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Abstract--When the system of equations for cokriging is written in matrix form the sample-sample 
covariance matrix may be considered either as an mn x mn matrix of scalar entries, where n is the number 
of sample locations and m is the number of variables, or as an n x n matrix whose entries are m x m 
matrices. Similarly, the point-sample covariance matrix may be considered as m column vectors or as a 
single column whose entries are m x m matrices. The formulation in the original program assumed that 
the submatrix structure should be preserved, but this is not necessary. The scalar matrix formulation 
allows for the use of a standard Gaussian elimination to reduce the matrix to diagonal form or for 
reduction to upper triangular form together with back substitution. Both methods result in significant 
reductions in computing time. 
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INTRODUCTION 

Programs for solving kriging equations generally use 
a Gauss elimination algorithm for the reduction of  
the sample-sample covariance matrix and the point- 
sample covariance vector. In developing a computer  
code for cokriging (Carr, Myers, and Glass, 1985), 
Gauss elimination was not used at first because of  the 
nature of  the sample-sample covariance matrix and 
point-sample covariance vector as well as memory 
limitations. In cokriging, each entry in these arrays is 
a square matrix whose dimension is the number of  
variables. The initial program for solving the cokrig- 
ing equations used an algorithm which maintained 
this submatrix structure. 

Originally, Carr, Myers, and Glass (1985) used an 
extension of  the algori thm known as A R T  (algebraic 
reconstruction technique from Herman,  Lent, and 
Rowland,  1973). This method is iterative and is 
adapted easily to equation solving wherein submatrix 
structure is present. It was soon determined that in 
this form A R T  converges slowly; at least 200 iter- 
ations arc required per estimate. Moreover ,  A R T  
requires a beginning estimate for the solution; Carr, 
Myers, and Glass (1985) use an estimate of  zero 
(more precisely, the null vector for weights is used). 
A different initial guess based on the point-sample 
covariance values reduces the number  of  iterations 
required. 

Because the A R T  algorithm is slow when the initial 
solution is the null vector, a modified Gauss elimin- 
ation technique was incorporated. In kriging, the 
sample-sample covariance matrix has the largest 
numerical values on the diagonal. In the Gauss 
elimination algorithm, these diagonal values are 

used to normalize and reduce this matrix, and the 
point-sample covariance vector, as a prelude to 
back substitution. This reduction requires division 
operations using diagonal covariance entries. In 
cokriging, the diagonal entries in the sample-  
sample covariance matrix are matrices, and it was 
desired to maintain this submatrix structure in origi- 
nal computer  code development. A global Gauss 
elimination algorithm, subroutine EQSOLV in 
the original program, was used in which a second 
Gauss elimination algorithm performs the nor- 
malization and reduction using the diagonal square 
matrices. 

Subsequently, it was noted that the submatrix 
structure need not be maintained in the sample-  
sample covariance matrix and the point-sample 
covariance column vector. The sample-sample co- 
variance matrix can be treated as a large matrix of  
scalar entries and reduced as such in a Gauss elimina- 
tion procedure. The point-sample column vector like- 
wise is treated as rn column vectors, where m is 
the number of  variables being estimated. These vec- 
tors are reduced individually. Back substitution 
using each of  the column vectors and the reduced 
covariance matrix yields the solution for the weights, 
one column vector at a time. It then is of  interest 
to compare the efficiency of  the two equation 
solvers. 

COKRIGING EQUATIONS 

As shown in Myers (1982), the ordinary cokriging 
system of equations can be written as: 

U Y  = D  (1) 
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where U is the sample-sample covariance matrix: 

i ~ ( X  1 - -  X I )  . .  ~ ( X  1 - -  XN) I 
: : : 

U =  ~'(xN'- xl)  . .  "~(xu--xu) I (2) 
I .. I 0 

Y is the solution vector: 

Y = 1~ N (3) 

and D is the point-sample covariance vector: 

In each of these arrays, I is an identity matrix and N 
is the number of nearest known sample locations used 
for estimation. 

As noted in Myers (1988), the coefficient matrix 
(sample-sample covariance matrix) is the same 
whether estimating all variables or only one. This 
reinforces the approach utilized in the new equation 
solver described herein. 

EQUATION SOLVERS 

The original procedure in Carr, Myers, and Glass 
(1985) for computation of the sample-sample covari- 
ance matrix uses considerable disk access. The co- 
efficient matrix is formed and written row by row to 
disk. Prior to solution, this matrix is brought into 
core (for the modified Gauss elimination approach: 
subroutine EQSOLV in Carr, Myers, and Glass, 
1985). This disk I/O procedure was necessary to 

conform to the ART equation solvers. Because disk 
I/O is less efficient than in core computation of the 
sample-sample covariance matrix, examples are pre- 
sented comparing the efficiency of the original disk 
I/O procedure with a modified procedure which 
forms this matrix in core. New or modified versions 
of original subroutines are listed in Appendix 2. 

Numerical results 

Three studies are presented. The first compares 
the computational efficiency of the two approaches 
(maintaining submatrix structure or treating all ma- 
trices as having scalar entries) using the original 
method of disk I/O formation of the sample-sample 
covariance matrix. The second repeats this compari- 
son using in core formation of this covariance matrix. 
Finally, a third study is presented to show the 
increase in efficiency of Gauss elimination equation 
solution for the method in which submatrix structure 
is not retained. Each study uses the data set presented 
in Appendix 1, and preliminary output for each study 
is shown in Figure 1. Computational efficiency is 
given in Table 1. 

All computations reported in this table were ob- 
tained on an IBM PC/XT computer upgraded with a 
12MHz 80286 Turbo Card with 80287-10 math 
coprocessor and hard disk. All programs were com- 
piled using Microsoft FORTRAN Optimizing Com- 
piler Version 4.0. References to IBM and Microsoft 
are made for information purposes only and do not 
imply any endorsements. 

Only the method which does not maintain the 
submatrix structure is considered in the third and 
final study (the fifth column of Table 1 headed 
III/VI). It is clear from Table 1 that this is the most 
efficient method for solving the cokriging system. 
These results are obtained by modifying the Gauss 
elimination method to produce a modified, banded 

Table 1. Number of locations at which estimates are made per minute; two 
variables are estimated per location in this example 

COKRIG 
W/O coprocessor 
With coprocessor 
Explanation 

ORIG: 
2: 

3/4: 

3/5: 

3/6: 

3/GAUSS J: 
CPU configuration: 

With Appendices as indicated 

ORIG 2 3/4 3/5 3/6 3/GAUSSJ 
2 3 3 8 9 - -  
6 37 19 79 90 45 

original version of COKRIG 
original version of COKRIG with disk I/O but matrices 
treated as having scalar entries 
in-core formation of covariance matrices, but submatrix 
structure maintained in equation solution 
in-core formation of covariance matrices, but matrices 
treated as having scalar entries 
in-core formation of covariance matrices, modified banded 
algorithm used for equation solution 
test algorithm to compare solution accuracy 
IBM PC/XT with a 12 MHz 80286 Turbo Card; an 80287-10 
(10 MHz) chip was added for the math coprocessor results 
shown. A math coprocessor emulator option was used for 
all compilings; a maximum of 10 closest data locations are 
used to obtain each estimate. A sector search was not used 
to locate these 10 closest locations 
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EEEEEIEEIEEEE|EEElt CO-KRIGIN6 PROGRAN 

NO OF ROWS IN KRIGEO ARRAY : I0 
NO OF COLS IN KRI6ED ARRAY = I0 
NAXINUN Y COORDINATE = 250,000 
HAXINUN X COORDINATE = 250.000 
INCRENENT ON X = 25.000 
INCRENENT ON Y = 25.000 

A TOTAL OF 2 VARIABLE(S) WILL BE ESTINATED 

*****He* VARIOGRAH AND CROSS-VARIOORAH PARANETERS *H**** 

SINGLE VARIABLE (VARIOORAN) PARANETERS 
VARIABLE NUGGET SILL RANGE ANGLE RATIO INFLUENCE NOKL 

1 9,200 i5.400 I4.000 .000 1.000 1000.000 2 
2 .034 .062 5.000 .000 1.OOO 1000.000 2 

INTER-VARIABLE (CROOS-VARIOORAN) PARAHETERS 
VARIABLE NUGGET 8ILL RANGE ANGLE RATIO INFLUENCE NOOK 

1 9.230 15.500 14,000 .000 1.000 1000.000 2 

*** INPUT DATA *** 
X-COORD Y-COORD DATA VALUES 

134.170 96.720 3,100 1,000 
131.430 92,280 4.500 1.000 
116.900 91.720 4.500 1.OOO 
133,280 92,280 3,500 1.000 
127.720 93.390 10.500 1.000 
123,810 97,170 3,300 1,000 
125,870 93.390 11.500 1.000 
128.180 93.390 9.600 1.000 
132.400 91.170 4.000 1.000 
127.720 92.280 9.000 1.000 
133.210 102.280 7.000 1.000 
131.440 90.050 5.750 1.000 
133.280 92.390 2,100 ,000 
120.590 93.950 5.500 1.000 
132.360 91.170 5.000 1.OOO 
115.220 93.060 4.000 1,000 
143.860 100.390 3.600 1.000 
112.210 102.280 8.000 1,000 
141.590 94.500 4.200 1.000 
119.210 92.610 5,300 1.000 
119.110 92.610 3,000 l.O00 
116.900 91,830 3.700 l.O00 
111.920 103.400 5.600 1.000 
112.180 106.510 26.000 1.000 
128.370 92.610 7.300 1.000 
121.460 101.950 4.000 1.000 
116,810 91,830 5,200 1,000 
128.460 93.390 5.100 1.000 
128.600 98.950 3.000 1,000 
132.550 63.370 2.500 .000 
133.520 57.810 1.400 .000 
130.470 96.720 5.500 1.000 
129.570 93.390 7.600 1,000 
120.120 80.600 4.500 1.000 
112.490 102.280 12,000 1.000 
124.900 98.950 4.000 1.000 
120,680 93,390 7.000 1,000 
133.240 97,840 3.800 1.000 
131.420 93.390 4.500 1.000 
124.640 96,720 4.000 1.000 
124,730 96.720 4,000 1.000 
116.990 91,720 4.250 1,000 
131.420 93.170 5.400 1.000 
122.720 93.390 6.800 1.000 
129.790 87.940 5.200 1.000 
128.270 93.390 10.500 1.000 

**** ** **! KRIGIN8 RESULTS *** ** **** 
ROW COL N0RTH NEST DATA ESTINATES VARIANCE 

Figure 1. This printout of preliminary information results for examples shown in Figures. 
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algorithm. This method is described in the next 
section. 

Analogy between cokriging and finite element analysis 

The Gauss elimination algorithm is used in many 
finite element programs, but is modified for banded 
matrices. Increased memory and equation solving 
efficiency is the result. Appendix 5 is rewritten for 
banded matrices after a computer algorithm given in 
Cook (1974, p. 45). Use of the banded matrix ap- 
proach for kriging was proposed by Davis and 
Culhane (1984). Furthermore, Davis and Grivet 
(1984) propose using an LU decomposition and 
provide a FORTRAN subroutine for this method. 
The modified banded equation solver described next 
extends the methods previously described. Davis and 
Culhane (1984) correctly note that the banded matrix 
algorithm as implemented in finite element programs 
is useful only for certain covariance models and 
simple kriging. The modified banded algorithm pre- 
sented herein, however, is applicable to any diagonal- 
ized, symmetric matrix. The code is given in 
Appendix 6. 

In finite element analysis, arrays are formed to 
yield the system A X  = B. If the finite element analysis 
is used to solve Hooke's law, A is a square, symmet- 
ric, diagonalized matrix of system stiffnesses, B is a 
column vector of forces, and X is the solution vector 
of deflections. A "band" (and hence the term, banded 
equation solver) is the area of array A on either side 
of the diagonal where nonzero entries are located. 

In geostatistics, the kriging or cokriging system 
also is an A X  = B problem. Furthermore, the matrix 
A is a square, symmetric, and diagonalized matrix of 
covariance values. The term, "band", however, really 
does not have meaning for this covariance matrix 
because, in many instances, all entries in this matrix 
are nonzero. Therefore, the algorithm presented in 
Cook (1974, p. 45) is modified slightly to use the 
entire upper triangle and diagonal of the covariance 
matrix rather than a banded region of the upper 
triangle. The bandwidth is allowed to change in this 
modification, whereas it is a constant in finite element 
analysis. 

This modification is presented in Appendix 6. This 
equation solver, used in COKRIG with AFORM 
replaced by Appendix 3, yields nine estimates in 1 min 
without a math coprocessor, 90 estimates per minute 
using a coprocessor. Therefore, this third and final 
study represents the greatest efficiency. 

DISCUSSION OF SUBROUTINES 

The program reported in Carr, Myers, and Glass 
(1985) is COKRIG. No modifications are required to 
reproduce the first column of Table 1 using the data 
of Appendix 1. To obtain the second column in this 
table, COKRIG is modified by simply replacing the 
original subroutines, EQSOLV and SCALG, with 
Appendix 2. 

To produce the results shown in the third column 
of Table 1, COKRIG is modified by replacing the 
original subroutine, AFORM, by Appendix 3; and, 
the original subroutine, EQSOLV, is replaced by 
Appendix 4. Note that original subroutines SCALG 
and MATMUL are required when using Appendix 4. 

To produce the results shown in the fourth column 
of Table 1, COKRIG is modified by replacing the 
original subroutine, AFORM, by Appendix 3; then, 
the original subroutines, EQSOLV and SCALG, are 
replaced by Appendix 5. 

Finally, to produce the results shown in the fifth 
column of Table 1, COKRIG is modified by replacing 
the original subroutine, AFORM, by Appendix 3; 
then, the original subroutines, EQSOLV and 
SCALG, are replaced by Appendix 6. 

If using the version of COKRIG from Carr and 
Myers (1986), do not delete subroutine, SCALG, as 
described. This subroutine is required for the ART 
algorithm in this 1986 version of COKRIG. 

Four additional modifications to the main program 
of COKRIG are required to reproduce the results in 
Table 1 when Appendices 3-6 are used. These modifi- 
cations follow: 

(1) The labeled common, FORM, must be 
changed to: 

COMMON/FORM/XMEAS(100,5), 
ATEM P(100,100) 

(this is statement COK00890 in Carr, Myers, 
and Glass, 1985, p. 116); 

(2) The array, ATEMP(5,100) must be deleted 
from the DIMENSION statement at 
COK00910 (Carr, Myers, and Glass, 1985, 
p. 116); 

(3) The call to subroutine AFORM must be 
changed to: 

CALL AFORM(YCORD,XCORD, 
NHOLE,INIT) 

(this is statement COK02800, Cart, Myers, and 
Glass, 1985, p. 118); 

(4) The call to subroutine EQSOLV must be 
changed to: 

IF(ISOLV.EQ.1) CALL EQSOLV(XTEMP) 

(this is statement COK02820, Carr, Myers, and 
Glass, 1985, p. 118). 

A final study is summarized to document the 
numerical accuracy of the equation solution sub- 
routines presented in Appendices 2, 5, and 6. A Gauss 
elimination equation solver, GAUSS J, is presented in 
Numerical Recipes (Press and others, 1987, p. 28-29). 
The program, COKRIG, was modified using 
Appendix 3 and GAUSS J, then applied to the data 
of Appendix 1 to document equation solution accu- 
racy. The principle of duplication of results is used for 
this verification; that is, if two different subroutines 
yield the same results, and one of these subroutines 
is a published, standard subroutine such as GAUSS J, 
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From A p p e n d i x  VI:  

1 1 237.500 12.500 7.897 1.002 18.873 
1 2 237.500 37.500 8.011 1.001 19.022 
1 3 237.500 62.500 7.836 1.002 18.546 
1 4 237.500 87.500 8.298 1.003 18.869 
1 5 237.500 112.500 7.541 1.001 18.381 

From GAUSSJ: 

1 1 237.500 12.500 7.897 1.002 18.873 
1 2 237.500 37.500 8.011 1.001 19.022 
1 3 237.500 62.500 7.836 1.002 18.546 
1 4 237.500 87.500 8.298 1.003 18.869 
1 5 237.500 112.500 7.541 1.001 18.381 

Figure 2. Comparison ofestimatesyielded bytwo equation solvers: Appendix 6 and GAUSSJ. 

the reliability of the other subroutine is substantiated. 
Application of COKRIG to the data of Appendix 1 
using Appendix 6 is compared to that using GAUSSJ 
in Figure 2. Only the first five estimated values are 
shown, but results using both equation solvers are 
identical. Although only Appendix 6 is compared to 
GAUSS J, Appendices 2 and 5 yield the same esti- 
mated values. 

The use of standard subroutines, such as published 
in Press and others (1987); assures accuracy and 
uniformity in published software. For the applica- 
tions presented here, specialty subroutines are pre- 
sented, but are tested against the subroutine, 
GAUSSJ (Press and others, 1987, p. 28-29). The 
subroutine, GAUSS J, is not modified easily for 
banded equation solution, which is shown here to be 
the most efficient form of equation solution for 
cokriging. 

CONCLUSION 

Submatrix structure is an integral part of the 
cokriging system of equations. This structure is main- 
tained when forming the sample-sample covariance 
matrix and the point-sample covariance vector. The 
modified version of the subroutine, AFORM, listed 
in Appendix 3 maintains submatrix structure when 
forming these arrays. 

It is not necessary, however, to maintain the sub- 
matrix structure throughout equation solving as 
in the original version of COKRIG. By forming 

the sample-sample covariance matrix in core, treat- 
ing this matrix as a large matrix of scalar entries, 
and using only the upper triangle and diagonal of 
this matrix for equation solution, a substantial 
improvement in execution speed for COKRIG is 
realized. 
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A P P E N D I X  1 

0,2,0,1 
10,10,250.0,250.0,25.0,25.0 
1,2,9.20,15.4,14.,0.0,I.0,I000.0 
2,2,0.034,.062,5.0,0.0,1.0,1000.0 
1,2,2,9.23,15.5,14.0,0.0,1.0,i000.0 
3.1,1.0,96.72,134.17 
4.5,1.0,92.28,131.43 
4.5,1.0,91.72,116.90 
3.5,1.0,92.28,133.28 
10.5,1.0,93.39,127.72 
3.3,1.0,97.17,123.81 
11.5,1.0,93.39,125.87 
9.6,1.0,93.39,128.18 
4.0,1.0,91.17,132.40 
9.0,1.0,92.28,127.72 
7.0,1.0,102.28,133.21 
5.75,1.0,90.05,131.44 
2.1,0.0,92.39,133.28 
5.5,1.0,93.95,120.59 
5.0,1.0,91.17,132.36 
4.0,1.0,93.06,115.22 
3.6,1.0,100.39,143.86 
8.0,1.0,i02.28,112.21 
4.2,1.0,94.50,141.59 
5.3,1.0,92.61,119.21 
3.0,i.0,92.61,119.11 
3.7,1.0,91.83,116.90 
5.6,1.0,103.40,111.92 
26.0,1.0,106.51,112.18 
7.3,1.0,92.61,128.37 
4.0,1.0,101.95,121.46 
5.2,1.0,91.83,116.81 
5.1,1.0,93.39,128.46 
3.0,1 0,98.95,128.60 
2.5,0 0,63.37,132.55 
1.4,0 0,57.81,133.52 
5.5,1 0,96.72,130.47 
7.6,1 0,93.39,129.57 
4.5,1 0,80.60,120.12 
12.0,i.0,i02.28,112.49 
4.0,1 0,98.95,124.90 
7.0,1 0,93.39,120.68 
3.8,1 0,97.84,133.24 
4.5,1 0,93.39,131.42 
4.0,1 0,96.72,124.64 
4.0,i 0,96.72,124.73 
4.25,1.0,91.72,116.99 
5.4,1.0,93.17,131.42 
6.8,1.0,93.39,122.72 
5.2,1.0,87.94,129.79 
10.5,1.0,93.39,128.27 
0.0,0.0,0.0,0.0 

C...... 
C...... 
C...... 
C...... 

10 

15 

A P P E N D I X  2 

SUBROUTINE EQSOLV(XMEAS, XTEMP) 
COMMON /FILES/ IUNIT 
COMMON /PARM/ MROW, MCOL, MVAR, MTOT 
DIMENSION ATEMP(100,100), XTEMP(100,5), XMEAS(100,5) 

THIS GAUSS ELIMINATION EQUATION SOLVER REPLACES 
SUBROUTINE EQSOLV, CARR, ET. AL., 1985, P. 124. 

REWIND IUNIT 
DO i0 I = I,MROW 
DO i0 J = I,MVAR 
JB = (I - i) * MVAR + J 
READ(IUNIT) (ATEMP(JB,JK), JK = 1,MTOT) 
CONTINUE 
DO 15 I = I,MTOT 
DO 15 J = I,MVAR 
ATEMP(I,MTOT+J) = XMEAS(I,J) 
CONTINUE 
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C 
C ...... BEGIN GAUSS DECOMPOSITION 
C ...... STEP I: FORWARD REDUCTION 
C 

NSIZE = MTOT 
MP = NSIZE + MVAR 
DO i00 N = I,NSIZE 
I = N + 1 

DO 90 L = 1,NSIZE 
IF (L .NE. N) THEN 

C = ATEMP(L,N) / ATEMP(N,N) 
DO 80 K = I,MP 

80 ATEMP(L,K) = ATEMP(L,K) C*ATEMP(N,K) 
ENDIF 
CONTINUE 

CONTINUE 
90 
i00 
C 
C ...... STEP 2: SOLVE FOR COKRIGING WEIGHTS 
C 

DO 300 I = I,MVAR 
DO 300 M = 1,NSIZE 

XTEMP(M,I) = ATEMP(M,NSIZE+I) / ATEMP(M,M) 
300 CONTINUE 

RETURN 
END 

500 
750 

APPENDIX 3 

SUBROUTINE AFORM (YCORD,XCORD,KHOLE,INIT) 
COMMON /DAT2/ X(500),Y{500),DAT(500,5) 
COMMON /PARM/ MROW, MCOL,MVAR,MTOT 
COMMON /AMAT/ IKRIG, JUNSAM(500),KCOUNT 
COMMON /VAR/ CO(5),C(5),RANGE(5),MODEL(5),ANIS(5), 

RATIO(5),RINFLU(5) 
COMMON /CVAR/ CCO(10),CC(10),CRANGE(10),CMODEL(10), 

CANIS(10),CRNFLU(10),CRATIO(10) 
COMMON /FORM/ XMEAS(100,5),ATEMP(100,100) 
DIMENSION KHOLE(INIT),IPOS(5) 
INTEGER CMODEL 
M1 = INIT 
M2 = INIT 

SUBROUTINE TO FORM INTERSAMPLE COVARIANCE MATRIX 

DO i000 II = I,MI 
NI = KHOLE(II) 
I7 = (II - 1) * MVAR 
DO 750 JJ = I,M2 
IF (JJ .LT. II) GO TO 750 
KPOS = 0 
NK = KHOLE(JJ) 
DIFX = X(NI) - X(NK) 
DIFY = Y(NI) - Y(NK) 
K7 = (JJ - i) * MVAR 

DISTAN = SQRT((DIFX*COS(ANIS(1)) + DIFY*SIN(ANIS(1)))**2 
+ (RATIO(1)*(DIFY*COS(ANIS(1)) - DIFX * 
SIN(ANIS(1))))**2) 

DO 500 KK = I,MVAR 
ITOT = I7 + KK 
JTOT = K7 + KK 
DO 500 LL = 1,MVAR 
LTOT = I7 + LL 
NTOT = K7 + LL 
IF (LL .EQ. KK) THEN 

ATEMP(ITOT,NTOT) = COVAR(DISTAN,LL) 
ATEMP(NTOT, ITOT) = ATEMP(ITOT,NTOT) 

ELSEIF (LL .GT. KK) THEN 
KPOS = KPOS + 1 
ATEMP(ITOT,NTOT) = CROSS(DISTAN,KPOS,KK,LL) 
ATEMP(LTOT, JTOT) = ATEMP(ITOT, NTOT) 
ATEMP(NTOT,ITOT) = ATEMP(ITOT,NTOT) 
ATEMP(JTOT, LTOT) = ATEMP(LTOT,JTOT) 

ENDIF 
CONTINUE 
CONTINUE 
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C 
C 
C 

900 
i000 

ii00 
C 
C 
C 

1420 

1440 

1450 

1.480 

2000 
C 
C 
C 

FORM THE IDENTITY MATRICES 

M5 = INIT * MVAR 
DO 900 MM = 1,MVAR 
M6 = I7 + MM 
DO 900 NM = 1,MVAR 
M7 = M5 + NM 

IF (MM .EQ. NM) ATEMP(M6,M7) = 1.0 
IF (MM .NE. NM) ATEMP(M6,MT) = 0.0 
ATEMP(MT,M6) = ATEMP(M6,M7) 
CONTINUE 
CONTINUE 

M5 = INIT * MVAR + 1 
DO ii00 I = M5,MTOT 
DO 1100 J = M5,MTOT 
ATEMP(I,J) = 0.0 

MODIFY ATEMP FOR UNDERSAMPLING 

IF (IKRIG .EQ. i) THEN 
DO 1480 IAB = 1,M2 
NK = KHOLE(IAB) 
IMOD = 0 

DO 1420 IAC = I,KCOUNT 
NA = JUNSAM(IAC) 

IF (NK .EQ. NA) IMOD = i 

CONTINUE 
IF (IMOD .EQ. 1) THEN 

JOUNT = 0 
DO 1440 IAD = I,MVAR 
IF (DAT (NK,IAD) .EQ. 0.0) THEN 

JOUNT = JOUNT + 1 
IPOS(JOUNT) =IAD 

ENDIF 
CONTINUE 
KI0 = (IAB - I) * MVAR 
DO 1450 IAE = I,JOUNT 
KZ2 = KI0 + IPOS(IAE) 
DO 1450 IAF = I,MTOT 
ATEMP(KZ2,IAF) = 0.0 
ATEMP(IAF,KZ2) = 0.0 

ATEMP(KZ2,KZ2) = i0000000000.0 
ENDIF 
CONTINUE 

ENDIF 

FORM THE MEASUREMENT VECTOR 

DO 2000 II = I,MI 
K7 = KHOLE(II) 
DIFX = XCORD - X(K7) 
DIFY = YCORD - Y(K7) 
KPOS = 0 

KI2 = (If - i) * MVAR 

DISTAN = SQRT((DIFX*COS(ANIS(1)) + DIFY*SIN(ANIS(1)))**2 
+ (RATIO(1)*(DIFY*COS(ANIS(1)) - DIFX * 
SIN(ANIS(1))))**2) 

DO 2000 JJ = I,MVAR 
KZ = KI2 + JJ 
DO 2000 KK = I,MVAR 
KW = K12 + KK 
IF (KK .EQ. JJ) THEN 

XMEAS(KZ,KK) = COVAR(DISTAN,KK) 
ELSEIF (KK .GT. JJ) THEN 

KPOS = KPOS + 1 
XMEAS(KZ,KK) = CROSS(DISTAN,KPOS,JJ,KK) 
XMEAS(KW, JJ) = XMEAS(KZ,KK) 

ENDIF 
CONTINUE 

MODIFY THE MEASUREMENT VECTOR FOR UNDERSAMPLING 

IF (IKRIG .EQ. 1) THEN 
DO 2350 II = I,MI 
IMOD = 0 
K7 = KHOLE(II) 
DO 2200 JJ = I,KCOUNT 
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2200 

2250 

2260 

2350 

C 
C 
C 

2500 

NA = JUNSAM(JJ) 
IF (K7 .EQ. NA) IMOD = 1 
IF (IMOD .EQ. I) THEN 

JOUNT = 0 

DO 2250 KK = I,MVAR 
IF (DAT(K7,KK) .EQ. 0.0) 

JOUNT = JOUNT + 1 
IPOS(JOUNT) = KK 

ENDIF 
CONTINUE 
KI2 = (II - i) * MVAR 
DO 2260 LL = IsJOUNT 
K8 = KI2 + IPOS(LL) 
DO 2260 MM = I,MVAR 
XMEAS(KS,MM} = 0.0 
CONTINUE 

ENDIF 
CONTINUE 

ENDIF 

THEN 

LAST ENTRY IN THE MEASUREMENT VECTOR IS AN IDENTITY MATRIX 

N1 = M1 * MVAR 
DO 2500 II = I,MVAR 
N3 = N1 + II 
DO 2500 JJ = I,MVAR 
IF (JJ .EQ. If) THEN 

XMEAS(N3,JJ) = 1.0 
ELSEIF (JJ .NE. II) THEN 

XMEAS(N3,JJ) = 0.0 
ENDIF 
CONTINUE 
RETURN 
END 

C 
C 
C 

15 
C 
C 
C 

20 

40 

50 

APPENDIX 4 

SUBROUTINE EQSOLV (XTEMP) 
COMMON /PARM/ MROW, MCOL,MVAR,MTOT 
COMMON /FORM/ XMEAS(100,5),ATEMP(100,100) 
DIMENSION XTEMP(100,5) 
DIMENSION TEMP(5,5),TEMPI(5,5),TEMP2(5,5),TEMP3(5,5) 

SUBROUTINE FOR MODIFIED GAUSS ELIMINATION 

ISET = i 
DO 15 I = I,MTOT 
DO 15 J = I,MVAR 
N = MTOT + J 
ATEMP(I,N) = XMEAS(I,JI 
CONTINUE 

BEGIN GAUSS DECOMPOSITION 

MN = MROW + 1 
DO i00 I = I,MROW 
IP = I + 1 
KBI = (I - i) * MVAR 
DO 20 KJ = I,MVAR 
KB = KBI + KJ 
DO 20 KK = I,MVAR 
KC = KBI + KK 
TEMP(KJ,KK) = ATEMP(KB,KC) 
DUMI = TRACE(TEMP) 
DO 100 J = I,MROW 
IF (I - J) 40,100,40 
CONTINUE 
KCI = (J - i) * MVAR 
DO 50 KJ = I,MVAR 
KB = KCI + KJ 
DO 50 KK = I,MVAR 
KC = KBI + KK 
TEMPI(KJ,KK) = ATEMP(KB,KC) 
IF (MVAR .EQ. i) THEN 

DO 70 KJ = I,MVAR 
DO 70 KK = I,MVAR 
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70 TEMPI(KJ,KK) = - TEMPI(KJ,KK) / DUM1 
ELSE 

CALL SCALG(TEMP,TEMPI,TEMP3) 
DO 72 KJ = I,MVAR 
DO 72 KK = 1,MVAR 

72 TEMPI(KJ,KK) = - TEMP3(KJ,KK) 
ENDIF 
DO 90 K = IP,MN 
JB1 = (K - 1) * MVAR 
DO 80 KA = I,MVAR 
JA = KBI + KA 
DO 80 KB = I,MVAR 
JB = JBI + KB 

80 TEMP2(KA, KB) = ATEMP(JA, JB) 
IF (ISET .EQ. 0) THEN 

CALL MATMUL(TEMPI,TEMP2,TEMP3,MVAR,MVAR,MVAR) 
ELSE 

CALL MATMUL(TEMP2,TEMP1,TEMP3,MVAR,MVAR,MVAR) 
ENDIF 
DO 90 KA = I,MVAR 
JA = KCI + KA 
DO 90 KB = I,MVAR 
JB = JBI + KB 

90 ATEMP(JA, JB) = ATEMP(JA,JB) + TEMP3(KA, KB) 

i00 CONTINUE 
DO 200 I = IsMROW 
KBI = (I - I) * MVAR 
DO 150 KJ = 1,MVAR 
KB = KBI + KJ 
DO 150 KK = I,MVAR 
KC = KBI + KK 

150 TEMP(KJ,KK) = ATEMP(KB,KC) 
DUM2 = TRACE(TEMP) 
DO 160 J = I,MVAR 
JA = KBI + J 
DO 160 K = 1,MVAR 
JB = MTOT + K 

160 TEMP2(J,K) = ATEMP(JA, JB) 
IF (MVAR .EQ. I) THEN 

DO 170 J = 1,MVAR 
JA = KB1 + J 
DO 170 K = I,MVAR 
JB = MTOT + K 

170 XTEMP(JA, K) = ATEMP(JA, JB) / DUM2 

ELSE 
CALL SCALG(TEMP,TEMP2,TEMP3) 
DO 185 J = I,MVAR 

JA = KB1 + J 
DO 185 K = 1,MVAR 

185 XTEMP(JA,K) = TEMP3(J,K) 
ENDIF 

200 CONTINUE 
RETURN 
END 

APPENDIX 5 

SUBROUTINE EQSOLV(XTEMP) 
COMMON /FORM/ XMEAS(100,5), ATEMP(100,100) 
COMMON /PARM/ MROW, MCOL, MVAR, MTOT 
DIMENSION XTEMP(100,5) 

C.o,o,, 

C ...... THIS GAUSS ELIMINATION EQUATION SOLVER REPLACES 
C ...... SUBROUTINE EQSOLV, CARR, ET. AL., 1985, P. 124. 
C, .... , 

DO 15 I = 1,MTOT 
DO 15 J = I,MVAR 
ATEMP(I,MTOT+J) = XMEAS(I,J) 

15 CONTINUE 
C 
C ...... BEGIN GAUSS DECOMPOSITION 
C ...... STEP I: FORWARD REDUCTION 
C 



Efficiency of different equation solvers in cokriging 715 

80 

90 
I00 
C 

NSIZE = MTOT 
MP = NSIZE + MVAR 
DO i00 N = I,NSIZE 
I = N + 1 

DO 90 L -- I,NSIZE 
IF (L .NE. N) THEN 

C = ATEMP(L,N) / ATEMP(N,N) 
DO 80 K = I,MP 
ATEMP(L,K) = ATEMP(L,K) - C*ATEMP(N,K) 

ENDIF 
CONTINUE 

CONT I NUE 

C ...... STEP 2: SOLVE FOR COKRIGING WEIGHTS 

C 
DO 300 I = 1,MVAR 
DO 300 M = I,NSIZE 

XTEMP(M,I) = ATEMP(M,NSIZE+I) / ATEMP(M,MJ 

300 CONTINUE 
RETURN 
END 

APPENDIX 6 

SUBROUTINE EQSOLV( XTEMP) 
COMMON /FORM/ XMEAS(100,5), ATEMP(100,100) 
COMMON /PARM/ MROW, MCOL, MVAR, MTOT 
DIMENSION XTEMP(100,5) 

DIMENSION BUF(100), XSTOR(100,5) 
C..o... 
C ...... THIS BANDED GAUSS ELIMINATION EQUATION SOLVER REPLACES 
C ...... SUBROUTINE EQSOLV, CARR, ET. AL., 1985, P. 124. 
C...o.. 

DO 5 I = I,MTOT 
DO 5 J = I,MVAR 
XSTOR(I,J) = XMEAS(I,J) 

5 CONTINUE 
C 
C ...... BEGIN GAUSS DECOMPOSITION 
C ...... STEP I: FORWARD REDUCTION 
C 

NSIZE = MTOT 
MBAND = MTOT + 1 
DO 100 N = I,NSIZE 

LL = N + 1 
IF (ATEMP(N,N) .EQ. 0.0) GO TO 100 

DO 90 L = LL,MBAND 
C = ATEMP(N,L} / ATEMP(N,N) 
J = L - I  
DO 80 K = L,MBAND 
J = J + l  

80 ATEMP(L,J) = ATEMP(L,J) - C*ATEMP(N,K) 
ATEMP(N,L) = C 

90 CONTINUE 
i00 CONTINUE 
C 
C ...... STEP 2: REDUCE THE MEASUREMENT VECTOR 
C 

DO 200 K = I,MVAR 
DO 200 N = IsNSIZE 

LL = N + 1 
DO 190 L = LL,MBAND 
IF (ATEMP(N,L) .NE. 0.0) THEN 

XMEAS(L,K) = XMEAS(L,K) - ATEMP(N,L) * 
2 XMEAS(N,K) 

ENDIF 
190 CONTINUE 

IF (ATEMP(N,N) .EQ. 0.0) GO TO 200 
XMEAS(NtK) = XMEAS(N,K) / ATEMP(N,N) 

200 CONTINUE 
C 
C ...... STEP 3: SOLVE FOR COKRIGING WEIGHTS 
C 

DO 205 I = I,NSIZE 
DO 205 J ~ I,MVAR 
XTEMP(I,J) = XMEAS(I,J) 
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205 

290 
300 
C 
C 
C 

i000 

CONTINUE 
DO 300 I = I,MVAR 
DO 300 M = 2,NSIZE 
N = NSIZE + 1 - M 

LL = N + 1 
DO 290 L = LL,MBAND 
IF (ATEMP(N,L) .NE. 0.0) THEN 

XTEMP(N,I) = XTEMP(N,I) - ATEMP(N,L) * 

XTEMP(L,I) 
ENDIF 
CONTINUE 
CONTINUE 

RESTORE THE MEASUREMENT VECTOR 

DO 1000 I = I,MTOT 
DO i000 J = I,MVAR 
XMEAS(I,J) = XSTOR(I,J) 
CONTINUE 
RETURN 
END 


