIG.

Four additional modifications to the main program of COKRIG are required to reproduce the results in Table 1 when Appendices 3-6 are used. These modifications follow:
(1) The labeled common, FORM, must be changed to:

COMMON/FORM/XMEAS $(100,5)$, ATEMP $(100,100)$

(this is statement COK00890 in Carr, Myers, and Glass, 1985, p. 116);
(2) The array, $\operatorname{ATEMP}(5,100)$ must be deleted from the DIMENSION statement at COK00910 (Carr, Myers, and Glass, 1985, p. 116);
(3) The call to subroutine AFORM must be changed to:

CALL AFORM(YCORD,XCORD, NHOLE,INIT)

(this is statement COK02800, Carr, Myers, and Glass, 1985, p. 118);
(4) The call to subroutine EQSOLV must be changed to:

IF(ISOLV.EQ.1) CALL EQSOLV(XTEMP)

(this is statement COK02820, Carr, Myers, and Glass, 1985, p. 118).

A final study is summarized to document the numerical accuracy of the equation solution subroutines presented in Appendices 2, 5, and 6. A Gauss elimination equation solver, GAUSSJ, is presented in Numerical Recipes (Press and others, 1987, p. 28-29). The program, COKRIG, was modified using Appendix 3 and GAUSSJ, then applied to the data of Appendix 1 to document equation solution accuracy. The principle of duplication of results is used for this verification; that is, if two different subroutines yield the same results, and one of these subroutines is a published, standard subroutine such as GAUSSJ,

1	1	237.500	12.500	7.897	1.002	18.873
1	2	237.500	37.500	8.011	1.001	19.022
1	3	237.500	62.500	7.836	1.002	18.546
1	4	237.500	87.500	8.298	1.003	18.869
1	5	237.500	112.500	7.541	1.001	18.381
From gaussu:						
1	1	237.500	12.500	7.897	1.002	18.873
1	2	237.500	37.500	8.011	1.001	19.022
1	3	237.500	62.500	7.836	1.002	18.546
1	4	237.500	87.500	8.298	1.003	18.869
1	5	237.500	112.500	7.541	1.001	18.381

Figure 2. Comparison of estimates yielded by two equation solvers: Appendix 6 and GAUSSJ.
the reliability of the other subroutine is substantiated. Application of COKRIG to the data of Appendix 1 using Appendix 6 is compared to that using GAUSSJ in Figure 2. Only the first five estimated values are shown, but results using both equation solvers are identical. Although only Appendix 6 is compared to GAUSSJ, Appendices 2 and 5 yield the same estimated values.

The use of standard subroutines, such as published in Press and others (1987); assures accuracy and uniformity in published software. For the applications presented here, specialty subroutines are presented, but are tested against the subroutine, GAUSSJ (Press and others, 1987, p. 28-29). The subroutine, GAUSSJ, is not modified easily for banded equation solution, which is shown here to be the most efficient form of equation solution for cokriging.

CONCLUSION

Submatrix structure is an integral part of the cokriging system of equations. This structure is maintained when forming the sample-sample covariance matrix and the point-sample covariance vector. The modified version of the subroutine, AFORM, listed in Appendix 3 maintains submatrix structure when forming these arrays.

It is not necessary, however, to maintain the submatrix structure throughout equation solving as in the original version of COKRIG. By forming
the sample-sample covariance matrix in core, treating this matrix as a large matrix of scalar entries, and using only the upper triangle and diagonal of this matrix for equation solution, a substantial improvement in execution speed for COKRIG is realized.

REFERENCES

Carr, J. R., Myers, D. E., and Glass, C. E., 1985, Cokriging -a computer program: Computers \& Geosciences, v. 11, no. 2, p. 111-127.

Carr, J. R., and Myers, D. E., 1986, Multivariate geostatistical analysis for the earth sciences: Short Course Notes, Univ. Missouri-Rolla, 117 p.
Cook, R. D., 1974, Concepts and applications of finite element analysis: John Wiley \& Sons, New York, 402 p .
Davis, M. W., and Culhane, P. G., 1984, Contouring very large datasets using kriging, in Verly, G., and others, eds., Geostatistics for natural resources characterization: D. Reidel, Dordrecht, The Netherlands, v. 2, p. 599-619

Davis, M. W., and Grivet, C., 1984, Kriging in a global neighborhood: Jour. Math. Geology, v. 16, no. 3. p. 249-266.

Herman, G. T., Lent, A., and Rowland, S. W., 1973, ART: mathematics and applications: Jour. Theor. Biology, v. 42, no. 1, p. 1-32.

Myers, D. E., 1982, Matrix formulation of co-kriging Jour. Math. Geology, v. 14, no. 3, p. 249-257.
Myers, D. E., 1988, Multivariate geostatistics for environmental monitoring: Sciences de la Terre, v. 27, p. 411-427.

Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T., 1987, Numerical recipes: the art of scientific computing: Cambridge Univ. Press, New York, 818 p.

APPENDIX 1

```
0,2,0,1
10,10,250.0,250.0,25.0,25.0
1,2,9.20,15.4,14.,0.0,1.0,1000.0
2,2,0.034,.062,5.0,0.0,1.0,1000.0
1,2,2,9.23,15.5,14.0,0.0,1.0,1000.0
3.1,1.0,96.72,134.17
4.5,1.0,92.28,131.43
4.5,1.0,91.72,116.90
3.5,1.0,92.28,133.28
10.5,1.0,93.39,127.72
3.3,1.0,97.17,123.81
11.5,1.0,93.39,125.87
9.6,1.0,93.39,128.18
4.0,1.0,91.17,132.40
9.0,1.0,92.28,127.72
7.0,1.0,102.28,133.21
5.75,1.0,90.05,131.44
2.1,0.0,92.39,133.28
5.5,1.0,93.95,120.59
5.0,1.0,91.17,132.36
4.0,1.0,93.06,115.22
3.6,1.0,100.39,143.86
8.0,1.0,102.28,112.21
4.2,1.0,94.50,141.59
5.3,1.0,92.61,119.21
3.0,1.0,92.61,119.11
3.7,1.0,91.83,116.90
5.6,1.0,103.40,111.92
26.0,1.0,106.51,112.18
7.3,1.0,92.61,128.37
4.0,1.0,101.95,121.46
5.2,1.0,91.83,116.81
5.1,1.0,93.39,128.46
3.0,1.0,98.95,128.60
2.5,0.0,63.37,132.55
1.4,0.0,57.81,133.52
5.5,1.0,96.72,130.47
7.6,1.0,93.39,129.57
4.5,1.0,80.60,120.12
12.0,1.0,102.28,112.49
4.0,1.0,98.95,124.90
7.0,1.0,93.39,120.68
3.8,1.0,97.84,133.24
4.5,1.0,93.39,131.42
4.0,1.0,96.72,124.64
4.0,1.0,96.72,124.73
4.25,1.0,91.72,116.99
5.4,1.0,93.17,131.42
6.8,1.0,93.39,122.72
5.2,1.0,87.94,129.79
10.5,1.0,93.39,128.27
0.0,0.0,0.0,0.0
```


APPENDIX 2

```
    SUBROUTINE EQSOLV(XMEAS, XTEMP)
    COMMON /FILES/ IUNIT
    COMMON /PARM/ MROW, MCOL, MVAR, MTOT
    DIMENSION ATEMP(100,100), XTEMP (100,5), XMEAS(100,5)
C.....THIS GAUSS ELIMINATION EQUATION SOLVER REPLACES
C......SUBROUTINE EQSOLV, CARR, ET. AL., 1985, P. 124.
    REWIND IUNIT
    DO 10 I = 1,MROW
    DO 10 J = 1,MVAR
    JB = (I - 1) * MVAR + J
    READ(IUNIT) (ATEMP(JB,JK), JK = 1,MTOT)
    CONTINUE
    DO 15 I = 1,MTOT
    DO 15 J = 1,MVAR
    ATEMP (I,MTOT+J) = XMEAS (I,J)
    CONTINUE
```

c......
c......

```
c
C......BEGIN GAUSS DECOMPOSITION
C......STEP 1: FORWARD REDUCTION
C
    NSIZE = MTOT
    MP = NSIZE + MVAR
    DO 100 N = 1,NSIZE
        I = N + 1
            DO 90 L = 1,NSIZE
            IF (L .NE. N) THEN
                C = ATEMP(L,N) / ATEMP(N,N)
                DO 80 K = I,MP
                ATEMP(L,K) = ATEMP(L,K) - C*ATEMP(N,K)
            ENDIF
            CONTINUE
    100 CONTINUE
c
C......Step 2: solve for cokriging weights
    DO 300 I = 1,MVAR
    DO 300 M = 1,NSIZE
        XTEMP(M,I) = ATEMP(M,NSIZE+I) / ATEMP(M,M)
        continue
        RETURN
        END
```


APPENDIX 3

SUBROUTINE AFORM (YCORD, XCORD, KHOLE, INIT)
COMMON /DAT2/ X(500), Y(500), DAT $(500,5)$
COMMON /PARM/ MROW,MCOL,MVAR,MTOT
COMMON /AMAT/ IKRIG,JUNSAM(500), KCOUNT
COMMON /VAR/ CO (5), C(5), RANGE (5), MODEL(5), ANIS(5),
2 RATIO(5), RINFLU(5)
COMMON /CVAR/ CCO(10), CC(10), CRANGE(10), CMODEL(10), CANIS(10), CRNFLU(10), CRATIO(10)
COMMON /FORM/ XMEAS $(100,5), \operatorname{ATEMP}(100,100)$
DIMENSION KHOLE(INIT),IPOS(5)
INTEGER CMODEL
M1 = INIT
M2 = INIT
SUBROUTINE TO FORM INTERSAMPLE COVARIANCE MATRIX
DO 1000 II $=1, \mathrm{M} 1$
NI = KHOLE(II)
I7 = (II - 1) * MVAR
DO $750 \mathrm{JJ}=1, \mathrm{M} 2$
IF (JJ .LT. II) GO TO 750
$\mathrm{KPOS}=0$
NK = KHOLE(JJ)
DIFX $=X(N I)-X(N K)$
DIFY $=\mathbf{Y}(\mathrm{NI})-\mathbf{Y}(\mathrm{NK})$
K7 = (JJ - 1) * MVAR
DISTAN $=\operatorname{SQRT}((\operatorname{DIFX} \operatorname{COS}(A N I S(1))+\operatorname{DIFY} \operatorname{SIN}(A N I S(1))) * * 2$ + (RATIO(1)*(DIFY*COS(ANIS(1)) - DIFX *
$\operatorname{SIN}(\operatorname{ANIS}(1)))) * * 2)$
DO $500 \mathrm{KK}=1$, MVAR
1TOT = $\mathrm{I} 7+\mathrm{KK}$
JTOT = K7 + KK
DO $500 \mathrm{LL}=1$, MVAR
LTOT = I7 + LL
NTOT $=$ K7 +LL
IF (LL .EQ. KK) THEN
ATEMP (ITOT, NTOT) $=$ COVAR(DISTAN,LL)
ATEMP (NTOT,ITOT) $=$ ATEMP(ITOT,NTOT)
ELSEIF (LL .GT. KK) THEN
KPOS $=$ KPOS +1
ATEMP (ITOT,NTOT) $=$ CROSS(DISTAN,KPOS,KK,LL)
ATEMP(LTOT,JTOT) = ATEMP(ITOT,NTOT)
ATEMP (NTOT, ITOT) $=$ ATEMP (ITOT, NTOT)
ATEMP(JTOT,LTOT) = ATEMP(LTOT,JTOT)
ENDIF
continue
CONTINUE

```
C
FORM THE IDENTITY MATRICES
M5 = INIT * MVAR
    DO }900\textrm{MM}=1,MVA
    M6 = I7 + MM
    DO }900\textrm{NM}=1,MVA
    M7 = M5 + NM
    IF (MM .EQ. NM) ATEMP(M6,M7) = 1.0
    IF (MM .NE. NM) ATEMP (M6,M7) = 0.0
    ATEMP(M7, M6) = ATEMP(M6,M7)
CONTINUE
1000 CONTINUE
    M5 = INIT * MVAR + 1
    DO 1100 I = M5,MTOT
    DO 1100 J = M5,MTOT
    ATEMP (I,J) = 0.0
1100
C
C
IF (IKRIG .EQ. 1) THEN
    DO 1480 IAB = 1,M2
    NK = KHOLE(IAB)
    IMOD = 0
    DO 1420 IAC = 1,KCOUNT
    NA = JUNSAM(IAC)
    IF (NK .EQ. NA) IMOD = 1
    CONTINUE
    IF (IMOD .EQ. 1) THEN
        JOUNT = 0
        DO 1440 IAD = 1,MVAR
        IF (DAT (NK,IAD).EQ. 0.0) THEN
            JOUNT = JOUNT + 1
            IPOS(JOUNT) = IAD
        ENDIF
        CONTINUE
        K10 = (IAB - 1) * MVAR
        DO 1450 IAE = 1,JOUNT
        KZ2 = K10 + IPOS(IAE)
        DO 1450 IAF = 1,MTOT
        ATEMP(KZ2,IAF) = 0.0
        ATEMP(IAF,KZ2) = 0.0
    ATEMP(KZ2,KZ2) = 10000000000.0
    ENDIF
    CONTINUE
    ENDIF
    FORM THE MEASUREMENT VECTOR
    DO 2000 II = 1,M1
    K7 = KHOLE(II)
    DIFX = XCORD - X(K7)
    DIFY = YCORD - Y(K7)
    KPOS = 0
    K12 = (II - 1) * MVAR
    DISTAN = SQRT((DIFX*COS(ANIS(1)) + DIFY*SIN(ANIS(1)))**2
                                    + (RATIO(l)*(DIFY*COS(ANIS(1)) - DIFX *
3 SIN(ANIS(1))))**2)
DO 2000 JJ = 1,MVAR
KZ = K12 + JJ
DO 2000 KK = 1,MVAR
KW = K12 + KK
IF (KK .EQ. JJ) THEN
    XMEAS(KZ,KK) = COVAR(DISTAN,KK)
ELSEIF (KK .GT. JJ) THEN
    KPOS = KPOS + 1
    XMEAS(KZ,KK) = CROSS(DISTAN,KPOS,JJ,KK)
        XMEAS(KW,JJ) = XMEAS(KZ,KK)
ENDIF
2000
CONTINUE
C
C
    2
MODIFY THE MEASUREMENT VECTOR FOR UNDERSAMPLING
IF (IKRIG .EQ. 1) THEN
    DO 2350 II = 1,M1
    IMOD = 0
    K7 = KHOLE(II)
    DO 2200 JJ = 1,KCOUNT
```

```
    NA = JUNSAM(JJ)
2200
250
2 2 6 0
2350
C
C
    IF (K7 .EQ. NA) IMOD = 1
    IF (IMOD .EQ. 1) THEN
        JOUNT = 0
        DO 2250 KK = 1,MVAR
        IF (DAT(K7,KK) .EQ. 0.0) THEN
            JOUNT = JOUNT + 1
            IPOS(JOUNT) = KK
        ENDIF
        CONTINUE
        K12 = (II - L) * MVAR
        DO 2260 LL = 1,JOUNT
        K8 = K12 + IPOS(LL)
        DO 2260 MM = 1,MVAR
        XMEAS (K8,MM) =0.0
        CONTINUE
    ENDIF
        CONTINUE
    ENDIF
LAST ENTRY IN THE MEASUREMENT VECTOR IS AN IDENTITY MATRIX
N1 = M1 * MVAR
DO 2500 II = 1,MVAR
N3 = N1 + II
DO 2500 JJ = 1,MVAR
IF (JJ .EQ. II) THEN
    XMEAS(N3,JJ) = 1.0
ELSEIF (JJ .NE. II) THEN
    XMEAS(N3,JJ)=0.0
ENDIF
CONTINUE
RETURN
END
```


APPENDIX 4

SUBROUTINE EQSOLV（XTEMP）
COMMON／PARM／MROW，MCOL，MVAR，MTOT
COMMON／FORM／XMEAS $(100,5), \operatorname{ATEMP}(100,100)$
DIMENSION XTEMP $(100,5)$
DIMENSION $\operatorname{TEMP}(5,5), \operatorname{TEMP} 1(5,5), \operatorname{TEMP} 2(5,5), \operatorname{TEMP} 3(5,5)$
SUBROUTINE FOR MODIFIED GAUSS ELIMINATION

```
ISET = 1
DO 15 I = 1,MTOT
DO 15 J = 1,MVAR
N = MTOT + J
ATEMP(I,N) = XMEAS(I,J)
CONTINUE
BEGIN GAUSS DECOMPOSITION
MN = MROW + 1
DO 100 I = 1,MROW
IP = I + 1
KB1 = (I - 1) * MVAR
DO 20 KJ = 1,MVAR
KB=KBI + KJ
DO 20 KK = 1,MVAR
KC = KB1 + KK
TEMP(KJ,KK) = ATEMP(KB,KC)
DUM1 = TRACE(TEMP)
DO 100 J = 1,MROW
IF (I - J) 40,100,40
CONTINUE
KCl = (J - 1) * MVAR
DO 50 KJ = 1,MVAR
KB}=\textrm{KCl}+\textrm{KJ
DO 50 KK = 1,MVAR
KC = KB1 + KK
TEMP1(KJ,KK) = ATEMP(KB,KC)
IF (MVAR .EQ. 1) THEN
    DO 70 KJ = 1,MVAR
    DO 70 KK = 1,MVAR
```

 TEMP1(KJ,KK) \(=-\operatorname{TEMP1}(K J, K K) /\) DUM1
 ELSE
 CALL SCALG (TEMP, TEMP 1 , TEMP 3)
 DO \(72 \mathrm{KJ}=1\), MVAR
 Do \(72 \mathrm{KK}=1, \mathrm{MVAR}\)
 \(\operatorname{TEMP} 1(\mathrm{KJ}, \mathrm{KK})=-\operatorname{TEMP} 3(\mathrm{KJ}, \mathrm{KK})\)
 ENDIF
 DO \(90 \mathrm{~K}=\mathrm{IP}, \mathrm{MN}\)
 JB1 \(=(K-1) *\) MVAR
 DO \(80 \mathrm{KA}=1\), MVAR
 \(J A=K B 1+K A\)
 DO \(80 \mathrm{~KB}=1, \mathrm{MVAR}\)
 \(J B=J B 1+K B\)
 \(\operatorname{TEMP} 2(K A, K B)=\operatorname{ATEMP}(J A, J B)\)
 IF (ISET .EQ. 0) THEN
 CALL MATMUL (TEMP1, TEMP 2, TEMP 3,MVAR,MVAR,MVAR)
 ELSE
 CALL MATMUL (TEMP 2,TEMP1,TEMP 3,MVAR,MVAR,MVAR)
 ENDIF
 DO \(90 \mathrm{KA}=1\), MVAR
 \(J A=K C 1+K A\)
 DO \(90 \mathrm{~KB}=1\), MVAR
 \(J B=J B 1+K B\)
 ATEMP (JA, JB) \(=\operatorname{ATEMP}(J A, J B)+\operatorname{TEMP} 3(K A, K B)\)
 CONTINUE
 DO \(200 \mathrm{I}=1\), MROW
 KB1 \(=(I-1) *\) MVAR
 DO \(150 \mathrm{KJ}=1\), MVAR
 \(K B=K B 1+K J\)
 DO \(150 \mathrm{KK}=1\), MVAR
 \(K C=K B 1+K K\)
 \(\operatorname{TEMP}(K J, K K)=\operatorname{ATEMP}(K B, K C)\)
 DUM2 = TRACE (TEMP)
 DO \(160 \mathrm{~J}=1\), MVAR
 \(\mathrm{JA}=\mathrm{KBl}+\mathrm{J}\)
 DO \(160 \mathrm{~K}=1\), MVAR
 \(J B=M T O T+K\)
 \(\operatorname{TEMP} 2(J, K)=\operatorname{ATEMP}(J A, J B)\)
 IF (MVAR.EQ. 1) THEN
 DO \(170 \mathrm{~J}=1\), MVAR
 \(J A=K B 1+J\)
 DO \(170 \mathrm{~K}=1, \mathrm{MVAR}\)
 \(J B=M T O T+K\)
 \(\operatorname{XTEMP}(J A, K)=\operatorname{ATEMP}(J A, J B) / \operatorname{DUM2}\)
 ELSE
 CALL SCALG (TEMP, TEMP 2, TEMP 3)
 DO \(185 \mathrm{~J}=1\), MVAR
 \(J A=K B 1+J\)
 DO \(185 \mathrm{~K}=1\),MVAR
 \(\mathrm{XTEMP}(J A, K) \stackrel{1}{=} \operatorname{TEMP} 3(J, K)\)
 ENDIF
 CONTINUE
 RETURN
 END

APPENDIX 5

 SUBROUTINE EQSOLV (XTEMP)
 COMMON /FORM/ XMEAS \((100,5), \operatorname{ATEMP}(100,100)\)
 COMMON /PARM/ MROW, MCOL, MVAR, MTOT
 DIMENSION XTEMP \((100,5)\)
 C.....
C.THIS GAUSS ELIMINATION EQUATION SOLVER REPLACES
C.......SUBROUTINE EQSOLV, CARR, ET. AL., 1985, P. 124.
C.
DO $15 \mathrm{I}=1$, MTOT
DO $15 \mathrm{~J}=1$, MVAR
$\operatorname{ATEMP}(\mathrm{I}, \mathrm{MTOT}+\mathrm{J})=\operatorname{XMEAS}(\mathrm{I}, \mathrm{J})$
15 CONTINUE
C
C.......BEGIN GAUSS DECOMPOSITION
C.......STEP 1 : FORWARD REDUCTION

```
    NSIZE = MTOT
    MP = NSIZE + MVAR
    DO 100 N = 1,NSIZE
    I = N + I
        DO 90 L = 1,NSIZE
            IF (L .NE. N) THEN
                C = ATEMP(L,N) / ATEMP(N,N)
                DO 80 K= I,MP
                ATEMP(L,K) = ATEMP(L,K) - C*ATEMP(N,K)
            ENDIF
            continue
CONTINUE
100
C
C......STEP 2: SOLVE FOR COKRIGING WEIGHTS
DO 300 I = 1,MVAR
DO 300 M = 1,NSIZE
                XTEMP(M,I) = ATEMP(M,NSIZE+I) / ATEMP(M,M)
300 CONTINUE
RETURN
END
```


APPENDIX 6

```
SUBROUTINE EQSOLV( XTEMP)
COMMON /FORM/ XMEAS \((100,5)\), ATEMP \((100,100)\)
COMMON /PARM/ MROW, MCOL, MVAR, MTOT
DIMENSION XTEMP \((100,5)\)
DIMENSION BUF(100), XSTOR(100,5)
C......
C......this banded gauss elimination equation solver replaces
C...... SUBROUTINE EQSOLV, CARR, ET. AL., 1985, P. 124.
c. .....
DO 5 I = 1, MTOT
DO \(5 \mathrm{~J}=1, \mathrm{MVAR}\)
\(\operatorname{XSTOR}(I, J)=\operatorname{XMEAS}(I, J)\)
5 CONTINUE
c
C...... Begin gauss decomposition
C.......STER 1: FORWARD REDUCTION
NSILE \(=\) MTOT
MBAND \(=\) MTOT + 1
DO \(100 \mathrm{~N}=1\),NSIZE
\(\mathrm{LL}=\mathrm{N}+1\)
IF (ATEMP (N,N) .EQ. O.0) GO TO 100 DO \(90 \mathrm{~L}=\mathrm{LL}, \mathrm{MBAND}\)
\(\mathrm{C}=\operatorname{ATEMP}(\mathrm{N}, \mathrm{L}) / \operatorname{ATEMP}(\mathrm{N}, \mathrm{N})\)
J = L-1
DO \(80 \mathrm{~K}=\mathrm{L}, \mathrm{MBAND}\)
\(\mathrm{J}=\mathrm{J}+1\)
\(\operatorname{ATEMP}(\mathrm{L}, \mathrm{J})=\operatorname{ATEMP}(\mathrm{L}, \mathrm{J})-\mathrm{C} \times \operatorname{ATEMP}(\mathrm{N}, \mathrm{K})\)
\(\operatorname{ATEMP}(N, L)=C\) CONTINUE
100 CONTINUE
c
C...... Step 2: REDUCE The measurement vector
C
DO \(200 \mathrm{~K}=1\), MVAR
DO \(200 \mathrm{~N}=1\), NSIZE
\(\mathrm{LL}=\mathrm{N}+1\)
DO 190 L \(=\) LL, MBAND
IF (ATEMP (N,L) .NE. 0.0) THEN
\(\operatorname{Xmeas}(L, K)=\operatorname{XMEAS}(L, K)-\operatorname{ATEmp}(N, L) *\)
ENDIF
190
CONTINUE
If (ATEMP (N,N) .EQ. 0.0) GO TO 200
\(\operatorname{XMEAS}(N, K)=\operatorname{XMEAS}(N, K) / \operatorname{ATEMP}(N, N)\)
200 continue
C
C.
C
```

```
DO 205 I = 1,NSIZE
DO 205 J = 1,MVAR
Xtemp(I,J) = XMEAS(I,J)
```

```
205 CONTINUE
    DO 300 I = 1,MVAR
    DO 300 M = 2,NSI2E
    N = NSIZE + 1 - M
    LL = N + 1
    DO 290 L = LL,MBAND
    IF (ATEMP(N,L) .NE. 0.0) THEN
        XTEMP(N,I) = XTEMP(N,I) - ATEMP(N,L) *
    ENDIF
    CONTINUE
    CONTINUE
    RESTORE THE MEASUREMENT VECTOR
        DO 1000 I = 1,MTOT
        DO 1000 J = 1,MVAR
        XMEAS(I,J) = XSTOR(I,J)
        CONTINUE
        RETURN
        END
```

