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Ahstract 

Avila, F. and Myers, D.E., 1991. Correspondence analysis applied to environmental data sets: a study of Chautauqua Lake 

sediments. Chemometrics and InteIligent Laboratory Systems, 11: 229-249. 

Correspondence analysis (CA) is a multivariate technique suitable for data matrices with nonnegative entries. We show its use on 

environmental data sets and compare our results with those found in previous studies of the same data sets. To perform CA we use 

an interactive PC program that uses several diagnostics to help find a solution. 

INTRODUCTION 

Correspondence analysis (CA) is a multivariate 
technique suitable for data matrices with nonnega- 
tive entries, where, traditionally, the rows of the 
data matrix represent samples/individuals and 
columns are counting variables. CA is similar to 
principal components analysis in that it is based 
on the eigenstructure of a certain matrix and in 
that it can be used as a dimension reduction 
technique. However, CA also emphasizes the 
graphical representation of the results and, be- 
cause there is a correspondence between row anal- 
ysis and column analysis, both samples and vari- 
ables are routinely graphed on the same type of 
factorial planes. Another feature of CA is that it 

allows the use of supplementary variables (or sam- 
ples) which can be projected onto the space gener- 
ated by the variables (samples). 

In this paper we show that CA can be devel- 
oped in a form suitable for the analysis of data 
matrices where the variables are measured on a 
ratio scale. We give an example of its use on 
environmental data sets where the samples are 
distributed in space. In our approach, CA is pre- 
sented as an exploratory technique developed from 
a purely algebraic point of view. Like other multi- 
variate methods CA can be used as a dimension 
reduction tool or as a way of finding sample 
clusters, with the advantage that both tasks can be 
done simultaneously. It differs from sir&u tech- 
niques, such as biplots and principal coordinates, 
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in the emphasis given to the use of graphs and 
diagnostics that help in the interpretation of the 
results. 

Since we do not assume any underlying prob- 
ability distribution for the data our interpretation 
of the results from CA cannot be validated by the 
classical inferential tests. However, if the results 
from CA are seen as an algebraic model of the 
data, then goodness-of-fit measures can be defined 
and used for the purpose of assessing the degree 
of approximation to the entries, rows or columns, 
of the original data matrix. In this paper we 
provide several such measures, some of which are 
analogous to the ones used in other methods and 
some of which are specific to CA. We also show 
the use of supplementary variables and samples as 
an aid to the interpretation of the results. 

The algorithm for performing CA with good- 
ness-of-fit measures has been implemented in an 
interactive program that runs on a PC. It differs 
from other CA programs in that it allows the use 
of intermediate results for decision purposes in- 
stead of asking the user for a predefined (number 
of factors) model. 

PREVIOUS STUDIES 

Chautauqua Lake is a narrow, 24kilometer- 
long lake in northwestern New York State. It is a 
warm, shallow lake which is constricted near its 
midpoint. 

The lake was intensively sprayed with sodium 
arsenite, used as an herbicide, from 1955 to 1963 
and there have been several studies [l-4] describ- 
ing the occurrence and investigating the sources of 
arsenic found in the lake sediments. 

In the first study [l] the possible relationships 
between the arsenic concentrations and other 
measured parameters are presented. In this study 
it is suggested that arsenic has become associated 
with the lake sediments as a consequence of its use 
as an herbicide, and that it is being slowly re- 
leased. 

In the second study [2] 98 sediment grab sam- 
ples were analyzed. The samples were collected 
during 1972. The sampling pattern consisted of 
transits made at half-mile intervals with three or 

four samples taken along each transit. Additional 
samples were taken in areas of special interest, 
such as a 23 meter hole, which is the deepest part 
of the lake. 

The samples were analyzed by neutron activa- 
tion analysis. The concentrations of europium, 
sodium, manganese, potassium, bromine, arsenic, 
gallium, lanthanum, hafnium, cesium, terbium, 
scandium, iron, tantalum and antimony were de- 
termined. Analyses were performed to establish 
particle size distributions and to obtain the per- 
centage of sand, silt and clay present in each 
sample. In addition, the percentage of organic 
matter in the sediments was determined. 

The highest linear correlation between arsenic 
and variables characterizing particle size occurs 
with percent clay (r = 0.65). A comparison with 
arsenic levels in bedrock samples from sites near 
and around the lake appears to support the asser- 
tion that the levels of arsenic found in the lake 
sediments are not the result of naturally high 
concentrations in the rock and soils of that area. 
The conclusion is that the greater concentration of 
arsenic with increasing amount of clay in the 
sediments reflects the importance of ion exchange 
potential of these minerals to attract and retain 
arsenic. It is also concluded that there has been a 
loss of the arsenic in the coarse grained sediments 
near shore where spraying actually occurred. 

In the next study [3] the linear correlation 
coefficients were used to describe the geochemical 
profile of the sediments. It was also found that for 
other elements a relationship is indicated between 
their concentration and the clay fraction of the 
sediment. The greatest pairwise correlation coeffi- 
cients (r 2 0.8) were those of the pairs cesium- 
scandium, cesium-antimony, scandium-antimony 
and lanthanum-clay. In addition, cesium, scan- 
dium, antimony and tantalum had similar contour 
plots. 

Sodium and hafnium had average concentra- 
tions which were significantly higher in the lake 
sediments than the source beds. They are the only 
two elements that show a positive correlation with 
sand and an intermediate negative correlation with 
silt. 

The fourth paper [4] describes the results of two 
methods of multivariate analysis on the set of 79 
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samples with complete data for all the variables. 
The variables were the concentrations of the 15 
elements analyzed in the previous studies, percent 
sand, percent silt, percent clay, percent organic 
matter, water depth above the sample, and several 
parameters describing the grain size distribution. 
Thirty-two variables were used in the analysis. 

The results of this last paper were described [4] 
as follows. Factor analysis was performed on the 
variables. The procedure did not converge to a 
good fit [4], and the five-factor solution gave the 
best fit to the data. The common factors accounted 
for 66.7% of the total system variance, while the 
remaining variance was contained in the unique 
factors. 

For some of the variables the unique factor had 
the highest loading. For example, manganese 
showed a communality of 0.19, implying that 
manganese concentrations are not linearly related 
to the common factors [4]. The nature of the 
unique factor was not explained. 

The second multivariate procedure described 
[4] is hierarchical cluster analysis which was ap- 
plied to the samples. The resulting dendogram 
classified samples as belonging to one of four 
clusters [4]. The average values of the variables 
and of the factors scores over each of the clusters 
were then calculated to help in the description of 
the nature of the sedimental sources and the 
processes acting on the sediments. 

THE DATA 

There are two basic data sets that will be used 
in the present paper. They were constructed using 
the values found in refs. 2 and 3. 

The first data set, referred to henceforth as 
CHAU98, consists of the concentrations of 15 
chemical elements measured in 98 grab samples 
identified by a code of the form G# #. This set 
was published and analyzed by Hopke et al. [3]. 

The second data set, referred to henceforth as 
CHAU88, is a subset of the first data set consist- 
ing of the 88 samples for which there were re- 
corded percentages of sand, silt and clay found in 
the sediment. These values were published by 

Ruppert et al. [2] and were appended to each of 
the 88 samples of CHAU98 having them. 

The geographical coordinates of the samples 
are not available. There are also values for organic 
matter and water depth above the sample for most 
of the samples, but their inclusion in the data sets 
did not add to the interpretation of the results 
from CA, and they will not be used in this paper. 

CORRESPONDENCE ANALYSIS 

Correspondence analysis (CA) can be explained 
in a variety of ways [5,6]. Although all the ap- 
proaches are mathematically equivalent, each one 
highlights a different aspect of CA. 

For example, when data are frequencies and 
the input matrix is a two-way contingency table, 
CA can be explained as a generalization of the 
&i-square test of independence. This approach 
gives a probabilistic flavor to the technique. 

When data are measured on a ratio scale, which 
is usually the case in the environmental sciences, 
CA is not adequately explained by a probabilistic 
interpretation. This is a valid criticism of some 
previous applications of CA in the earth sciences 
[7-lo], and some attempts [11,12] have been made 
to present CA which have eschewed the tradi- 
tional frequentist approach. 

Our development tends back to the more tradi- 
tional approaches, but we think it is more natural 
in terms of the data to which it will be applied and 
in terms of software development. It is also the 
simplest way of defining several ‘goodness-of-fit’ 
measures which will be used in what we call ‘error 
analysis’. We present CA as an algebraic ap- 
proximation method which provides a bilinear 
model for the data in terms of two sets of ‘factors’ 
which can be plotted and interpreted in a similar 
way to principal components. The similarity of 
CA to other methods, biplots [13] for example, is 
well known, but we feel there are some significant 
differences [6] that help it stand on its own and 
which can prove advantageous for some applica- 
tions. 

Briefly put, given an input matrix F, with non- 
negative entries hi, i = 1, . . . , n, j = 1, . . . , p, sum- 
ming to one (just for convenience), CA gives a 
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representation of F in terms of two sets of vectors 
called factors. This representation can be used for 
algebraic (dimension reduction) or geometrical 
(interpretation) purposes. 

Explicitly, CA of matrix F means finding a set 
of scalars h,, A*,..., X,_, (assume p I n), a set 

of P - 1 vectors (4~ 4~~. . . , $& . . . , 
(+l.p-l, +Z,p-l,. .., +p,p--l) in RP, and a set of 

P - 1 vectors (JI1,l, 4~~. . . y JI,,d,. . . hb1,,-19 
lC’Zp-l,.-.r~n,p-l)inR” such that each element of 
F can be represented by a bilinear form 

P--l 

l + C &+ik+jk 
k=l 

(1) 

where f;, and f+j are defined as C,f., and Cifij, 
respectively, and where each of the truncated bi- 
linear expansions 

fij =.&+f+j 1 + i &@ik\cljk > 

i 1 

Ksp-1 (2) 
k=l 

gives the best approximation to A., in a well-de- 
fined, least square sense. 

If F is a two-way contingency table, then this 
representation of the entries of F is a generaliza- 
tion of the statistic used in the &i-square test of 
independence, comparing fij to f,+f+j. However, 
even if the data matrix is not a contingency table, 
formula (1) still makes sense as a matrix factoriza- 
tion. 

The following theorem is well known [14] and 
its proof follows directly from the theorem on the 
singular value decomposition (also known as the 
Eckart-Young decomposition) of a matrix. It pro- 
vides the existence of the factors and defines the 
goodness-of-fit criterion to be used. It also pro- 
vides a duality principle unique to CA. 

THEOREM. let F be an n Xp (assume n 2~) 
matrix with non-negative entries hj such that Ei,fi j 
= 1. 

Let DP and D, be diagonal matrices with diago- 
nal entries f+j = Cix.j and fi,= Cjfrj, respectively. 
These sums are called the weights of the variables 
and of the samples. 

Let 1, be a vector in R” with all the coordinates 
equal to one. 

Then there exist (p - 1) triplets (A,, \1/,, &), 

f f - ,@,-I9 4,-l, (PD-11, where A, >A22 ._. 2 
A,_, 20, $J; ,..., $,_, are vectors in 

+1, * * * 7 @p-l are vectors in RP, such that: 

(i) For every k, I= 1,. . . , p - 1 

J/:D,J/, = a,, 

and 

+;Dp$‘k = a,, 

(ii) Foreveryk=l,...,p-1 

FD,-‘F’$, = XkD,& 

and 

F’D,-‘F+, = h,D#, 

(iii) Foreveryk=l,...,p-1 

Q- ‘Wk 
AC= ~ 

Jxk 

+k = 

D; ‘F& 

& 

(iv) IfforevetyK=l,...,p-1, 

1,11, + 5 &#k+; Dp 

k=l 

then 

R” and 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

Tr[ (F - F,)D;‘(F - F,)‘D;‘] = IIF - FK II* 

p-1 

= c ‘k 

k=K+l 

The J/s and the $s are called factors and 
sometimes standardized scores; if we multiply the 
factors by the square roots of the Xs we get the 
coordinates which can be plotted in the usual 
Cartesian system. 

The factors are unit vectors (in the norms in- 
duced by the matrices D,, and D,) and can be 
obtained from an eigenvalue-eigenvector prob- 
lem, namely eqs. (5) and (6). It can be seen that 
only one set of factors needs to be obtained, since 
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the other set can be computed from the transition 
formulas (7) and (8), which express a duality prin- 
ciple that distinguishes CA from other methods, 
and which allows the simultaneous analysis of row 
and column structures. 

In CA there are only p - 1 nontrivial factors. 
There is one factor, corresponding to an eigen- 
value equal to zero or one (depending on the 
matrix used to extract them), which is discarded 
since it represents the induced ‘correlation’ due to 
the closure of the data. The optimahty of the 
nontrivial factors is expressed in (iv) of the theo- 
rem. The case K = p - 1 gives the reconstruction 
formula (1). When K <p - 1 factors are kept, we 
can estimate the error of the approximation when 
the model FK is used, by looking at the matrix 
norm (called a Frobenius norm) of the difference 
F-F,. 

There are several quantities that help in the 
interpretation of the output: 

(i) The cumulative percentage of variation 

F VP& (11) 
k=l k=l 

which is a global measure of fit when K factors 
are retained; each A giving the contribution of a 
particular factor. Note that this is related to the 
Frobenius norm of (F - FK) and its name comes 
from the terminology used in PCA, although here 
the term variation does not refer to ‘variance’ in 
the usual statistical sense. 

(ii) For every k = 1,. . . , p - 1 

h k#k 
RC’(j) = p_l , j=l,...,p 

c U$ 
I=1 

(12) 

and 

These are called the rehtive contributions, or 
squared correlations, of factor k with column j or 
row i. They provide a measure of the row or 

column variation explained by a particular factor. 
We normally quote the relative contributions as 
percentages and refer to them as correlations by 
an abuse of the language because they are not 
correlations in the strict statistical sense. However, 
they measure the size of the projection onto a 
particular factor which is directly related to the 
angle between the factor and the given row or 
column. Note that the sum of the relative contri- 
butions for a particular factor is equal to one. 

(iii) For every k = 1,. . . , p - 1 

A@(j) =f+j$k, j= I,..., p 

and 

(14) 

ACk(i)=f;+$&, i=l,...,n (19 

These are called the absolute contributions of 
column j or row i to factor k. They help in 
understanding the composition of a particular fac- 
tor, and are quoted as percentages. By an abuse of 
the language we say that a particular factor ‘is 
made of’ certain variables/samples if they have a 
high absolute contribution to that factor. Note 
that the sum of the absolute contributions for a 
particular row or column is equal to one. 

(iv) For everyj=l,...,p 

EP(J’) = t h+ 

p-1 
2 

C &$ik+jk 

i=l k=K+l ) 

06) 

andforeveryi=l,...,n 

These are called the error profires for column j 
or row i when K factors are kept. They are a 
measure of the error when the matrix F is ‘recon- 
structed’ by the matrix FK. Note the identity 

Tr[(F-F,)D,(F-F,)‘D,] 

= 5 i h+f+j k~$~l&~ik@jk)2 

i 

08) 
i=l j=l 

(v) Supplementary elements, which can be either 
rows or columns. A given supplementary row 
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(“L fs2MfJ can be projected onto the kth 
principal axis, with its projection (coordinate) 
being equal to 

Jsk = i $pkj 
_j=l s+ 

Analogously, for a supplementary column 

(L f*s>**-, f,,)’ its projection onto the kth 
principal axis is 

RESULTS FROM CORRESPONDENCE ANALYSIS 

Whenever an exploratory method, such as CA, 
is used, there is the possibility that the results are 
an artifact of the method. To determine the stabil- 
ity of the results it is necessary to apply the 
method on several data sets or variations of the 
same data set. On the subject of stability, Critch- 
ley [15] suggests two possible courses of action: 
either ‘robustify’ the method in some way, or 
perform standard analyses in parallel with ap- 
propriate diagnostic statistics and graphical dis- 

TABLE 1 

Eigenvalues and variation explained by factors 

CHAU98 CHAU93 

Eigenvalues X Variation Eigenvalues % Variation 

0.14415 63.4 0.07370 76.4 

0.04883 21.5 0.01516 15.7 

0.03398 14.9 0.00715 7.4 

0.00017 0.1 0.00015 0.2 

0.00015 0.1 0.00013 0.1 

o.ooo1o 0.0 0.00009 0.1 

plays. We follow the second course of action sug- 
gested, using the criteria developed in the preview 
section as guiding instruments for successive 
analyses. Our main objective is to show that CA 
produces the same ‘good’ results as the combined 
application of factor analysis and cluster analysis, 
and that it helps explain the ‘bad’ results of these 
other methods. We will be using CA both as a 
dimension reduction method and as a clustering 
technique. We think that a very nice feature of CA 
is that all the results can be put in graphical form, 
which makes interpretation easier than by just 
looking at a set of numerical tables. We should, 
however, be aware of possible pitfalls when inter- 
preting the graphs. 

TABLE 2 

Absolute and relative contributions (AC and RC, respectively) of the variables for the first three factors 

Weight Factor 1 (h = 0.14) Factor 2 (A = 0.05) Factor 3 (h = 0.03) 

AC(l) RC(1) AC(2) RC(2) AC(3) RC(3) 

ELI 0.00001 0.0 6.7 0.0 2.3 0.0 16.5 

Na 0.07200 78.2 95.2 5.0 2.0 9.6 2.8 

Mn 0.01869 1.4 4.4 79.1 82.9 17.5 12.8 

K 0.13130 7.3 26.3 15.6 19.2 63.6 54.4 

Br 0.00011 0.0 0.0 0.0 5.0 0.0 12.6 

As 0.00024 0.0 2.7 0.0 7.9 0.0 7.7 

Ga 0.00018 0.0 3.6 0.0 0.9 0.1 12.2 

La 0.00026 0.0 8.8 0.0 4.5 0.1 41.5 

Hf O.ooO16 0.0 29.6 0.0 0.9 0.0 0.1 

Cs 0.00006 0.0 2.4 0.0 15.4 0.0 8.3 

Tb 0.00001 0.0 3.7 0.0 5.7 0.0 5.3 

SC 0.00039 0.0 0.0 0.0 24.7 0.0 2.8 

Fe 0.77654 13.1 85.7 0.2 0.4 9.0 13.9 

Ta 0.00002 0.0 8.5 0.0 4.0 0.0 6.1 

Sb 0.00003 0.0 2.9 0.0 9.2 0.0 0.0 
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Fig. 1. Factor 2 vs. Factor 1 with 98 samples. The variables. 

CA for CHAU98 

CA was performed on the set CHAU98 using 
the 15 chemical variables. The values that were 

reported as below a certain threshold were given 
values equal to half the threshold value, which is a 
common practice. CA was also performed after 
setting those values equal to zero and latter after 
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Fig. 2. Factor 3 vs. Factor 1 with 98 samples. The variables. 
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Fig. 3. Factor 2 vs. Factor 1 with 98 samples. The samples. 

setting them equal to the threshold values. Essen- 
tially the same results were obtained in the three 
cases. This was due to the fact that the variables 
having large values, several orders of magnitude 
larger than the others, had the most influence on 
the results. 

Three factors accounted for 99.75% of the total 
variation (Table l), with the first one accounting 
for 63.35%. We analyze first the results for the 
variables starting with the composition of the fac- 
tors (Table 2). 

The first factor is composed of sodium (78%), 
iron (13%) and potassium (7%). Sodium and iron 
are very well correlated with this factor. 

The second factor, accounting for 21.5% of the 
total variation, is composed mainly of manganese 
(83%) and this element is the only one that corre- 
lates highly with this factor. Potassium also con- 
tributes (16%) to the formation of this factor. 

The third factor, which accounts for 14.9% of 
the total variation, is composed of potassium 
(64%), manganese (18%), sodium (9%) and iron 
(9%). These are the only elements that contribute 
to this factor, but only potassium and lanthanum 
have relative contributions above 40%. 

We identify the elements that contribute most 
to the formation of the factors. For this data set 
these have the highest weights. We then analyze 
the graphical displays generated by CA (Table 3, 
Figs. 1 and 2). 

TABLE 3 

Coordinates of the variables on the first three factors 

Factor 1 Factor 2 Factor 3 

Eu 
Na 
h4n 
K 
Br 
As 
Ga 
La 
Hf 
cs 
Tb 
SC 

Fe 
Ta 
Sb 

0.20246 -0.11850 
1.25117 0.18340 

-0.32954 1.43785 
0.28229 - 0.24114 
0.01882 - 0.24219 

-0.13760 0.23743 
0.17865 - 0.08911 
0.15670 -0.11175 
0.44977 -0.07917 

- 0.08458 -0.21426 
0.11022 - 0.13698 
0.00625 - 0.20658 

- 0.15596 - 0.01067 
0.17677 - 0.12102 

-0.12084 - 0.21629 

-0.31686 
0.21302 

- 0.56412 
- 0.40576 
- 0.38582 
- 0.23425 
- 0.32756 
- 0.34103 
-0.01951 
-0.15728 
-0.13182 
- 0.06955 

0.06281 
- 0.14996 

0.01176 
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Fig. 4. Factor 3 vs. Factor 1 with 98 samples. The samples. 

In the first factor we note the opposition of 
sodium (positive) and iron (negative). In the sec- 
ond factor we see that only manganese, sodium 
and arsenic have positive coordinates. In the third 
factor only sodium has a significant positive coor- 
dinate. 

We now analyze the results for the samples 
(Figs. 3 and 4). Sample G41 is clearly anomalous; 
it has the highest value of sodium but typical 
values for the rest of the variables. Sample G93 
has the lowest value of iron, and low values for 
several other variables. Sample G60 has the highest 
value of manganese followed by sample G98, 
which also has the highest value of iron. Sample 
G88 has a high value of manganese and the lowest 
value of potassium. 

It seems clear that the composition of the first 
three factors is the result of the influence of a 
small group of samples. This influence is related 
to the sample location. For example, samples G60 
and G98 were taken from the deepest part of the 
lake, where there are iron-manganese nodules [3], 
whereas samples G41 and G93 were collected in 
the sandy northern part of the lake. 

CA for CHAU93 

CA was performed on CHAU98 with samples 
G41, G93, G60, G98 and G88 deleted from the 
analysis and made supplementary. We call this 
data set CHAU93. 

The first three factors account for 99.5% of the 
total variation, but there is a change in the distri- 
bution of the variation among them (Table 1). The 
first factor accounts for 76.4% and the second 
accounts for 15.7%. This reduces the variation 
accounted for by the third factor to half of what it 
was in the previous analysis. The results for 
CHAU93 are displayed in Figs. 5-8. 

The first factor is still composed of sodium 
(55%) and iron (19%), but now has a contribution 
by potassium (26%), and no other variable con- 
tributes to its formation. Those variables are the 
only ones that correlate well to this factor, al- 
though lanthanum (37%) and hafnium (29%) have 
some correlation to it. 

The second factor is now composed principally 
of sodium (32%), manganese (23%) and potassium 
(42%). No element is well correlated to this factor, 
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Fig. 5. Factor 2 vs. Factor 1 with 5 supplementary samples. The variables. 

but some have correlations between 10 and 40%. 
Only sodium and hafnium have large positive 
coordinates on this factor. 

The third factor is composed of manganese 
(75.5%) and potassium (17’%), but only manganese 
is well correlated (61%) to it. It is clear that much 

i...i.. _. 
,: .:. .: . f :, 

.,.;:,:i,c;..i 

Fig. 6. Factor 3 vs. Factor 1 with 5 supplementary samples. The variables. 
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Fig. 7. Factor 2 vs. Factor 1 with 5 supplementary samples. The samples. 

of the variation of manganese was due to a small 
set of samples, and with their deletion the coeffi- 

cient of variation of this element was reduced by 

more than half its previous value, from 246% in 
CHAU98 to 96% in the present case. The deletion 
of these samples also had an effect on the varia- 
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Fig. 8. Factor 3 vs. Factor 1 with 5 supplementary samples. The samples. 
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tion of sodium and produced a switch in factors 
two and three from the previous analysis which 
essentially become factors three and two in this 
analysis (compare Figs. 1 and 6, and 2 and 5). 

The outstanding samples in this analysis are 

G17 which has the highest value of manganese; 
G95 with the highest values of arsenic and iron; 
G65 which has the highest values of cesium, 

scandium, tantalum and antimony, a large value 
of iron and a low value of sodium; and G55 
having the lowest values of iron, tantalum and 
scandium. Sample G95 is in the deepest part of 
the lake, sample G65 is in the center of the lake 
and sample G55 is on the shore. 

The supplementary samples G41, G60, G88, 
G93 and G98 are projected onto the factorial 
planes and when graphed with the rest of the 
samples their position on the graphs is essentially 
the same as when they contributed to the forma- 
tion of the factors. It may be concluded that the 
main effect that these samples produce is a two- 
fold increase of the variation of manganese, and 
when they are deleted from the analysis, the de- 
crease in the ‘noise’ produces a switch in the 
ordering of two factors: the second factor be- 

comes the third factor and vice versa. The fact 
that manganese is almost uniquely responsible for 
the original second factor implies that there is no 
significant linear relationship between this ele- 
ment and the others. One reason for this lack of 
‘correlation’ is the spatial distribution of 
manganese in the lake. 

CA for a modified CHAU98 

CA was performed on CHAU98 with sodium, 
manganese, potassium and iron made supplemen- 
tary. In this analysis, these variables do not con- 

tribute to the formation of the factors, but are 
projected onto the factorial planes determined by 
the other elements_ 

The results (Table 4) show a first factor with a 
predominance of arsenic, a second factor with 
hafnium and bromide, a third factor composed of 
gallium and scandium, bromide contributing to 

the fourth and fifth factor, and lanthanum making 
more than 50% of the fifth factor. Five factors are 
needed to account for 97% of the variation which 
is now more ‘distributed’ among factors and 

among elements. We plot the first three factors 

TABLE 4 

Absolute and relative contributions of variables when Na, Mn, K and Fe are supplementary 

Weights Factor 1 
(h = 0.16) 

Factor 2 
(X = 0.07) 

Factor 3 

(A = 0.07) 
Factor 4 
(A = 0.04) 

Factor 5 

(h = 0.02) 

AC(l) W1) AC(2) RCW AC(3) BC(3) AC(4) BC(4) AC(5) BC(5) 

Eu 0.00503 0.0 0.0 0.0 1.8 0.1 2.2 0.8 16.5 0.7 8.9 
Br 0.07367 0.1 0.4 26.4 46.8 5.9 9.6 32.9 28.6 26.7 14.5 

As 0.16076 74.2 95.1 7.6 4.4 0.2 0.1 1.0 0.3 0.9 0.2 

Ga 0.12238 1.2 3.7 9.4 13.4 52.6 68.2 15.4 10.8 8.9 3.9 

La 0.17817 0.0 0.0 3.9 12.0 5.3 14.6 13.8 20.7 55.8 52.4 
Hf 0.11115 12.9 31.8 50.7 56.0 3.1 3.1 13.2 7.1 5.3 1.8 
cs 0.04430 0.6 10.3 1.4 11.5 5.5 40.0 1.5 5.9 1.4 3.4 

Tb 0.00568 0.1 18.7 0.1 7.8 0.1 3.5 0.1 3.4 0.0 0.0 

SC 0.26495 9.6 41.6 0.0 0.1 22.1 39.1 16.6 15.9 0.0 0.0 

Ta 0.01131 0.5 34.4 0.1 5.0 0.0 0.0 0.0 0.4 0.0 0.2 

Sb 0.02261 0.8 12.0 0.2 1.3 5.3 33.6 4.7 15.9 0.2 0.5 

Na O.O@XNI 0.0 18.6 0.0 46.9 0.0 11.1 0.0 17.7 0.0 0.7 

Mn O.OOOOO 0.0 64.7 0.0 2.4 0.0 11.0 0.0 0.3 0.0 16.2 
K O.OOOOO 0.0 29.0 0.0 0.2 0.0 6.2 0.0 13.2 0.0 16.6 
Fe 0.00000 0.0 8.4 0.0 0.2 0.0 0.1 0.0 6.3 0.0 56.9 
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Fig. 9. Factor 2 vs. Factor 1 with Na, Mn, K and Fe supplementary. The variables. 

looking simultaneously at the resulting graphs 
(Figs. 9-11 and 12-14). The plots suggest some 
interesting conclusions. 

Arsenic is the nearest to manganese (related to 
depth) and far from sodium (related to shore 
locations); this was seen before (Fig. l), but it is 
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Fig. 10. Factor 3 vs. Factor 1 with Na, Mn, K and Fe supplementary. The variables. 
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Fig. 11. Factor 3 vs. Factor 2 with Na, Mn, K and Fe supplementary. The variables. 

evident in this analysis. It is also clear that arsenic 
is not well correlated to any of the other elements. 

Hafnium, on the other hand, is the only ele- 

ment found near sodium. 
the other elements. 

Scandium, cesium and 

It is also removed from 

antimony form a recog- 

Fig. 12. Factor 2 vs. Factor 1 with Na, Mn, K and Fe supplementary. The samples. 
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Fig. 13. Factor 3 vs. Factor 1 with Na, Mn, K and Fe supplementary. The samples. 

nizable cluster, which apparently could also in- 
elude tantalum and terbium, although we will see 
in the discussion of error profiles that this would 

be wrong. 

The plots of the samples show some anomalous 
points: G95 (highest value of arsenic), G60 (high 
value of arsenic), G41 (high value of hafnium, low 
values of others), G66 (high value of hafnium, low 
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Fig. 14. Factor 3 vs. Factor 2 with Na, Mn, K and Fe supplementary. The samples. 
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TABLE 5 

Error profiles (EP) and cumulative relative contributions (CRC) 

for the variables when three factors are retained 

Eu 

Na 

Mn 

K 

Br 

As 

Ga 

La 

Hf 

cs 

Tb 

Sc 

Fe 

Ta 

Sb 

EP CRC 

0.452E + 00 25.6 

0.419E-06 100.0 

0.689E-05 100.0 

0.350E-05 100.0 

0.975E+OO 17.6 

0.584E+OO 18.2 

0.731E+OO 16.7 

O.l27E+ 00 54.7 

0.474E + 00 30.6 

0.221E+OO 26.0 

0.282E + 00 14.6 

O.l25E+OO 27.6 

0.514E-07 100.0 

0.301E+OO 18.5 

0.446E+OO 12.1 

values of others), G87 (highest value of bromide), 
and G92 (highest value of gallium). We note the 
effects of G41 and G60 on the previous analyses. 

Analysis of the error profiles 

The error profiles can be seen as a partition of 
the global variation explained by the discarded 
factors. Although this variation may be small, a 
particular entry (row, column or element) of the 
input matrix could be poorly reconstructed when 
using only some of the factors. 

For CHAU98 the first three factors ‘explained 
almost all of the variation which is almost due to 
the overwhelming presence of a small number of 
samples and variables. However, as can be seen in 
Table 5, the other variables would be poorly re- 
constructed with only three factors, and since most 
of them are not well ‘correlated’ to the factorial 
space defined by sodium, manganese, potassium 
and iron, i.e. the first three factors, their variation 
is not explained by this solution. 

When sodium, manganese, potassium and iron 
are made supplementary, it is seen that the varia- 
tion of the remaining variables can be factored 
and this factoring provides another way to look at 
possible relationships between elements. We see in 
Table 6 that five factors will not reconstruct 

europium, terbium, tantalum and antimony, al- 
though antimony is correlated to the factorial 
space. We conclude that terbium and tantalum 
should not be clustered with scandium and cesium. 

We can use the error profiles to find the num- 
ber of factors needed to reconstruct a particular 
element. For example, it is seen that four factors 
are needed to reconstruct arsenic, including the 
first three from the previous analysis, 

For the samples, a box plot of the error profiles 
(Figs. 15 and 16) will show those samples that are 
poorly reconstructed using the retained factors. 
These samples would not be outliers in the tradi- 
tional sense, and probably would not show well on 
the plots of the projections onto the factorial 
planes, but they would be related to the variables 
that dit not contribute to the factors. For example, 
samples G87 and G92 which were discussed be- 
fore and G73A which has high values of bromide 
and arsenic show as poorly reconstructed samples 
when using the three factors dominated by sodium, 
manganese, potassium and iron. These same three 
samples are not poorly reconstructed when sodium, 
manganese, potassium and iron are supplementary 
because the composition of the factors change; 
instead, sample G27, which has the highest value 
of europium, appears as the poorest reconstructed 
sample. 

TABLE 6 

Error profiles and cumulative relative contributions for the 

variables when Na, Mn, K and Fe are supplementary and five 

factors are retained 

Eu 

Br 

As 

Ga 

La 

Hf 

cs 

Tb 

SC 

Ta 

Sb 

Na 

Mn 

K 

Fe 

EP CRC 

0.238E+OO 29.5 

O.l58E-03 100.0 

O.l12E-05 100.0 

0.911E-04 100.0 

0.348E-03 99.7 

0.911E-03 99.8 

0.581E-01 71.1 

0.132E + 00 33.5 

0.470E - 02 96.6 
O.l14E+OO 39.9 
o.l68E+OO 63.1 
******I#** 95.0 
********* 94.6 
********* 65.2 
********* 71.9 
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Fig. 15. Error profiles for CHAU98 and CHAU93 when three factors are retained. The samples. 

CA for CHAU88 

CA was performed on CHAU88, using sand, 
silt and clay content as main variables. Sodium, 
manganese, potassium, gallium, lanthanum, scan- 

dium, iron, hafnium, bromide and arsenic were 
made supplementary and projected onto the fac- 
torial plane determined by the main variables 
(Figs. 17 and 18). 

The values of the soil variables add up to one 

Fig. 16. Error profiles for CHAU98 when Na, Mn, K and Fe are supplementary and five factors are retained. The samples. 
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Fig. 17. Variables projected onto space of soil variables. 

hundred percent on each sample, and thus the 
dimensionality of the variable space is two. Since 
CA starts by making that type of normalization 

on the input matrix, the linear dependency of the 
variables will not produce any spurious correla- 
lions; in fact, the dimension of the factor’s space 
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Fig. 18. 88 samples projected onto space of soil variables. 
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will be precisely two and the plot of the projection 
onto the factorial plane will reproduce 100% of 
the variation. The error profiles will therefore be 
equal to zero. 

The two nontrivial eigenvalues account for 86% 
and 14% of the variation, respectively. The first 
factor separates sand from silt and clay, and the 
second factor separates silt from clay. Thus the 
soil variables plot (Fig. 17) as vertices of a trian- 
gle, with the supplementary variables falling ‘in- 
side’ the triangle. From the graph it is easy to see 
that only sodium and hafnium are correlated to 
sand, with the rest of the variables lying near the 
vertex determined by clay. Note that this is par- 
ticularly true of arsenic, suggesting that it is to be 
found in clay-rich sediments [2]. 

The projection of the samples (Fig. 18) onto the 
factorial plane shows several clusters. Various 
methods to separate clusters could be given based 
on a distance measure, but, since sand, silt and 
clay are plotted on different quadrants, we will 
use this simple criterion: samples belong to differ- 
ent clusters according to the signs of their coordi- 

nates, (+,+), (-, +), (-,-) and (+,-). This 
leads to the following clusters: 

- A cluster of samples belonging to the north- 
ern portion of the lake, like samples G41, G42, 
G46, G47, C91, G92, and G93, or to shore loca- 
tions, like samples G36, G66, G80 and G81. This 
cluster represents the group of samples from the 
sandy portions of the lake. 

- A cluster of samples from locations in the 
deepest portions of the lake, for example samples 
G39, G52, G65, G78, G82. The plot shows that 
depth is well correlated to clay and the cluster also 
includes samples from clay-rich sediments, for ex- 
ample sample G24. 

_ A cluster of samples collected on the south 
end of the lake, for example, samples G67, G68, 
G69, G69A, G72, and samples collected in the 
narrow center portion of the lake, like samples 
G18, G19, G20, G21, G22, and G32. This cluster 
is correlated with silt. 

- A cluster of samples from near-shore loca- 
tions where there is a balance between sand and 
silt. Samples G29, G31, G43 and G70 belong to 
this group. 

COMPARISON WITH PREVIOUS RESULTS AND METH- 
ODS 

We emphasize here that the conclusions from 
the use of CA were obtained after a series of 
analysis and they are not to be taken as inferences 
in the traditional statistical sense. CA is an ex- 
ploratory technique whose main objective is to 
describe patterns found in the data, without as- 
suming a statistical model for the population from 
where the data was obtained. However, CA does 
assume an algebraic model which may not have a 
simple interpretation. A summary of our results 
and a comparison with those found in previous 
studies can be given as follows: 
- CA discriminates sodium from the rest of the 

elements, relating this to the sand content of 
the sample. Only hafnium shows some similar- 
ity to sodium. 

- CA projects most of the elements near silt or 
clay. Arsenic and bromide, in particular, are 
strongly dependent on the clay content of the 
sample. 

- CA shows that scandium and cesium have simi- 
lar profiles, and antimony is correlated to them. 

- CA highlights the uniqueness of manganese due 
to the localized nature of its occurrence. 
These results from CA are in agreement with 

the results that were found using factor analysis 
[4]. However no a priori number of factors have to 
be postulated in CA. Performing CA on different 
sets of variables, complemented with various sup- 
plementary variables, we found ‘solutions’ (i.e. 
models) with three, five and two factors, each 
solution highlighting specific aspects of the de- 
scription of the data. 

The correspondence between analyses for rows 
and columns allows us to also describe the inter- 
relationships among samples. This we have done 
relating the behavior of certain variables to the 
effect of specific samples, and, correspondingly, 
using variables to explain sample clusters. The 
cluster found by CA are essentially the same ones 
proposed by Hopke [4], using a dissimilarity mea- 
sure. 

Through the use of diagnostics, CA was useful 
in identifying outliers and influential samples, and 
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in isolating samples with distinctive features. This 
is not easy to do with other techniques unless an 
underlying model, such as multivariate normality 
for example, is assumed from the onset. 

Finally, the emphasis on the graphical descrip- 
tion of the output from CA made it easier to 
analyze the results. We did not plot samples and 
variables on the same diagram, although this is a 
common practice among early practitioners [7,10] 
of CA, since this has been the subject of major 
criticisms [16,17]. 

THE PROGRAM 

The CA program that was used for these 
analyses was written in FORTRAN77 and com- 
piled with a Microsofttm compiler. The program is 
based on the code given in the paper by David et 
al. [lo], with many changes and additions. The 
main changes are that it runs on a microcomputer 
and that it is interactive; the main additions are 
the inclusion of more diagnostics and input and 
output options. 

The program shows several screens with inter- 
mediate results from CA, allowing the user to 
change previous options. Only when the user is 
satisfied with the fit, or when certain limits are 
reached, are the results written to output files. The 
output includes: 

Basic descriptive statistics of the variables. 
List of eigenvalues and percentage of variation 
explained by each. 
Variable and/or sample coordinates and/or 
factors. 
Variable and/or sample weights, and absolute 
and relative contributions for each of the fac- 
tors retained. 
Error profiles and sums of relative contribu- 
tions for each variable and/or sample. 
A reconstructed matrix from the set of retained 
factors. 
Coordinates and relative contributions of sup- 
plementary variables on each of the retained 
factors. 
Files for plotting or graphs of factorial planes 
with the user specifying the factors to be plotted 

and what is to be plotted: variables and/or 
samples factors and/or coordinates. 
The program computes the basic statistics for 

the variables and performs some checks on the 
input values to prevent overflow errors. In its 
present version it can handle matrices with up to 
ten thousand entries. 

CONCLUSIONS 

We have shown that correspondence analysis 
can be applied to environmental data sets where 
the variables are measured on a ratio scale and 
where the samples are collected in space. 

Because of the dual scaling of rows and col- 
umns of the data matrix and the transition for- 
mulas, CA performs R-mode and Q-mode analy- 
sis simultaneously with results comparable to the 
joint use of factor analysis and cluster analysis. 
The solution found by CA, however, is easier to 
obtain and provides more information about the 
underlying structure of the data. 

In the approach given in the present paper an 
emphasis is given to the graphical display of the 
results, and to the use of several diagnostic mea- 
sures that give a goodness-of-fit evaluation and 
that are helpful in detecting influential samples 
and outliers, assessing the stability of the solution 
and the robustness of the method. 

NOTICE 

Although the research described in this article 
has been funded wholly or in part by the US 
Environmental Protection Agency through a Co- 
operative Research Agreement with the University 
of Arizona, it has not been subjected to Agency 
review and therefore does not reflect the views of 
the Agency and no official endorsement should be 
inferred. 
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