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a b s t r a c t

Environmental data is nearly always multivariate and often spatial–temporal. Thus to interpolate the

data in space or to predict in space–time it is necessary to use a multivariate spatial–temporal method.

Cokriging is easily extended to spatial–temporal data if there are valid space–time variograms or

covariance functions. Various authors have proposed such models. In this paper, a generalized product–

sum model is used with a linear coregionalization model for cokriging. The GSLib ‘‘COKB3D’’ program

was modified to incorporate the space–time linear coregionalization model (ST-LCM), using the

generalized product–sum variogram model. Hence, a new GSLib software, named ‘‘COK2ST’’, is

proposed. To demonstrate the use of the software, hourly measurements of carbon monoxide and

nitrogen dioxide from the Puglia region in Italy are used.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Because environmental data is most often multivariate, i.e.,
there are data for several variables at many spatial locations,
multivariate methods are necessary and in particular cokriging.
One of the difficulties in using cokriging is how to model the
cross-variograms (or cross-covariances). The common solution to
this problem is using a linear coregionalization model. This
approach is implemented in the R package gstat. However,
environmental data, in particular air pollution data is usually
not only multivariate but also spatial temporal. Thus there is the
additional problem of how to model spatial–temporal vario-
grams; this problem has been addressed by a number of authors
including Bilonick (1986), Cressie and Huang (1999), De Iaco et al.
(2001, 2002), Gneiting (2002), and De Iaco (in press). Several
authors have given examples of the analysis of multivariate
spatial–temporal data including De Iaco et al. (2003), De Iaco et al.
(2005), Vanderlinden et al. (2006), Lark et al. (2006), and Sicard
et al. (2002). Brown et al. (1994) use a Bayesian approach which
requires a Multigaussian distribution assumption and uses a
transformation on the space to account for the anisotropy. Some
authors use multivariate methods to avoid the need to apply
cokriging to spatial–temporal data, e.g., Rouhani and Myers
(1990), De Iaco et al. (2000). Sen et al. (2006) as well as Kyriakidis
et al. (2001a, b) used spatial time series. Koike et al. (2002) and Liu
ll rights reserved.

rg/CGEditor/index.htm.

De Iaco),

a@unisalento.it (M. Palma),
and Koike (2007) claim to have another method for fitting space–
time variograms and cross-variograms, namely fitting the em-
pirical variogram and cross-variograms with cubic splines. This
does not ensure that the resulting variogram model is condition-
ally negative definite, nor does it ensure that the matrix
variogram is a conditionally negative definite function. They also
erroneously claim that it is necessary to have data for all variables
at all locations in order to use cokriging.

The principal remaining problem when analyzing multivariate
space–time data is the lack of software. De Cesare et al. (2002)
modified GSLib (Deutsch and Journel, 1997) programs to obtain
FORTRAN programs for computing empirical space-time vario-
grams, marginal space variograms and marginal time variograms.
They also modified the GSLib program for kriging to allow the use
of spatial–temporal data but only included the product model
variogram. Although De Iaco et al. (2003, 2005) showed that the
general product–sum model could be used with an LCM for
cokriging, they did not publish the software at that time. While
various authors have used either a generalized product–sum
model or Gneiting’s model, the only other published geostatistics
software for space–time modeling is the R package random fields.
It has limited choices for the space–time variogram model, and
does not provide for computation of the empirical marginal
variograms nor incorporate cokriging.

In this paper we present a modified GSLib code for cokriging
using spatial–temporal data. The new software is called
‘‘COK2ST’’.

Section 2 reviews the basics of using an LCM and generalized
product–sum spatial temporal variograms for ordinary cokriging
(De Iaco et al., 2005). Ordinary cokriging assumes that the mean of
each component variable is constant.
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Section 3 describes the fitting of a diurnal component for
each component variable. Air pollution data nearly always
exhibits a diurnal pattern and the maximum magnitudes can
vary with respect to the spatial location. This is somewhat
analogous to a non-constant mean. Instead each of the original
variables is viewed as the sum of two parts, a random
component defined in space–time and a component corre-
sponding to the diurnal behavior. The second component is not
deterministic but instead incorporates a random component for
the magnitude.

Section 4 is a case study using hourly measurements of carbon
monoxide (CO) and nitrogen doxide (NO2) in the Puglia region of
Italy. The measurements were obtained during November 2006.
This case study demonstrates the use of a modified GSLib for
cokriging using a ST-LCM with the generalized product–sum
variograms.
2. Vector-valued space–time random functions: modeling and
prediction

Let fZðs; tÞ; ðs; tÞAD� TDRdþ1
g be a vector-valued space–time

random function (STRF) with pZ2 scalar STRFs, i.e.

Zðs; tÞ ¼ ½Z1ðs; tÞ; Z2ðs; tÞ; . . . ; Zpðs; tÞ�
T ; ð1Þ

where sADDRd (generally, dr3) denotes the spatial point and
tAT is the temporal coordinate.

The components of Z(s, t) are assumed to be second-order
stationary which implies that the matrix variogram

CðhÞ ¼ ½gabðhÞ�; ð2Þ

exists and does not depend on (s, t), where
�
 h=(hs, ht), with hs ¼ ðs�s0Þ and ht ¼ ðt�t0Þ;

�
 gabðhÞ ¼ Cov½ðZaðsþhs; tþhtÞ�Zaðs; tÞÞ; ðZbðsþhs; tþhtÞ�Zbðs; tÞÞ�,
a, b¼ 1;2; . . . ;p, are the cross-variograms between the Za and
Zb STRFs, when aab, and the direct variograms of the Za STRF,
when a¼ b.

2.1. ST-LCM using a product–sum model

Recall that for an LCM, each component of the vector-valued
random function Z(s, t) is assumed to be represented as a linear
combination of uncorrelated second-order stationary random
functions, e.g.

Ylðs; tÞ ¼ ½Y
l
1ðs; tÞ;Y

l
2ðs; tÞ; . . . ;Y

l
pðs; tÞ�

T ; l¼ 1;2; . . . ; L: ð3Þ

Then

Zðs; tÞ ¼
XL

l ¼ 1

AlYlðs; tÞ; ð4Þ

where Al is a (p �p) coefficient matrix for each l¼ 1;2; . . . ; L.
The ST-LCM for the variogram matrix CðhÞ, can be written as

CðhÞ ¼Cðhs;htÞ ¼
XL

l ¼ 1

Blglðhs;htÞ; ð5Þ

where Bl ¼ AlA
T
l ¼ ½b

l
ab�, l¼ 1;2; . . . ; L, a;b¼ 1;2; . . . ; p, are positive

definite (p �p) matrices and gl(hs, ht), l¼ 1;2; . . . ; L, are basic
space–time variograms which might correspond to different
scales of variability.

In the extension of the LCM given by De Iaco et al. (2005), each
basic space–time variogram is a generalized product–sum model

glðhs;htÞ ¼ glðhs;0Þþglð0;htÞ�klglðhs;0Þglð0;htÞ; l¼ 1;2; . . . ; L;

ð6Þ
where glðhs;0Þ and glð0;htÞ, l¼ 1;2; . . . ; L, are spatial and temporal
marginal variogram models, while kl; l¼ 1;2; . . . ; L, are parameters
given by

kl ¼
sill½glðhs;0Þ�þsill½glð0;htÞ��sill½glðhs;htÞ�

sill½glðhs;0Þ� � sill½glð0;htÞ�
; l¼ 1;2; . . . ; L: ð7Þ

The parameters given in (7) must satisfy a necessary and
sufficient condition (De Iaco et al., 2001) to ensure that gl(hs, ht)
is strictly conditionally negative definite.

By substituting (6) in (5), the ST-LCM with basic generalized
product–sum variogram models is determined by two marginal
LCM, one in space:

Cðhs;0Þ ¼
XL

l ¼ 1

Blglðhs;0Þ; ð8Þ

and the other one in time:

Cð0;htÞ ¼
XL

l ¼ 1

Blglð0;htÞ: ð9Þ

Moreover, the diagonal elements of Bl are easily determined after
modeling marginal direct variograms, while the off-diagonal
elements are obtained by marginal cross-variogram models in
such a way to ensure positive definiteness of the matrices Bl.

Since the only difference between cokriging in space–time and
cokriging in space is in the modeling of the variograms and cross-
variograms, as shown in Myers (1991), the ordinary space–time
cokriging predictor can be written as

ẐðuÞ ¼
Xn

i ¼ 1

KiðuÞZðuiÞ; ð10Þ

where u¼ ðs; tÞAD� T is any point in the space–time domain,
ui ¼ ðsi; tiÞAD� T, i¼ 1;2; . . . ;n, are the data points and KiðuÞ,
i¼ 1;2; . . . ;n, are ðp� pÞ matrices of weights whose elements
labi ðuÞ are the weights assigned to the value of the b-th variable,
b¼ 1;2; . . . ; p, at the i-th data point to predict the a-th variable,
a¼ 1;2; . . . ; p, at the point uAD� T.

2.2. COK2ST for space–time prediction

In this section we will describe the modification of the GSLib

program ‘‘COKB3D’’ (Deutsch and Journel, 1997).
To determine the space–time variogram matrix for Z(s, t) and

to make multivariate predictions in space–time, various para-
meters must be specified in the new GSLib software ‘‘COK2ST’’. As
shown in the Appendix B, these are:
(a)
 the option for making prediction over a grid or at specified
points, or for making cross-validation (0=grid, 1=jack-

knife, 2=cross);

(b)
 the number of nested product or product–sum variogram

models (np/sp);

(c)
 the option for using the product or the product–sum model

(0 = prod, 1 =sum-prod);

(d)
 the number of spatial and temporal variograms for each

structure (nst);

(e)
 the spatial and temporal nugget effects;

(f)
 the type of spatial and temporal basic structures (it);

(g)
 the spatial and temporal contributions of the basic structures

(cc);

(h)
 the spatial and temporal angles (ang1,ang2,ang3) and

ranges or scales of variability (a_hmax,a_hmin,a_vert);

(i)
 the global sills.
The (f), (g), and (h) parameters must be specified for each
direct and cross-variogram and for each scale of variability, both
in space and also in time.
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Note that
�

Tab
Inte

‘‘CO

T

S

E

G

P

H

in contrast with the original program which works on a three-
dimensional space, this modified version works on
D� TDR2þ1, where the vertical dimension now is the
temporal dimension. Hence, spatial angles and ranges pertain
to two-dimensional space, the temporal angle and range
pertain to one-dimensional space. The options for three angles
and ranges could be useful for a metric model in two-
dimensional space and time;

�
 variogram models with zero type, range and sill parameters

are used to denote the nugget effect;

�
 the same number of spatial and temporal structures (nst) for each

nested product or product–sum model has to be considered.

The type of spatial and temporal basic structures is specified by an
integer code, as shown in Table 1.

3. Modeling the diurnal component

Air pollution data nearly always exhibits a diurnal pattern and
the maximum magnitude can vary with respect to the spatial
location. This is somewhat analogous to a non-constant mean. In
this case, each of the original variables is viewed as the sum of
two parts, a space–time random component corresponding to the
residual and a component corresponding to the diurnal behavior,
which incorporates a random component for the magnitude.
Hence, the fitting of a diurnal component for each component
variable is proposed.

Each of the original variables XaðuÞ, a¼ 1;2; . . . ; p, with
u¼ ðs; tÞAD� TDRdþ1

ðd¼ 2Þ, is treated as a partial realization
of a non-stationary STRF, decomposed as follows:

XaðuÞ ¼ ZaðuÞþMaðuÞ; u¼ ðs; tÞAD� TDRdþ1; ð11Þ

where
�
 ZaðuÞ is, as in Section 2, a space–time random component
which is assumed to be second-order stationary;

�
 MaðuÞ is the diurnal component.

The components of MaðuÞ are assumed to be of the form:

MaðuÞ ¼ maþbaðtÞ � VaðsÞ; a¼ 1;2; . . . ; p; ð12Þ

where
�
 ma is constant in the space–time domain;

�
 baðtÞ is a periodic function representing the standardized

diurnal cycle of Xa;

�
 VaðsÞ is a second-order stationary spatial random field represent-

ing the magnitude of the diurnal cycle at location s of Xa.
le 1
ger codes used to specify type of spatial and temporal basic structure in

K2ST’’ parameter file.

ype of variogram model Integer code

In space In time

pherical 1 6

xponential 2 7

aussian 3 8

ower 4 9

ole effect 5 10
The components baðtÞ and VaðsÞ of MaðuÞ are computed as
follows:
1.
 the diurnal component is estimated for each monitoring
station by the MAE method (Brockwell and Davis, 1987), as
described hereafter;
2.
 the 24 h diurnal components are standardized for each
monitoring station;
3.
 a periodic function baðtÞ is fitted to the diurnal standardized
components for all the survey stations;
4.
 the standard deviations of the diurnal components, estimated
for each survey station, are considered as a realization of the
random field VaðsÞ; hence, ordinary cokriging can be used in
order to estimate Va over the area of interest.

3.1. Missing values and removal of the diurnal component

Using the FORTRAN program ‘‘REMOVEMULT’’, the diurnal
components of the variables under study are estimated by moving
averages (Brockwell and Davis, 1987) and removed simultaneously.
In case of missing values, this program uses linear interpolation to
replace a prescribed number of consecutive missing values.

‘‘REMOVEMULT’’ is a modified version of the FORTRAN program
‘‘REMOVE’’ given in De Cesare et al. (2002), which allows
deseasonalization of several variables simultaneously.

The input parameters for the program ‘‘REMOVEMULT’’ (see
Appendix A) are, for each variable of interest:
�
 the maximum number of missing consecutive data;

�
 the period of the seasonal component;

�
 the minimum number of valid consecutive data for deseaso-

nalization;

�
 the time unit;

�
 the number of time intervals;

�
 the interval definition, i.e. the first instant and the last instant

+1 of each time interval.

After removing the diurnal component at each station, the residuals of
each variable are used for modeling and prediction purposes.
4. A case study

In this paper, a multivariate approach was applied to analyze
the direct and cross correlation for two space–time air pollutants,
Fig. 1. Location map of survey stations.



ARTICLE IN PRESS

S. De Iaco et al. / Computers & Geosciences 36 (2010) 636–646 639
carbon monoxide (CO) and nitrogen dioxide (NO2), measured
during November 2006 at monitoring stations in Puglia region
(Italy).

As previously pointed out, the aim of this case study is to show
the flexibility of the space–time linear coregionalization model,
based on the generalized product–sum variogram, in modeling
and interpolation a multivariate space–time random field; the
study proceeds as follows:
1.
 exploratory analysis for each of the two air pollutants;

2.
 structural analysis for the two air pollutants;

3.
 cross-validation and space–time prediction of CO residuals

(primary variable) using data for CO and NO2 residuals;

4.
 prediction maps of CO concentrations for the 1st of December

2006.

4.1. Exploratory data analysis

The data set, provided by the Environmental Protection
Agency of the Puglia region, Italy, consists of CO (mg/m3) and
NO2 (mg=m3) hourly averages measured during November 2006
at 10 and 22 monitoring stations, respectively (Fig. 1). NO2 is a
secondary pollutant caused, mainly in winter, by heating
systems, both civil and industrial ones, and also by the traffic;
therefore it reaches very high values in those urban areas
characterized by high-density population. On the other hand, CO
is caused by the motor vehicles emissions and it reaches very
high values in those areas with heavy traffic and poor
ventilation.

Fig. 2 shows the box-plots of CO and NO2 hourly averages
where it is evident that the temporal behavior of each pollutant is
characterized by a diurnal cycle.

4.2. Estimating and modeling the diurnal component

The observations for CO and NO2 are treated as a partial
realization of a non-stationary bivariate STRF

XðuÞ ¼ ½X1ðuÞ;X2ðuÞ�
T ; ð13Þ

with u¼ ðs; tÞAD� TDRdþ1
ðd¼ 2Þ, decomposed as follows:

XðuÞ ¼ ZðuÞþMðuÞ; u¼ ðs; tÞAD� TDRdþ1; ð14Þ

where
�
 Z(u) is as in Section 2 but with only two components;

�
 M(u) is the diurnal component.
The components of M(u) are assumed to be of the form:

MaðuÞ ¼ maþbaðtÞ � VaðsÞ; a¼ 1;2; ð15Þ

where each term is as in Section 3.

4.2.1. Missing values and removal of CO and NO2 diurnal

components

Since at each monitoring station, hourly measurements of
both pollutants exhibit a diurnal behavior, before performing
structural analysis, it was necessary to deseasonalize the CO and
NO2 values.

Using the FORTRAN program ‘‘REMOVEMULT’’ described in
Section 3.1 and the parameter file shown in Appendix A, the
diurnal components of the two variables under study were
estimated and removed simultaneously. In case of missing values,
linear interpolation was used.
After removing the diurnal component at each station, the
residuals of CO and NO2 were used for:
1.
 modeling the spatial-temporal correlation of the two variables
by the ST-LCM, based on the generalized product–sum
variogram model,
2.
 predicting CO hourly concentrations in the domain under
study, for the 1st of December 2006, using the multivariate
space–time model, and the CO and NO2 data.

4.3. Modeling the ST-LCM

The ST-LCM for CO and NO2 residuals was constructed as
follows.

Step 1: Using the residuals obtained by subtracting the
estimated diurnal components, the sample marginal variograms
were computed. These were fitted using nested models as
follows:

~g11ðhs;0Þ ¼ 0:062 g1ðhs;0Þþ0:107 g2ðhs;0Þþ0:032 g3ðhs;0Þ; ð16Þ

~g11ð0;htÞ ¼ 0:062 g1ð0;htÞþ0:107 g2ð0;htÞþ0:032 g3ð0;htÞ; ð17Þ

for CO residuals, and

~g22ðhs;0Þ ¼ 180 g1ðhs;0Þþ100 g2ðhs;0Þþ73:5 g3ðhs;0Þ; ð18Þ

~g22ð0;htÞ ¼ 180 g1ð0;htÞþ100 g2ð0;htÞþ73:5 g3ð0;htÞ; ð19Þ

for NO2 residuals, where the three marginal basic structures in
space and time are given below:

g1ðhs;0Þ ¼
0; JhsJ¼ 0;

1; JhsJ40;

(
ð20Þ

g2ðhs;0Þ ¼ 0:81 SphðJhsJ=28Þ; ð21Þ

g3ðhs;0Þ ¼ 1:61 ExpðJhsJ=45Þ; ð22Þ

g1ð0;htÞ ¼
0; jhtj ¼ 0;

0:35; jhtj40;

(
ð23Þ

g2ð0;htÞ ¼ 0:87 Expðjht j=12Þ; ð24Þ

g3ð0;htÞ ¼ 1:07 Expðjht j=36Þ: ð25Þ

Fig. 3 shows empirical spatial and temporal marginal variograms
for CO and NO2 residuals and their corresponding models.

The coefficients in Eqs. (16) and (18) are the diagonal entries in
the matrices Bl, l = 1,2,3.

Step 2: The sample space–time variogram surfaces for the
residuals of each variable were obtained by using the modified
version of the program ‘‘GAMV’’ in De Cesare et al. (2002). Then
the variogram surfaces were fitted to product–sum nested
models, by appropriate choices of the kl, l=1,2,3, parameters
defined in (7).

Fig. 4 shows the sample space–time variogram surfaces and
the fitted product–sum nested models of the residuals of the two
variables.

Step 3: The sample marginal cross-variograms in space and
time for the residuals of the two variables (Fig. 5) were computed
and the fitted nested models were the following:

~g12ðhs;0Þ ¼ ~g21ðhs;0Þ ¼ 0:1 g1ðhs;0Þþ2:229 g2ðhs;0Þþ1:398 g3ðhs;0Þ;

ð26Þ

~g12ð0;htÞ ¼ ~g21ð0; htÞ ¼ 0:1 g1ð0;htÞþ2:229 g2ð0; htÞþ1:398 g3ð0; htÞ;

ð27Þ
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Fig. 2. Box-plots of (a) CO hourly averages; (b) NO2 hourly averages.

Fig. 3. Spatial and temporal marginal variograms and models for (a,b) CO and (c,d) NO2 residuals.

S. De Iaco et al. / Computers & Geosciences 36 (2010) 636–646640
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Fig. 4. Sample space–time variogram surfaces and their product–sum models for (a) CO and (b) NO2 residuals (k1=0.99; k2=0.02; k3=0.1).
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where g1ðhs;0Þ, g2ðhs;0Þ; g3ðhs;0Þ, g1ð0;htÞ, g2ð0;htÞ and g3ð0;htÞ

had been previously defined.
The marginal cross-variograms (26) and (27) were chosen to

ensure that the matrices Bl, l=1,2,3, are positive definite and the
ST-LCM is strictly conditionally negative definite.

Finally, the ST-LCM for CO and NO2 residuals is of the following
form:

Cðhs;htÞ ¼
X3

l ¼ 1

Blglðhs;htÞ ¼ B1g1ðhs;htÞþB2g2ðhs;htÞþB3g3ðhs;htÞ;

ð28Þ

where the matrices Bl, l=1, 2, 3, are, respectively:

B1 ¼
0:062 0:1

0:1 180

����
����; B2 ¼

0:107 2:229

2:229 100

����
����; B3 ¼

0:032 1:398

1:398 73:5

����
����;

ð29Þ

and the basic space–time variograms gl(hs, ht), l=1, 2, 3, are
modeled as a generalized product–sum model as follows:

g1ðhs;htÞ ¼ g1ðhs;0Þþg1ð0;htÞ�k1g1ðhs;0Þg1ð0;htÞ;

g2ðhs;htÞ ¼ g2ðhs;0Þþg2ð0;htÞ�k2g2ðhs;0Þg2ð0;htÞ;

g3ðhs;htÞ ¼ g3ðhs;0Þþg3ð0;htÞ�k3g3ðhs;0Þg3ð0;htÞ;

with
�
 k1 = 0.99, k2=0.02, k3=0.1;

�
 g1ðhs;0Þ; g2ðhs;0Þ; g3ðhs;0Þ, are marginal basic structures in space;
�
 g1ð0;htÞ; g2ð0;htÞ and g3ð0;htÞ, are marginal basic structures
in time.

To ensure a fit for the global sill, the following equations must be
satisfied:

0:062217¼ 0:062½1þ0:35�k1ð1 � 0:35Þ�;

0:1783¼ 0:107½0:81þ0:87�k2ð0:81 � 0:87Þ�;

0:0802¼ 0:032½1:61þ1:07�k3ð1:61 � 1:07Þ�;

for CO residuals;

180:63¼ 180½1þ0:35�k1ð1 � 0:35Þ�;

166:6¼ 100½0:81þ0:87�k2ð0:81 � 0:87Þ�;

184:32¼ 73:5½1:61þ1:07�k3ð1:61 � 1:07Þ�;

for NO2 residuals;

0:10035¼ 0:1½1þ0:35�k1ð1 � 0:35Þ�;

3:7135¼ 2:229½0:81þ0:87�k2ð0:81 � 0:87Þ�;

3:5058¼ 1:398½1:61þ1:07�k3ð1:61 � 1:07Þ�;

for the cross-correlation of CO and NO2 residuals, where k1=0.99,
k2=0.02, and k3=0.1.
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Fig. 5. Sample marginal cross-variograms and their models (a) in space and (b)

in time.

Fig. 6. Scatter plot of CO hourly residuals towards estimated ones.

S. De Iaco et al. / Computers & Geosciences 36 (2010) 636–646642
4.4. Cross-validation of the ST-LCM

As previously discussed, the new program ‘‘COK2ST’’ incorpo-
rates cross-validation; hence, it was possible to cross-validate the
ST-LCM constructed for the CO and NO2 residuals. In particular, CO
hourly residuals were estimated at all data points by using space–
time cokriging. Fig. 6 shows the scatter plot of CO hourly residuals
towards the estimated ones. It is evident that the linear
correlation coefficient between CO hourly residuals and
estimated values is very high. Hence, the ST-LCM (28) could be
considered valid for modeling the spatial–temporal correlation of
the two variables.

4.5. Prediction maps of CO concentrations

‘‘COK2ST’’ and the parameter file shown in Appendix B, were
used to predict CO hourly residuals for the 1st of December 2006
Fig. 7. Grid of 23� 34 nodes which covers spatial domain.

Fig. 8. Standardized diurnal component for CO values and its model.
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over a 23� 34 grid nodes which covers the area of interest
(Fig. 7).

In order to generate the prediction maps of CO for the 1st of
December 2006 in the study area, it is necessary to model b1ðtÞ

and V1(s).
�
 Standardized diurnal values for CO (Fig. 8) were used to fit the
following periodic function

b1ðtÞ ¼ 0:75cos
2p
12
ðtþ2:6Þ

� �
þ0:32cos

2p
24
ðtþ2:6Þ

� �
: ð30Þ

The standard deviations for the diurnal values for CO and NO2
�

were computed, these were used as data to compute the
sample variograms and cross-variograms for the VaðsÞ;a¼ 1;2,
as shown in Fig. 9. The fitted models were

gV1
ðhsÞ ¼ 0:003þ0:016 SphðJhsJ=28Þþ0:0247 ExpðJhsJ=45Þ;

gV2
ðhsÞ ¼ 14þ6 SphðJhsJ=28Þþ15 ExpðJhsJ=45Þ;

gV12
ðhsÞ ¼ gV21

ðhsÞ ¼ 0:2þ0:016 SphðJhsJ=28Þþ0:33 ExpðJhsJ=45Þ:
Fig. 9. (a) Sample variogram for V1(s); (b) sample variogram for V2(s); (c) sam
grid nodes.

Then, using spatial cokriging, V1(s) was estimated at 23� 34

Finally, the predicted CO hourly residuals were added to the
estimated CO diurnal component.

Fig. 10 shows the spatial-temporal behavior of CO concentrations
over the study area for the 1st of December 2006.

It is evident that the highest CO concentrations occurred in the
southern area of Brindisi adjoining the northern area of Lecce,
which is an industrial area situated close to high population
density towns.
5. Summary

The GSLib cokriging program ‘‘COKB3D’’ was modified to
incorporate space–time data and also generalized product–sum
space variograms in an LCM. ‘‘COK2ST’’ is the new GSLib program
proposed in this paper. To demonstrate the use of the software,
data from a case study on air pollution in the Puglia region of
Italy were used, hourly measurements were obtained for CO and
NO2.
ple cross-variogram for V1(s) and V2(s) and their corresponding models.
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Fig. 10. Contour maps for predicted CO values averaged for each hour for 1st of

December 2006.

S. De Iaco et al. / Computers & Geosciences 36 (2010) 636–646644
Because there is a diurnal effect in this type of data, the
values are modeled as the sum of two components: a diurnal
component and a space–time random component. The diurnal
components were estimated using a modified version of the
‘‘REMOVE’’ software in De Cesare et al. (2002) and spatial
cokriging. Sample marginal space and temporal variograms
were computed for the residuals using the modified ‘‘GAMV’’
program (De Cesare et al., 2002). These were used to model the
ST-LCM which was then used with the ‘‘COK2ST’’ to predict
values of CO for the first day after the dates for which data was
available.
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Appendix A. REMOVEMULT.PAR

The parameter file required by the FORTRAN program ‘‘RE-
MOVEMULT’’ is shown.
Parameters for REMOVEMULT

*************************
S:
START OF PARAMETER
nov2006-

NO2CO.dat
\data file
1 2 3 4
 \column for cod,x,y, t

coordinates
nov2006-

NO2COdst.dat
\output file
2
 \number of variable to consider
5
 \var ith column number
-9. 1.0e21
 \tmin, tmax (trimming limits)
5
 \Max number of missing

consecutive values
24
 \length
60
 \Min number of data for

deseasonalization
1
 \time unit
1
 \number of time intervals (ti)
7297
 \ti definition ti+1 values
8017
6
 \var ith column number
-9. 1.0e21
 \tmin, tmax (trimming limits)
5
 \Max number of missing

consecutive values
24
 \period
60
 \Min number of data for

deseasonalization
1
 \time unit
1
 \number of time intervals (ti)
7297
 \ti definition ti+1 values
8017
Appendix B. COK2ST.PAR

The parameter file required by the GSLib program ‘‘COK2ST’’, in
order to provide space–time predictions for CO hourly residuals, is
shown. This program and the related parameter file have been
properly modified to model the space–time variogram matrix,
involved in the prediction system, by the ST-LCM based on the
generalized product–sum variogram model.

Note that the suffix ‘‘dst’’ to the data file name means
‘‘deseasonalized’’, since the values saved in the data file are the
residuals of the variable under study, computed after removing
the diurnal component at each station.
Parameters for COK2ST

**********************
START OF

PARAMETERS:
nov2006-

NO2COdst.dat
\data file
2
 \number of variables

primary+other
2 3 4 7 5
 \columns for X,Y,T and variables
-0.01 1.0e21
 \trimming limits
0
 \option: 0=grid, 1=jackknife,

2=cross
xxx.dat
 \file with jackknife data
2 3 4 7 0
 \columns for X,Y,T,primary vr
0
 \co-located cokriging? (0=no,

1=yes)
somedata.dat
 \file with gridded covariate
4
 \column for covariate
3
 \debugging level: 0,1,2,3
cok2ST.dbg
 \file for debugging output
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1dic2006-

COdst.dat
\file for output
34 684000 2500
 \nx,xmn,xsiz
23 4455000 2500
 \ny,ymn,ysiz
24 8017 1.0
 \nt,tmn,tsiz
1 1 1
 \x, y, and z block

discretization
2 10 6
 \min primary,max primary,max

all sec
20000.0 20000.0

180.0
\maximum search radii: primary
20000.0 20000.0

180.0
\maximum search radii: all

secondary
0.0 0.0 0.0
 \angles for search ellipsoid
2
 \kriging type (0=SK, 1=OK,

2=OK-trad)
3.38 2.32 0.00 0.00
 \mean(i),i=1,nvar
3
 \np/sp=num str. product or sum-

prod
1
 \option: 0 = prod, 1 =sum-prod
1 1
 \variogram for "i" and "j"
2 0.062
 \ nst, spatial nugget effect
0 0.0 0.0 0.0 0.0
 \ it,cc,ang1,ang2,ang3
0.0 0.0 0.0
 \ a_hmax, a_hmin, a_vert

0 0.0 0.0 0.0 0.0
 \ it,cc,ang1,ang2,ang3
0.0 0.0 0.0
 \ a_hmax, a_hmin, a_vert

0.0217 0.062217
 \ temporal nugget, global sill
2 0.0
 \ nst, spatial nugget effect
1 0.0867 0.0 0.0 0.0
 \ it,cc,ang1,ang2,ang3
28000.0 28000.0

28000.0
\ a_hmax, a_hmin, a_vert
7 0.0931 0.0 0.0 0.0
 \ it,cc,ang1,ang2,ang3
12.0 12.0 12.0
 \ a_hmax, a_hmin, a_vert

0 0.1783
 \ temporal nugget, global sill
2 0.0
 \ nst, spatial nugget effect
2 0.05152 0.0 0.0

0.0
\ it,cc,ang1,ang2,ang3
45000.0 45000.0

45000.0
\ a_hmax, a_hmin, a_vert
7 0.03424 0.0 0.0

0.0
\ it,cc,ang1,ang2,ang3
36.0 36.0 36.0
 \ a_hmax, a_hmin, a_vert

0 0.0802
 \ temporal nugget, global sill
1 2
 \variogram for "i" and "j"
2 0.1
 \ nst, spatial nugget effect
1 0.0 0.0 0.0 0.0
 \ it,cc,ang1,ang2,ang3
0.0 0.0 0.0
 \ a_hmax, a_hmin, a_vert

7 0.0 0.0 0.0 0.0
 \ it,cc,ang1,ang2,ang3
0.0 0.0 0.0
 \ a_hmax, a_hmin, a_vert

0.035 0.10035
 \ temporal nugget, global sill
2 0.0
 \ nst, spatial nugget effect
1 1.8055 0.0 0.0 0.0
 \ it,cc,ang1,ang2,ang3
28000.0 28000.0

28000.0
\a_hmax, a_hmin, a_vert
7 1.93923 0.0 0.0

0.0
\ it,cc,ang1,ang2,ang3
12.0 12.0 12.0
 \ a_hmax, a_hmin, a_vert

0 3.7135
 \ temporal nugget, global sill
2 0.0
 \ nst, spatial nugget effect
2 2.25078 0.0 0.0

0.0
\ it,cc,ang1,ang2,ang3
45000.0 45000.0

45000.0
\ a_hmax, a_hmin, a_vert
7 1.49586 0.0 0.0

0.0
\ it,cc,ang1,ang2,ang3
36.0 36.0 36.0
 \ a_hmax, a_hmin, a_vert
0 3.5058
 \ temporal nugget, global sill
2 2
 \variogram for "i" and "j"
2 180
 \ nst, spatial nugget effect
1 0.0 0.0 0.0 0.0
 \ it,cc,ang1,ang2,ang3
0.0 0.0 0.0
 \ a_hmax, a_hmin, a_vert

7 0.0 0.0 0.0 0.0
 \ it,cc,ang1,ang2,ang3
0.0 0.0 0.0
 \ a_hmax, a_hmin, a_vert

63.0 180.63
 \ temporal nugget, global sill
2 0.0
 \ nst, spatial nugget effect
1 81.0 0.0 0.0 0.0
 \ it,cc,ang1,ang2,ang3
28000.0 28000.0

28000.0
\ a_hmax, a_hmin, a_vert
7 87.0 0.0 0.0 0.0
 \ it,cc,ang1,ang2,ang3
12.0 12.0 12.0
 \ a_hmax, a_hmin, a_vert

0 166.6
 \ temporal nugget, global sill
2 0.0
 \ nst, spatial nugget effect
2 118.335 0.0 0.0

0.0
\ it,cc,ang1,ang2,ang3
45000.0 45000.0

45000.0
\ a_hmax, a_hmin, a_vert
7 78.645 0.0 0.0 0.0
 \ it,cc,ang1,ang2,ang3
36.0 36.0 36.0
 \ a_hmax, a_hmin, a_vert

0 184.32
 \ temporal nugget, global sill
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