COKRIGING—A COMPUTER PROGRAM

James R. CARR
Department of Geological Engineering, University of Missouri, Rolla, Missouri 65401, U.S.A.
DONald E. MyErs
Department of Mathematics, University of Arizona, Tucson, Arizona 85721, U.S.A.
and
Charles E. Glass
Department of Mining and Geological Engineering, University of Arizona,
Tucson, Arizona 85721, U.S.A.

(Received 13 June 1983; revised 4 January 1984; received for publication 24 October 1984)

Abstract

Cokriging is a process wherein several variables can be jointly estimated on the basis of intervariable and spatial structure information. Presented herein is the program COKRIG, for punctual cokriging, a program in a simple form to demonstrate the utility of cokriging. Equation solution follows a modification of a method developed for the solution of large-scale linear systems. Several example problems show that, at least for earthquake data, the inclusion of intervariable information results in a more accurate BLUE (best linear unbiased estimator).

Key Words: ART, COKRIG, Cokriging, Cross-variograms, Earthquake data, Projection method.

INTRODUCTION

Cokriging is the extension of kriging to several variables whereby several variables are estimated jointly utilizing a BLUE (best linear unbiased estimator). The notation and terminology used in this paper is presented in Myers (1982, 1983a-c). The general concept of cokriging is described in Matheron (1971). All of the examples given in Matheron, Journel and Huijbregts (1978), and François-Bongarçon (1981) are concerned with the undersampled problem. Borgman and Frahme (1976) used principal component analysis to approximate the variogram of a linear combination. Matheron (1979) provides an alternative to cokriging for linear combinations. The general formulation of cokriging in matrix form is given in Myers (1981, 1982) and for cokriging of linear combinations in Myers (1983a-c).

The objective of this paper is to present a computer program which will perform punctual cokriging both in the general form and for the "undersampled" form. The solution of the system of matrix equations is obtained by an iterative technique as described in Myers (1983b). This technique, a generalization of the method given by Tanabe (1971) and termed ART by Herman, Lent, and Stuart (1973), provides for the solution with only a few iterations.

NOTATION AND THE COKRIGING EQUATIONS

Let $Z_{1}(x), \ldots, Z_{m}(x)$ be second-order stationary random functions, where x is a point in 1,2 , or 3 space. Denote $\bar{Z}(x)=\left[Z_{1}(x), \ldots, Z_{m}(x)\right]$ and assume
$E[\bar{Z}(x)]=[0, \ldots, 0]$, where E denotes expected value. The covariance matrix may be written as

$$
\begin{equation*}
\bar{C}(h)=E\left[\bar{Z}(x+h)^{T} \bar{Z}(x)\right] . \tag{1}
\end{equation*}
$$

If x_{1}, \ldots, x_{n} are sample locations, then the objective is to estimate $\bar{Z}(x)$ by

$$
\begin{equation*}
\bar{Z}^{*}(x)=\sum_{j=1}^{n} \tilde{Z}\left(x_{j}\right) \Gamma_{j}=\left[Z_{1}^{*}(x), \ldots, Z_{m}^{*}(x)\right] \tag{2}
\end{equation*}
$$

where $\Gamma_{1}, \ldots, \Gamma_{m}$ are $m \times m$ matrices.

$$
\begin{equation*}
\sum_{j=1}^{n} \Gamma_{j}=I \tag{3}
\end{equation*}
$$

is a sufficient condition for

$$
\begin{equation*}
E\left[\bar{Z}(x)-\bar{Z}^{*}(x)\right]=[0,0, \ldots, 0] . \tag{4}
\end{equation*}
$$

The Γ_{j} 's are selected to minimize

$$
\begin{equation*}
\sum_{j=1}^{m} \operatorname{var}\left(Z_{j}(x)-Z_{j}^{*}(x)\right) \tag{5}
\end{equation*}
$$

As shown in Myers (1982) the cokriging system of equations may be written as

$$
\begin{equation*}
U Y=D \tag{6}
\end{equation*}
$$

where

$$
\begin{gather*}
U=\left[\begin{array}{cccc}
\bar{C}\left(x_{1}-x_{1}\right) & \cdots & \bar{C}\left(x_{1}-x_{n}\right) & I \\
\vdots & & \vdots & \vdots \\
\bar{C}\left(x_{n}-x_{1}\right) & \cdots & \bar{C}\left(x_{n}-x_{n}\right) & I \\
I & \cdots & I & 0
\end{array}\right], \tag{7}\\
Y=\left[\begin{array}{c}
\Gamma_{1} \\
\vdots \\
\Gamma_{n} \\
\bar{\mu}
\end{array}\right], \quad D=\left[\begin{array}{c}
\bar{C}\left(x_{1}-x\right) \\
\vdots \\
\bar{C}\left(x_{n}-x\right) \\
I
\end{array}\right] . \tag{8}
\end{gather*}
$$

The minimal value of (5) is given by

$$
\begin{equation*}
\sigma_{C K}^{2}=\operatorname{Tr} \bar{C}(0)-\operatorname{Tr} \sum \bar{C}\left(x_{j}-x\right) \Gamma_{j}-\operatorname{Tr} \bar{\mu} \tag{9}
\end{equation*}
$$

where Tr denotes the trace.
This result is completely analogous to the one variable version. The system (6)-(8) also can be written with variograms (and cross-variograms). To solve the system (6)-(8) requires solving a system of equations in which all entries are $m \times m$ matrices.

ART: The iterative method

As proposed by Tanabe (1971), it might better be termed the projection method for solving a system of linear equations. Each equation in the system can be thought of as the projection of the solution vector onto the hyperplane corresponding to that equation. Herman, Lent, and Stuart (1973) utilized this iterative technique to "algebraically reconstruct" a digital image from rays, for example, projections; hence the acronym ART.

Let X, Y be $p \times 1$ matrices whose elements are m $\times m$ matrices; then let

$$
\begin{equation*}
\langle X, Y\rangle=Y^{T} X \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
(X, Y)=\operatorname{Tr} Y^{T} X \tag{11}
\end{equation*}
$$

$\langle X, Y\rangle$ is a matrix-valued inner product on the linear space of $m \times m$ matrices and (X, Y) is a scalar valued inner product. Let

$$
\mathcal{A}=\left[\begin{array}{c}
\mathcal{A}_{1} \tag{12}\\
\vdots \\
\mathcal{A}_{n}
\end{array}\right]=\left[\begin{array}{ccc}
A_{11} & \cdots & A_{1 n} \\
\vdots & & \vdots \\
A_{n 1} & \cdots & A_{n n}
\end{array}\right]
$$

be an $n \times n$ matrix whose entries are $m \times m$ matrices. If

$$
\mathscr{X}=\left[\begin{array}{c}
X_{1} \tag{13}\\
\vdots \\
X_{n}
\end{array}\right], \quad \mathcal{B}=\left[\begin{array}{c}
B_{1} \\
\vdots \\
B_{n}
\end{array}\right],
$$

then

$$
\begin{equation*}
\mathcal{A} X=\mathcal{B} \tag{14}
\end{equation*}
$$

is equivalent to

$$
\begin{equation*}
\mathcal{A}_{i} \mathcal{X}=\mathcal{B}_{i} ; \quad i=1, \ldots, n . \tag{15}
\end{equation*}
$$

That is, the solution vector \mathcal{X} is the usual projection onto all the hyperplanes determined by the rows of \mathcal{A} and \mathcal{B}. The ART routine in the program in this paper requires less core than a matrix inversion routine by only operating on one row at a time.

Let

$$
\mathcal{A}^{*}=\left[\begin{array}{ccc}
A_{11}^{*} & \cdots & A_{p 1}^{*} \tag{16}\\
\vdots & & \vdots \\
A_{1 n}^{*} & \cdots & A_{n n}^{*}
\end{array}\right]
$$

where $A_{i j}^{*}$ is the complex conjugate transpose. Let \bar{A}_{i} be the i th column in \mathcal{A}^{*}. Assume $\left(A_{i}, A_{i}\right)>0$ for all i. Define $f_{i}: C_{m}^{n} \rightarrow C_{m}^{n}$ by

$$
\begin{align*}
f_{1}(X) & =X-\frac{1}{\alpha_{i}}\left[\bar{A}_{i}\left\langle X, A_{i}\right\rangle-\bar{A}_{i} B_{i}\right] \tag{17}\\
\alpha_{i} & =\left(\bar{A}_{i}, \bar{A}_{i}\right) . \tag{18}
\end{align*}
$$

For any two functions, $f \circ g$ denotes composition. That is, $(f \circ g)(x)=f(g(x))$. Composition is associative but not commutative. Finally let $F(\mathcal{B}, \mathcal{X})$ $=f_{1} \circ \cdots \circ f_{p}(\mathcal{X})$ and for any initial element \mathcal{X}_{0}, set

$$
\begin{equation*}
\mathcal{X}_{i+1}=F\left(\mathcal{B}, X_{i}\right) \tag{19}
\end{equation*}
$$

$\mathcal{X}_{0}, \ldots, X_{i}, \cdots$ converges to a solution of $\mathcal{A} \mathcal{X}$ $=\mathscr{B}$.

THE UNDERSAMPLED OPTION

One of the more frequently used applications of cokriging is for undersampled problems. That is, one or more variables are not sampled at all locations. The objective is to improve the estimation of the undersampled variables using the correlation with the other sampled variables. This version of cokriging is a special situation, and the corresponding system of equations is obtained by a simple modification of the full-sampled version. This is described in more detail by Myers (1983c). The undersampled option in the program proceeds as follows:
(1) The j th variable is unsampled at location i, and the matrices in the i th column of U [equation (7)] are modified by changing all entries in the j th column of those matrices to zeros.
(2) Likewise, all the matrices in the i th row of U and the matrix in the i th row of D have the entries in the jth row changed to zeros.

This is equivalent to requiring that the j th row of Γ_{i} be all zeros; for example, the j th variable has zero weight in estimating all variables for location i.

This modification of U, D will result in arbitrary values in the j th row of Γ_{i}. These arbitrary values are ignored.

Description of the program COKRIG

In an actual sense, a program for cokriging has all the basic elements of a program for ordinary kriging, except that provisions are made to accommodate more than one variable. Equation solution is more difficult, however, because, whereas ordinary kriging considers a single variable, this scalar dimension becomes a multiple dimension in cokriging. Nonetheless, the estimation process is the same for both methods, and cokriging is equivalent to ordinary kriging when only one variable is considered. The major purpose of cokriging, however, is to utilize intervariable information, along with spatial structure, to estimate more than one variable simultaneously.
Our purpose, hereafter, is to present a program for the simplest situation, relying on samples having punctual support; provision for samples having block support is being developed. In this form, the program serves to demonstrate the utility of cokriging.
As presented in Appendix 1, the COKRIG program is written in standard FORTRAN for an IBM 4331 computational system. This program utilizes a temporary, sequentially accessed disk file for equation solution. Because the revised Tanabe method (Myers, 1983b) requires only one row of the intersample covariance matrix in core at any one instant, disk storage allows large linear systems to be solved without using a large amount of in-core storage.

As an alternative, this program also allows in-core equation solution using a modified Gauss elimination scheme. The sequentially accessed disk file used for the Tanabe method is required here for intermediate storage. Use of the Gauss scheme allows more rapid execution time, but the maximum size of the linear systems that can be analyzed is more limited compared with the Tanabe method.
Program COKRIG comprises a main program which reads and prints input data, establishes the cokriging boundary, computes the estimates and estimation variance, and prints the result. In conjunction with the main program, there are nine subroutines and three function subprograms.
Subroutine AFORM forms the intersample co-variance-cross-covariance matrix, modifies this matrix to consider undersampled locations if desired, and then writes the result to disk for use in subsequent equation solution. In addition, the measurement vector, the point-sample covariance-cross-covariance vector, also is computed and stored in core. Subroutine ART performs the equation solution relative to Myers (1983b). Subroutine EQSOLV performs the equation solution relative to Gauss elimination. Subroutines MATMUL, ANI, SOLN, RZRO, ARIQ, and SCALAR supplement ART and EQSOLV. Subprogram FUNCTION TRACE computes the trace of a square matrix, FUNCTION COVAR computes the covariance value using either a spherical, Gaussian,
or linear model (Journel and Huijbregts, 1978), and FUNCTION CROSS computes the cross-covariance value using the same three covariance models. The actual cross-covariance value used in the program is

$$
\mathrm{ACTUAL}=0.5\left[\mathrm{CROSS}_{i j}-\mathrm{COVAR}_{i}-\mathrm{COVAR}_{j}\right],
$$

with CROSS $_{i j}$ being the value yielded by one of the cross-covariance models.

To modify COKRIG to execute on other computational systems, we need to consider two aspects. It is essential to ensure the ability to use the temporary disk file for equation solution. As presented, COKRIG opens this file implicitly. Other systems may require that the file be opened explicitly. Throughout COKRIG, this temporary logical device is termed IUNIT; the actual integer definition of IUNIT is accomplished using a DATA statement in the main program. To change the unit designation of IUNIT requires changing only this COK 00950 statement. The other aspect to be considered is the handling of the ALAB array, defined using a 15A4 format (COK 01140).

Program COKRIG is dimensioned to accommodate a maximum of 500 samples, of up to five variables each, contained in the array DAT. For larger problems, the dimension of each array in the labeled COMMON/ DAT2/, as well as the dimension of JUNSAM in the labeled COMMON/ AMAT/, must be increased. To accommodate more than five variables, the dimension of each array in the labeled COMMON/ VAR/ and COMMON/ CVAR/ must be increased. The dimension of each array in CVAR must be at least

$$
0.5[\text { MVAR }(\text { MVAR }-1)],
$$

where MVAR is the total number of possible variables. Furthermore, the dimension of the arrays DIST, EST, AW, ATEMP, XTEMP, TEMP1, TEMP2, and TEMP3, in the main program XMEAS, in the labeled COMMON/ FORM/, as well as ATEMP and IPOS in AFORM, and the dimension of each array in the ART series and EQSOLV, in which a " 5 " occurs in the DIMENSION declaration statement, must be increased.

At present, the maximum number of surrounding samples the program can use for estimation is fixed at eight. This is accomplished by ISTOP, defined at statement COK 02250. More samples can be used for estimation by modifying this statement. The maximum value of ISTOP, relative to current program dimensioning, is shown here:

No. of variables	ISTOP
1	90
2	45
3	30
4	22
5	16

Program COKRIG uses three special disk files for an optional check on the sum of the weights (LT), for a check on the estimation variance of each variable separately (LG), and as an optional file to access when contouring (LB), which contains the row and column number of each estimation location, the estimated values at each location, and the estimation variance. For large problems, it may be beneficial to suppress the creation of the LT file by removing statements COK 03450 -COK 03590 ; this will minimize program output. The LT file is useful initially, however, to ensure correct execution of the program. Only the main program of COKRIG accesses these files.

Input to COKRIG is documented in statements COK $00240-$ COK 00780 . For added detail, card 1 defines the options; if ICREAT is 1 , files LT, LB, and LG are created. For equation solution, if ISOLV is 0 , the Tanabe method is used; if ISOLV is 1 , Gauss elimination is used. With card 2, the cokriging boundary is established from row 1 , column 1, to row NROW, column NCOL. The y coordinate of row 1 is YMAX-YDIM/2, where YDIM is the y increment between rows. The x coordinate of the first column is XMAX-XDIM* $(\mathrm{NCOL}+0.5)$, where XDIM is the x increment between columns; in this manner, XMAX and XDIM can manipulate the minimum x coordinate. With card 3 , alphanumeric labels for each variable are defined; the spacing of these labels on input also will be the spacing on output. For the card 4 series of cards, variogram parameters are entered first, one card per variable, then cross-variogram parameters are entered, one card for each possible pair of variables. (Variograms are modeled on input; the program automatically computes covariance values for use in equation solution.) As an example, given four variables, 1, 2, 3, and 4 , four variogram cards would be followed by six cross-variogram cards for the pairs: 1-2, 1-3, 1-$4,2-3,2-4,3-4$, in this order. This series of cards is followed by the card 5 series, a multiple F10.3 format. The columns used for data entry depend on the number of variables being estimated. Values of zero for x and y coordinates signify the end of data entry. Modify COK 01530 if this is not desired.

In modeling cross-variograms, a new variable is created as $\mathrm{NEW}_{i j}(x)=\operatorname{Old}_{i}(x)+\operatorname{Old}_{j}(x)$, where i and j are the variables constituting the pair. A variogram (Journel and Huijbregts, 1978) is computed using $\mathrm{New}_{i j}(x)$, to result in $\gamma_{i j}$. It is essential, however, when modeling the cross-variogram, that

$$
\left|\gamma_{i j}\right| \leqslant \operatorname{SQRT}\left[\left(\gamma_{i i}\right)\left(\gamma_{j j}\right)\right] .
$$

These criteria help in defining the input to the card 4 series.

Review of input options

The following gives some additional detail or references in an attempt to make data input more understandable.

Section 1: Option initialization-there are four options to initialize:
(a) IKRIG, which is either zero, if all variables are sampled at all locations, or 1 , if some variables are not sampled at locations; if IKRIG is 1 , a zero data value indicates undersampling (to change this, modify statement COK 01660).
(b) MVAR, which is simply the number of variables to be estimated.
(c) ICREAT. If ICREAT is set equal to 1 , files are created to check on the sum of the weights and the individual values of kriging variance, and a file is created containing the row and column numbers, and estimated values; this latter file is designed to be accessed when contouring.
(d) ISOLV, which is zero for Tanabe equation solution or 1 for Gauss elimination. Gauss elimination is more efficient.
Sections 2 kriging boundary definition and and 3: variable names, were discussed adequately and should require no further elaboration.
Section 4: Variogram and cross-variogram data entry. For those familiar with regionalized variables theory, a variogram is a known tool. For those unfamiliar with this theory, Journel and Huijbregts (1978) explain the variogram clearly. A cross-variogram is a variogram computed on two variables added together; hence it is the cross relationship between two variables.
Section 5: Sample data entry. Here, variable values are entered first, then the y coordinate, followed by the x coordinate. For example, if two variables are to be estimated, variable 1 is entered in columns $1-10$, variable 2 in columns 11-20, the y coordinate in columns 21-30, and the x coordinate in columns 31-40.

Examples of program execution

With cokriging, intervariable relationships are used, along with spatial relationships to estimate values of several variables at locations in one, two, or three space. It might be difficult to appreciate the utility this method offers without comparing it to ordinary kriging. This latter method relies solely on spatial relationships to estimate the value of a single variable at a location in space.

Appendices 2 and 3 make such a comparison between cokriging and ordinary kriging. In Appendix 2, a single variable, modified Mercalli intensity data for the 9 February 1971 San Fernando, California
(U.S.A.) earthquake (United States Earthquakes, 1971), was estimated. A cross-validation-type procedure was used, whereby an estimate is made at a known data location without including data for that location in the estimation process. The purpose is to make a comparison between known data values and estimated values. Appendix 3 uses the same estimation procedure, yet a second variable is introduced-peak velocity as recorded during the 1971 San Fernando earthquake (Trifunac, Brady, and Hudson, 1973).

It is observed in Appendix 3 that inclusion of the intervariable relationship between velocity and intensity improved the estimation of intensity data relative to the single-variable kriging presented in Appendix 2. We conclude from this that, cokriging can be more accurate than ordinary kriging, provided the several variables to be estimated are correlated. This was an implicit assumption with respect to the two aspects of earthquake data estimated herein; both describe the level of ground motion. This implicit assumption was explicitly defined by the cross-variogram. For the examples shown in Appendices 2 and 3, cokriging proved to be superior to ordinary kriging.

Acknowledgment-The authors wish to acknowledge the help given by Dr. Thomas A. Doerr, University of Marquette, Marquette, Wisconsin, U.S.A., in describing the operation and error characteristics of Tanabe's projection method, and for programming suggestions. Development of COKRIG was accomplished using the University of Arizona's Digital Image Analysis Laboratory (DIAL), the University of Arizona Computer Center, and the University of Missouri-Rolla Computer Center.

REFERENCES

Borgman, L. E., and Frahme, R. B., 1976, A case study: multivariate properties of bentonite in northeastern Wyoming in Advanced geostatistics in the mining industry: D. Reidel, Dordrecht, Netherlands, 381 p .

François-Bongarçon, D., 1981, Les coregionalisations, le cokrigeage: Centre de Geostatistique, Fontainebleau, C86, 26 p.
Herman, G. T., Lent, A., and Rowland, S. W., 1973, ART: mathematics and applications: Jour. Theor. Biol. v. 42 ., no. 1, p. 1-32.
Journel, A., and Huijbregts, Ch., 1978, Mining geostatistics: Academic Press, London, 600 p.
Matheron, G., 1971, The theory of regionalized variables and its applications: Centre de Geostatistique, Fontainebleau, France.
Matheron, G., 1979, Recherche de simplification dans un probleme de cokrigeage: Centre de Geostatistique, Fontainebleau, France, Rep. No. N-698, 19 p
Myers, D. E., 1981, Joint estimation of random functions: the matrix form: Res. Rep., Dept. of Mathematics, Univ. Arizona, 32 p.
Myers, D. E., 1982, Matrix formulation of co-kriging: Jour. Math Geology, v. 14, no. 3, p. 249-257.
Myers, D. E., 1983a, Estimation of linear combinations and co-kriging: Jour. Math. Geology, v. 15, no. 5, p. 633 637.

Myers, D. E., 1983b, On solving large scale linear systems: submitted for publication in Numer. Math.
Myers, D. E., 1983c, Co-kriging-new developments: Proceedings of GEOSTAT-Tahoe 83, NATO ASI, 6-17 September 1983, D. Reidel, Dordrecht, Netherlands.
Tanabe, K., 1971, Projection method for solving a singular system of equations and its applications: Numer. Math. v. 17, no. 3, p. 203-124.

Trifunac, M. D., Brady, A. G., and Hudson, D. E., 1973 Strong motion earthquake accelergrams, digitized and plotted data, v . II, corrected accelergrams and integrated ground velocity and displacement curves, parts C-S: California Institute of Technology, prepared for the National Science Foundation, distributed by the National Technical Information Service, U.S. Department of Commerce, 2000 p .
United States Earthquakes, published annually by the U.S. Department of Commerce, Coast and Geodetic survey from 1928 through 1968, the NOAA National Ocean Survey in 1969, the NOAA Environmental Data Service from 1970 through 1972, and jointly by the NOAA Environment Data and Information Service and U.S. Geological Survey thereafter

APPENDIX I. PROGRAM LISTING

COK05630
$C O K O 5640$
COKOS650
COKO5650
COKO5660
COKO5670
COK 05680
COKO5690
COKO5690
COKO5700
COKO5710
COKO 5710
COKO
COK
COKO
COK
COKO
Cok
COKO
COK
COK
COKO5750
COKO5760
COKO
COKO
COK
CO
$C O K 05770$
$C O K O 5780$
$C O K O 5790$
COKO5790
COKO
COKO
COK
$C O K O 5810$
$C O K O 5820$
$C O K O 5830$
$C O K O 583$
COKO584
COKO5840
COKO5850
COKO5860
COKO5870
COKO5880
COKO5890
COKO5890
COKO5900
COKO5910
COKO5910
COKO5920
COKO
COKO
COKO
COKO 5940
COKO
COK
COKO
COK
COK
$C O K O 5960$
COK 05970
COKO5970
COKO5980
c...
400

C0K06690
COK0679
COK067
COK06710
C0K06720
C0K06730
COK06740
COK06750
COK06760
COK06770
COK 06780
COK06790
COK 0680
C0K0682
COK0683
COK06840
C0K0685
COK0636
COK0687
COK06880 COKO6890 COK06900 C0k0691 $C 0 K 06920$
COK06930 COK06940 COK06940 COK06960 COK06970 COKO6970
COK06980 COK06980 COK 06990 COK07000 COKO7010

DO $10, L=1, M V A R$
XTEMP $(X R O W, L)=0.0$
XLAST $(X R O W, L)=0.0$
$\begin{array}{ll}\text { KLAST (XROW,L) }=0.0 \\ 10 & \text { CONTINUE } \\ 20 & \text { CONTINUE } \\ \text { C......... } & \text { BEGIN ART ITERATION }\end{array}$
$\begin{aligned} & \text { DO } 1000 \text { II }=1200 \\ & \text { IIT }\end{aligned}$
II CONTROLS ITERATIONS - MAXIMUM NUMBER IS 5 .
C:......READ ONE ROW OF SUB-MATRICES OF ARRAY, A, INTO
C.:...:-CORE, THEN CCMPUTE N-SUB-I IHERMAN,ET:AL:,P.T, EQ. 11.
$00100 \mathrm{IA}=1$, MVAR
100 READ (IUNIT) (ATEMP(IA,IB),IB $=1, M T O T)$
CALL RZROXNI MVAR, MVARI
C........ COMPUTE RIQIHERMAN,ET.AL., P.T, EQ. 21.
CALL RZROIRIQ,MVAR,MVAR)
C.:.......UPDATE THE SOLUTION VECTOR, X. (HERMAN, ET.AL.,P.T, EQ. 3).
17 K $=$ KK
INCREMENT KTEMP, ATEMP, XMEAS,RIQ,17,NII

500 CONTINUE
REKIND IUNIT
C.........CHECK FOR CONVERGENCE (SQUARE-ERROR DIFFERENCE CHECK).
CALL R2RO(TEMP 3, MVAR,MVAR)

550
CALL MAYMUL (TEMP1, TEMP, TEMP2, MVAR, MVAR, MVAR)
DO 590 J $=1$ MVAR
TEMP $3(J, K)=$ TEAR $=$ TEMP (J, K) + TEMP2(J.K)
590
CONT INUE
CONJINUE
$\begin{array}{ll}\text { DIFF } & =\text { TRACE TEMP3) } \\ & =0.01 \text { CHECK }\end{array}$
C.......UUDATE XLAST ARRAY
OO $800 \mathrm{I}=1 ;$ MCOL
DO $800 \mathrm{~J}=\mathrm{MYAR}$

200	CONTINUE RETURN END SUBROUTINE ARIOIATEMPZXTEMPRRIG! COMMON \mathcal{P} PARMI MROH, MCOL,MVAR PMIOT DIMENSION ATEMP (5,100)EXIEMP 100 5 5) RIQ(5,5) DIMENSION TEMPI $5 ; 5$; TEAP $2(5,51$, TEMP3i5;5)	$\begin{aligned} & C O K 08810 \\ & C O K 08820 \\ & C 0 K 08830 \\ & C 0 K 08840 \\ & C 0 K 08850 \\ & C 0 K 08860 \\ & C O K 08870 \end{aligned}$
C....... THIS SUBROUTINE PERFORMS EQ. 2 , P. 7 , OF HERMAN, ET.AL.. C.:.... PROC EDURE MODIFIEO FOR MATRIX OPERATIONS.		C0K08880 C0K08890 COK08900
		C0K 0891
	00100 I $=1$ M MVOL	COK08920
		COK08930
	DO $20 \mathrm{~K}=1, \mathrm{MVAR}$ MVAR +J	COK08950
	$K B, K$	COKO8960
		COK08970
	TEMP2 $(J, K)=$ XTEMP(JE,K)	COK08980
20	CONTINUE	COK08990
	GALL MATMUL (TEMP L, TEMP2,TEMP3, MVAR, NVAR, MVAR)	COK09090
	$\text { DO } 50 \quad J=H \text { MVAR }$	COK09010
	DO $50 \mathrm{~K}=1 \mathrm{MVAR}$	C0K09020
	RIQ ${ }^{\text {a }}$, K) $=$ R(QiJ,K) + TEMP3(J,K)	COK09030
500	CONTINUE	COK09040
	CONTINUE RETURN	C0K09050
	END	COK09070
	SUBROUTINE SCALAR(A, B, X)	COKO9080
	COMMON /PARM/ MROW MCOL, MVAR,MTOT	COK09090
	DIMENSION $4(5,5), 8(5,5), X(5,5)$	COK09190
	REAL NI	COK09110
C........ THIS SUBROUTINE PERFORMS THE OPERATION: (RI - RIQI/(NI) C.......WHEKE (RI - RIQ) AND (NI) ARE SQUARE MATRICES.		COK09130
		C0K0914
C.	FIRST GUESS AT SOLN IS ZERO: HERMAN, EQ. 3.	COK09160
	CALL RZRO(X,MVAR,MVAR)	COK09170
	COMPUTE NI; HERMAN, EQ-I.	COK09180
	MITN $=$ MVAR $* 100$	C0K09190
	OO 100 II $=1$ NITN	COK09200
	DO 50 KK $=1$ 1.MVAR	COK09210
	DO $20 \mathrm{~J}=\mathrm{l}$ - MVAR	COK09230
		COK09240
20	CONT INUE	COK09250
	IF (NI.EQ.O.O) GO TO 50	COK09260
	ADD LL LOOP BECAUSE SOLN IS A 2-D ARRAY. NOT A VECTOR.	COK09270
C.		COK09280 COK09290
	RIQ $=0.0$	COK09300
	DO $30 \mathrm{~J}=1$ MVAR	COK09310
		COK 09320
	CONTINUE	COK09330
$\begin{aligned} & \text { C. } \\ & \\ & 35 \\ & 45 \\ & 50 \\ & 100 \end{aligned}$	COMPUTE NEW SOLUTİN: HERMAN, EQ. 3.	COK09340
	X(JILL) $=$ X ${ }^{\text {MVAR }}$, LL) $+(A(K K, J) *(B(K K, L L)-R I Q) / N I)$	COKO9360
	CONfINUE X	COK09370
	CONTINUE	COK09380
	CONTINUE	COK09390
	CONTINUE	C0K09400
	RETURN	COK09410
	END	C0K09420
	COMMON/FILESYSUUNIT	C0K09430
	COMMON/PARM/ MROH,MCOL, MVAR, MTOT	COK09450
	DIMENSION ATENP 1 OOO, 100 $)$ XIEMP 1100,51 XMEAS 1100,5$)$	COK09460
	DIMENSION TEMP 5 5,5i, TEMPI 5,51, TEMP 215,5$)$, TEMP 315,51	COK09470
	SUBRUUTINE EQSOLV IS A SPECIALIZED VERSION OF THE	COK09490
	GAUSS DECOMPOSITION FOR SUQ-MATRIX SOLUTION.	COK09500
	FIRST STEP: FILL ATEAP ARRAY FOR IN-CORE SOLUTION.	COK095 10
	REWIND IUNIT	COK09530
	DO $101=1$, MROW	COK09540
	DO $\mathrm{TO}_{0} \mathrm{~J}=\mathrm{T}, \mathrm{MVAR}$	C0K09550
		COK09560
	READ (IUNIT) (ATEMP (JB, JK) , JK=1, MTOT)	COK09570
10	CONTINUE	COK09580
	$\text { DO } 15 \mathrm{I}=1 \text {, MTOT }$	COK09590
	DO $15 \mathrm{~J}=1, \mathrm{MVAR}_{\text {MTOT }}+\mathrm{J}$	COK09600
		C0K09620
15	CONTINUE	COK09630
	BEGIN GAUSS DECOMPOSITION	C0K09640
		COK09660
	MN $100=$ MROW +1	
	DO $100 \mathrm{I}=1$, MROW	COK09680
		C0K09690
		Cok09700
	DO $20 \mathrm{KK}=1, \mathrm{MVAR}$	C0K09720
	KC ${ }^{\text {(}}$ (I-1) ${ }^{\text {(MVAR }}+\mathrm{KK}$	COK09730
	TEMP (KJ,KK) $=$ ATEMP(KB,KC)	C0K09740
20	CONT INUE	
	OUM ${ }^{\text {a }}$ IRACE(JEMP)	COK09760
	DO $100 J=1, M R O W$	COK09770
	IF(I-J) 40.100 .40	C0K09780
40	CONTINUE	COK09790
	DO $50 \mathrm{KJ}=1$. MVAR	C0K09800
	KB $50 \mathrm{KK}=1$	C0K09810
	OO $50 \mathrm{KK}=1$, MVAR 1 \%MVAR	COK09820
		COK0983
50	CONTINUEXK = ATEMPIKB,KC	COK09850
	IFIMVAR.NE. 11 GO TO 71	COK09860

	DO $70 \mathrm{KJ}=1$, MYAR DU 70 KK $=1$ I,MVAR TEMPL(KJ,KK) $=$ TEMP1(KJ,KK)/DUM1
70	CONIINUE
71	GO TO 79
	CONT INUE
	CALL SCALG(TEMP, FEMPI,TEMP 3)
	$0072 \mathrm{KJ}=1$, MVAR
	TEMP $($ KJ,KK) $=$ TEMP3(KJ, KK)
72	CONTINUE
	CONTINUE
	DO 90 K $=1 P, M N$ DO $80 \mathrm{KA}=1$, MVAR
	JA 80 ($=$ (I-1)*MVAR + KA
	DO $80 \mathrm{~KB}=1$,MVAR
	$J B$
	TEMP2 2 KA, KB) = ATEMP(JA, JB)
80	CONTINUE MUL
	CALL MATMUL ITEMP 1 , TEMP2, TEMP3, MVAR, MVAR, MVAR)
	$0090 \mathrm{~KB}=1$, MVAR
	$\triangle T E M P(J A, J B)=\triangle T E M P(J A, J B)+T E M P 3(K A, K B)$
90	CONT INUE
100	CONTINUE
	$00200 \mathrm{I}=1 . \mathrm{MROW}$
	DO $150 \mathrm{KJ}=1$, MVAR
	$\begin{aligned} & \text { KC } \\ & \text { TEMP }(K J, K K)=\text { IIEAPFMVAR }+K K \\ & \hline \end{aligned}$
150	CONTINUE
	DUM2 $=$ TRACE(TEMP)
	JA $160 \mathrm{~K}=\mathrm{I}$, MYAR ${ }^{\text {(1) }}$ (MYAR * J
	$\mathrm{JB}^{\text {J }} 160 \mathrm{~K}=1$ M MTOT $+K$
	TEMP $2(J, K)=$ ATEMP $(J A, J B)$
160	CONTINUE
	IFIMVAR.NE. 11 GO TO 180
	DG $170 \mathrm{~J}=1, \mathrm{MVAR}$
	JB ${ }^{\text {S }}$, MTOT +
	XTEMP(JA,K)= $=$ TEEMP(JA,JB)/DUA2
170	CONTINUE
180	GOTO 190
	JA $=$ (I-1)*MVAR + J
	OD $185 \mathrm{~K}=1$ ¢ MVAR
185190200	$\operatorname{XTEMP}(J A, K)=$ TEMP $3(J, K)$
	continue RETURN
	ENO
c	
	COMMON IPARM/ MROM MCOL,MVAR,MTOT
	THIS SUBROUTINE PERFORMS THE NORMALIZATION BY THE DIAGONAL TERM FOR GAUSS ELIMINATION FOR MATRIX
	OPERATIONS.
	MVAR2 $=$ MVAR*2
	DO 10 I = I,MVAR
	0010 J $=1$ MVAR
10	TEMP(İJ) = AII.J)
10	$\mathrm{CONI}_{0}^{\text {CONE }}$ I $=1$. MVAR
	$0020 \mathrm{~J}=1$ M MVAR
	K K MVAR ${ }^{+} \mathrm{J}$
	IEMP(IPK) $=$ B(I,J)
20	CONTINUE ${ }_{\text {O }}$ I $=1$. MVAR
	$\operatorname{DO}_{1 P} 30 \mathrm{I}=1, \mathrm{MVAR}$
	OO 30 K = I, MVAR
	IF (TEMP\{I, 1) EQ.O.O1 GO TO 30
26	
27	TEMP $(K, L)=$ TEMP(K,L) + F\#TEMP(I,L)
30	CONTINUE
	OO 40 I = 1, MVAR
	DO 40 J $=1$, MVAR
40	CONTINUE
	RETURN

APPENDIX II. KRIGING EXAMPLE

a total of 1 Variable(s) will be estimated

APPENDIX III. CO-KRIGING EXAMPLE

