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Abstract 

Myers, D.E., 1991. Interpolation and estimation with spatially located data. Chemometrics and Intelligent Luboratoty Systems, 11: 

209-228. 

Kriging is a regression method used with irregularly spaced data in l-, 2- or 3-space for the estimation of values at unsampled 

locations or for the estimation of the spatial average over a length, area or volume. The estimator is linear in the data and the weights 

are obtained from a system of linear equations in which the coefficients are the values of variograms or covariance functions 

quantifying the correlation between data at two sample locations or between a sample location and the location to be estimated. The 

equations are obtained by minimizing the variance of the error of estimation, the variance being computed from a theoretical model 

for the correlation function rather than from empirical values as in most regression formulations. Estimation and modeling of this 

structure function is the most important and potentially the most difficult step in the process. While the method is not implemented 

in standard statistical packages, public domain software for use on an IBM personal computer or clone is available. The theory is 

briefly reviewed, practical aspects of the application of the method are discussed and available software and extensions are outlined. 

The US EPA Dallas Lead Study data is used to illustrate the problems and the method. 
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1. INTRODUCTION 

Kriging is a regression technique used for the 
estimation/interpolation of spatially located and 
spatially correlated data. There are several fea- 
tures which set it apart from related or similar 
techniques such as trend surface analysis or from 
more classical parameter estimation problems and 
techniques. First of all, the location(s) of the sam- 
ples is presumed to reflect valuable information 
and there is an assumed or apparent spatial corre- 
lation quantifiable in terms of separation distance 
and direction. Samples taken close together are 
expected to be more alike than samples far apart. 
In many cases samples are physically extracted 
from the earth, for example, in the case of soil or 
drill core samples. The volume or area of the 
sample is likewise an important piece of informa- 
tion and reflects the existence of short range non- 
homogeneities. The associated volume or area is 
referred to as the support of the sample. 

The technique grew out of problems encoun- 
tered in mining and hydrology and gave birth to 
the discipline now known as geostatistics, which 
has found application in a variety of fields includ- 
ing environmental monitoring and assessment. 
Much of the early development is due to the group 
working under the direction of G. Matheron at the 
Ecole des Mines, France, although similar devel- 
opments occurred in Sweden for applications in 
forestry and in the Soviet Union for applications 
in meteorology. In each case data is collected at a 
small number of locations in l-, 2- or 3-dimen- 
sional space. The extent to which the number of 
sample locations is considered small is related to 
the geographic size of the region to be sampled 
and also to the scale of spatial dependence. In 
contrast to the case of more classical statistical 
techniques where sample size is related to distribu- 
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tion type and parameters such as the variance, 
sample size for geostatistical analyses is affected 
by a number of non-statistical characteristics in- 
cluding the dimension of the space. The collection 
of spatial data usually incorporates costs for 
physically retrieving the samples, reading the in- 
strument recording the data or the cost of labora- 
tory analysis. The latter may be quite significant. 
Usually the locations are not on a regular grid and 
the objective is to estimate values at unsampled 
locations, to estimate average values over volumes 
or areas or to estimate the proportion of a region 
where the concentration level is above a cutoff 
level. In the latter cases the sample locations may 
not all be inside the volume or area of interest. 

Matheron and others formulated the problem 
in a random function context and the data are 
considered to be a non-random sample from one 
realization of the random function. This is rather 
different from the usual statistical formulation 
where the data are considered as multiple realiza- 
tions of a random variable. In addition to obtain- 
ing a ‘best’ estimate, in a certain sense, the vari- 
ance of the error of estimation is also obtained. 
This variance is not constant but rather reflects 
the spatial correlation and especially the sample 
location pattern. Kriging can be re-formulated in 
other equivalent ways, one of which leads to the 
thin-plate spline. This connection will be dis- 
cussed below. 

The application of kriging to a data set can be 
broken into several stages: exploratory statistical 
analysis of the data; estimation and modeling of 
the function which quantifies the spatial correla- 
tion; use of the spatial correlation function to 
determine the set of linear equations that de- 
termine the weights in the kriging estimator; and 
finally production of the estimated values and the 
associated (minimized) estimation standard devia- 
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tions. Often these estimates are obtained for points 
on a regular grid and the results are then used as 
the input for a contouring package. Both the vari- 
able of interest and the kriging standard deviation 
could be contoured. Nearly all of these steps would 
be exceedingly tedious without the aid of the 
computer, but fortunately software is now readily 
available. The method is not, however, a black box 
device. One cannot simply enter the data into a 
program and obtain the estimates (nor should 
one). It requires some comprehension and appreci- 
ation of the phenomena being analyzed as well as 
of the strengths and weaknesses of the method. 
Consequently the analysis is often the joint work 
of a statistician and a soil physicist, hydrologist, 
mining engineer or chemist. 

2 THE KRIGING ESTIMATOR 

We begin by considering the kriging estimator 
first and then later consider the problem of the 
estimation and modeling of the spatial correlation 
function. The kriging estimator has a practical and 
intuitive basis as well as a theoretical one. Let 
x,, . . . , x, denote points in l-, 2- or 3-space. Since 
we will have few occasions to refer to the coordi- 
nates of a sample location, using x to denote a 
point instead of the first coordinate will not lead 
to confusion. Let Z represent the variable of inter- 
est and thus Z(x,), . . . , Z(x,) represent the data 
(values). Given an unsampled location x,, or a 
volume V, we wish to estimate Z(x,) or the (spa- 
tial) average value over V. If the sample locations 
were all inside V and corresponded to random 
selection, then estimation of the spatial average 
over V would correspond to the usual problem of 
estimating the mean (of a distribution). Therefore, 
the sample mean, i.e., the arithmetic mean, would 
be a natural choice for the estimator. That is, one 
would form a linear combination of the data with 
all weights (coefficients) being equal to l/n. This 
analogy would not apply if some locations were 
outside of V, in which case it would seem reason- 
able to use unequal weights with the closest loca- 
tions having the largest weights. In a practical 
sense a linear combination is the simplest function 
of the data. This simple form is im- 

portant for several reasons. If the random 
function formulation is used, then Z(x,), . . . , 
z(x,), 2(x,) could be considered as jointly dis- 
tributed random variables. In that case the mini- 
mum variance unbiased predictor of Z(x,), given 
the data Z(x,), . . .,25(x,,), would be the condi- 
tional expectation of Z(x,), given the data 
Z(x,),... , Z(x,). Moreover, in the case of multi- 
variate normality the conditional expectation is a 
linear function of the data. Motivated by this 
special case, the kriging estimator is given by 

z*(x,) =Chi(X,)Z(Xj) (1) 

Although, as indicated, the weights, h,(x,), are a 
function of xa, we shall write them simply as Ai. 
We now need a method for determining the 
weights, which should be chosen so as to minimize 
some measure of the error of estimation. The 
variance is an obvious choice for this measure, 
partly because it leads easily to a system of linear 
equations. This variance and the assignment of the 
weights is dependent on the spatial correlation 
function but not on the data values. 

Without some model assumptions it is not pos- 
sible to formulate a solution. We will impose 
conditions on the random function which, of 
course, are not (statistically) testable in terms of 
the available data. These assumptions are usually 
called the Intrinsic Hypothesis. 

(i) E{Z(x + tr) - Z(x)} = 0 for all points x and 
all vectors ir 

(ii) O.SVar{Z(x + h) - Z(x)} = y(a) exists and 
depends only on /I 

It is possible to weaken (i) by assuming that the 
mean of Z(x) is representable as a linear combi- 
nation of known functions usually taken to be 
monomials in the position coordinates. The func- 
tion representing the mean is called the drift and 
hence (i) corresponds to constant drift. When y(n), 
called the variogram, depends only on the length 
of the vector a and not on its direction; the 
variogram and the random function are said to be 
isotropic. Otherwise they are said to be aniso- 
tropic. The most common form of anisotropy is 
called geometric. Such an anisotropy is removable 
with an affine transformation applied to the do- 
main of the random function. An affine transfor- 
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mation combines a rotation with a stretching 
and/or a shrinking. If Z(x) is second order sta- 
tionary, then y(h) is related to the covariance 
function C(h) as follows: 

Y(h) =C(O) -C(h) (2) 

Whereas the covariance function is bounded and 
asymptotically goes to zero as the magnitude of /I 
gets large, the variogram can exist when the co- 
variance does not and it need not be bounded. It 
is also somewhat simpler to estimate the vario- 
gram since it is not necessary to separately esti- 
mate the mean of Z(x). Using the variogram, the 
variance of the error of estimation can be written 
as a quadratic form in the unknown weights. A 
Lagrange multiplier is introduced in order to ob- 
tain unbiasedness, i.e. to compensate for the con- 
straint which results in unbiasedness. Minimizing 
the variance leads to the following systems of 
linear equations 

CA;y(x;-x,)+~=y(Xi-Xo); j=l,...,n 

E&=1 (3) 

For the details of the derivation see Journel and 
Huijbrechts [l]. 

In the case of non-constant drift, additional 
Lagrange multipliers are required because of ad- 
ditional constraints needed to ensure unbiased- 
ness. While the estimator does not change, the 
system of equations does and this is called univer- 
sal kriging (as contrasted with ordinary kriging). 
In matrix form the system appears as 

[E x1 = LoI 

where K is the block consisting of the values of the 
variogram corresponding to pairs of sample loca- 
tions and K, consists of the values of the vario- 
gram for pairs consisting of a sample location and 
the point where an estimate is desired. E is a row 
of Is, ET is a column of Is and p is the Lagrange 
multiplier introduced because of the constraint. 
The minimized estimation variance is given by 

CAiY(xi-xO) +P (5) 

The estimator has a number of useful proper- 
ties in addition to the unbiasedness and minimum 

variance conditions imposed in order to derive the 
kriging equations given in (3). It is easily seen that 
if the estimator is used to obtain an estimate at a 
location where there is data and if that data is 
used; then the estimated value is the observed 
value, that is, the estimator is exact. It is less 
obvious that the estimator has the desirable prop- 
erty of assigning larger weights to sample loca- 
tions that are close to x0. Note that although the 
sum of the weights is 1, the weights need not be 
positive and hence estimated values could be 
negative. Moreover, an estimated value could be 
larger than the largest data value although in 
practice neither of these circumstances occurs 
often. 

The kriging equations given in (3) can also be 
written in terms of the covariance function (under 
an assumption of second order stationarity) by 
using (2). When there is no spatial dependence, 
i.e., the variogram is a positive constant for all 
non-zero lags; all the weights in the estimator are 
l/n and the kriging estimator reduces to the arith- 
metic average. Certain sample location patterns 
may have the same effect even with a non-nugget 
variogram. 

3 VARIOGRAM ESTIMATION AND MODELING 

While empirical values of the variogram could 
be used in the coefficient matrix in (4), the vario- 
gram entries on the right hand side would have to 
be computed from a theoretical model or inter- 
polated. In practice the estimated values of the 
variogram for certain distances is used to fit a 
theoretical model which is then used to compute 
the entries in the system of equations. Not all 
functions can be variograms; in particular the 
estimation variance should be non-negative and of 
course the coefficient matrix in (4) should be 
invertible_ A weak form of positive definiteness is 
sufficient for both of these properties. (See Myers 
[2].) Unfortunately, it is not simple to test a func- 
tion for either ordinary or conditional positive 
definiteness and in practice the theoretical model 
is constructed as a positive linear combination of 
known valid models. (This is known as a nested 
structure.) 
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Recall from matrix theory that a function g(x) 
defined in p-space is positive definite if for any 
points x1,. . . , x, and any coefficients ci,..., c, 
the quadratic form 

cEc/ckg( xi - x/J 

is greater than or equal to zero. If a covariance 
function is used instead of a variogram, then the 
estimation variance is an expression of this form 
and covariances are known to be positive definite. 
In this case the matrix K in (4) will be positive 
definite. If it is strictly positive definite, then the 
coefficient matrix in (4) is invertible and hence the 
system has a unique solution. When a variogram is 
used instead of a covariance, then the negative of 
(6) must be non-negative, but only for those coef- 
ficients which add to zero. This is the definition of 
conditional positive definiteness. While it does not 
ensure that K is invertible, it does ensure that the 
coefficient matrix is invertible as shown in Myers 
[2]. Unfortunately, neither positive definiteness nor 
conditional positive definiteness are easily de- 
termined by a plot of a function and as a practical 
matter we consider only nested structures of cer- 
tain known valid models. 

These models have the advantage that they are 
characterized by a few parameters which are inter- 
pretable from the plots. All variograms are zero at 
lag zero, but they may have a discontinuity. This 
discontinuity is known as the nugget effect. The 
other two characteristics are the sill and the range. 
In terms of a covariance function the sill would be 
the value of the covariance at zero less the nugget 
and the range is the distance at which the covari- 
ante becomes zero. In general the plot of a covari- 
ante is the same as the plot of a variogram except 
that it is inverted. Five of the standard (isotropic) 
models are as follows: 

Spherical 

( C,{l.S(r/a) -0.5(r/a)‘}, 
v(r)= C 

19 

Olrsa 

r>a 

Exponential 

y(r)=C,{l-exp-(r/a)}, Olr 

Gaussian 

y(r)=C,(l-exp(-(r/a)*)), OIr 

Each of these models corresponds to a covariance 
and for each C, is the sill and a is the range. In 
the case of the Exponential and the Gaussian 
models there is only an effective range generally 
taken to be a’= 3a. 

Power 

y(r)=Clru, O<a<2 

Nugget 

y(r)=C,, r#O 

0, r=O 

The power model does not correspond to a covari- 
ante and does not have a sill or range. The case of 
a = 1 for the Power model gives the Linear model. 
For simplicity, however, most computer programs 
will denote C, as the sill and a the range even 
though these are not the true sill and range. One 
may be tempted to use a truncated linear model, 
i.e., linear up to a range and then constant there- 
after, but such a model is not valid except in 
l-space. 

By analogy with estimators used in classical 
problems in statistics, the natural estimator for the 
variogram is the experimental or sample vario- 
gram given by 

y*(h) = {OS/N(h)}C[Z(x,+h) - Z(xi)]* (7) 

where xi + h, xi is a pair of sample locations /I 
apart and N(lr) is the number of such pairs. When 
the sample locations are not on a regular grid, 
there may not be more than one pair for any 
particular L. In that case pairs are grouped into 
distance and angle classes. The choice of the classes 



214 Chemometrics and Intelligent Laboratory Systems n 

will be illustrated in the numerical example to 
follow. Note that in general we do not simply fit a 
curve on the plot of the sample variogram for 
several reasons: (a) the model must satisfy the 
appropriate positive definiteness conditions; (b) 
not all plotted points are of equal importance or 
reliability in estimating the value of the model for 
that lag; (c) there is some arbitrariness in the 
choice in the length of the distance classes and 
hence of the points for which an estimate is plotted. 
In general the variogram model, i.e., the values of 
the variogram, is more important for short than 
for long distances since the kriging estimator has 
the property that it gives larger weights to data at 
points close to the location where an estimate is 
desired and lesser weights to those far away. Con- 
sequently the modeling process is more critical for 
short than for long lags. 

As an average of squares the sample variogram 
is not very robust. A number of other variogram 
estimators have been considered as well as direct 
estimation of the parameters in the model(s). These 
include the use of weighted least squares and 
maximum likelihood. The latter requires an as- 
sumption of normality. For a more extensive dis- 
cussion see Myers [2]. 

While one may be interested in the variogram 
or covariance for reasons other than their use in 
the kriging equations; that is the most common 
reason. It is reasonable then to link the estimation 
to the behavior of the kriging estimator. Although 
it was not imposed when deriving the kriging 
equations, one of the properties of the kriging 
estimator is that it is exact (sometimes called 
perfect). If one estimates at a data location using 
all data including the data at that location, then 
the estimated value will be the observed value. 
This suggests a way of testing the variogram mod- 
eling. Namely one systematically deletes each 
sample location one at a time and estimates a 
value for that location using only the other data. 
This is known as cross-validation and it produces, 
for each location, the data value, an estimated 
value and the minimized estimation variance. If 
the variogram has been adequately modeled, then 
the estimated values should be ‘close’ to the ob- 
served values (in an appropriate sense). There are 
several possible measures of ‘closeness’ such as the 

mean error (which should be close to zero); the 
normalized mean square error (which should be 
close to one); the correlation of the estimated and 
observed values (which should be close to one); 
and the correlation of the estimated and the error 
of estimation (which should be close to zero). One 
can vary the parameters in the variogram model in 
order to try to optimize all the cross-validation 
statistics. This is illustrated later in the example. 

4 PRACTICAL ASPECTS 

The form of the kriging equations given in [3] 
makes it appear that all data are used to estimate 
all locations. In the case of large data sets, the 
coefficient matrix in (4) would be large and would 
require special methods for inversion. However, 
except for the nearby locations, the weights will be 
zero or nearly so. Hence in practice a moving 
neighborhood is used and only data from nearby 
locations (those in the search neighborhood) are 
used in the estimator. When implemented in 
software, the user must specify the size of the 
neighborhood and the number of locations to be 
used (both minimum and maximum). In practice 
it is seldom useful to set the maximum at more 
than 25 and the size of the neighborhood is gener- 
ally taken to be the same as the range of the 
variogram. 

Returning to the question of the choice of the 
number of distance classes and the width of the 
classes when computing the sample variogram for 
irregularly spaced data, there are two desirable 
features for the sample variogram which work 
against each other. In order that detailed informa- 
tion about the shape be gleaned from the graph, 
the classes should be narrow; but in order to 
enhance the reliability of each plotted point, the 
number of pairs used to produce that point should 
be large. Unfortunately for a given sample loca- 
tion pattern one cannot have both. Increasing the 
number of sample locations or using somewhat 
unusual sample location patterns as shown by 
Warrick and Myers [4] is the only way to attain 
both. Often however the data have already been 
collected and neither the number of locations nor 
the pattern can be altered. In this case it is neces- 
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sary to experiment with the number and the width 
of the classes to optimize the information gleaned 
from the plot. Recall that the behavior of the 
variogram or covariance is most important for 
short lags and in many cases one ignores the plot 
for longer lags. In particular the longest lag should 
not exceed half the maximum distance between 
sample locations. Note that there is no purpose in 
using lag distances smaller than the smallest 
inter-location distance. 

As pointed out by Myers [5], stationarity is a 
property of the random function and not of data. 
If, as implicit in the geostatistical model, the data 
are viewed as one sample from one realization of 
the random function; then it is not possible to test 
for stationarity of the random function. Neverthe- 
less, various aspects of the analyses of the data 
can be indicative of non-stationary. For example, 
the sample variogram estimates half of the mean 
square difference rather than half of the variance 
of the difference and these two only coincide in 
the case of a constant mean (of the random func- 
tion). If the mean of the random function is not 
constant, then the plot of the sample variogram 
will exhibit a growth rate that is greater than is 
theoretically possible for a valid variogram. A 
valid variogram does not have to be bounded, but 
the growth rate as a function of the lag distance 
must be less than quadratic. Hence, if the plot of 
the sample variogram exhibits a quadratic or 
higher growth rate, there are no valid models to fit 
to the plot. 

The solution is to decompose the random func- 
tion into a stationary random function and a 
deterministic component representing the non- 
constant mean. The problem is how to determine 
this decomposition using only the data. There are 
several possible approaches. One is to first fit a 
trend surface to the data, which represents the 
deterministic component. Using the trend surface, 
residuals are computed and used to compute the 
sample variogram. However, trend computed in 
this fashion is not the same as the drift. In particu- 
lar, the trend surface as an estimator of the drift is 
not optimal in the sense of minimizing the vari- 
ance of estimation. Moreover, when these residu- 
als are used to compute the sample variogram, it is 
a biased estimator of the variogram as shown by 

Sabourin [6]. While this technique is defensible as 
a practical technique, it has theoretical as well as 
computational disadvantages, as described by 
Neumann and Jacobsen [7] and Cressie [8]. One 
must use this technique with some care. The ob- 
jective of using the residuals is to obtain a sample 
variogram that does not exhibit the rapid growth 
rate. The important characteristics to look for is 
the lack of quadratic growth in the variogram of 
the residuals when it is present in the variogram of 
the data. 

Non-stationarity and anisotropy are sometimes 
difficult to distinguish and the non-stationarity 
often has a directional aspect. This interrelation 
can sometimes be exploited. For example non- 
stationarity may occur only in one direction as in 
the case of a subsurface flow, whereas in a per- 
pendicular direction no non-stationarity is evi- 
dent. In that case it may be possible to model the 
variogram using the sample variogram for the 
direction perpendicular to the direction corre- 
sponding to the non-stationarity using an isotropic 
model. 

For economic or analytical reasons one often 
uses cornposited samples. This practice can cause 
problems in the geostatistical analysis in several 
ways. If there was no spatial dependence and the 
data were considered as a random sample from a 
single population; then the statistical effect of 
cornpositing corresponds to the use of samples of 
size greater than one. This is often desirable since 
there is a reduction in the variance of the estima- 
tor. When the data are spatially correlated, the 
effect is different and less desirable. If the data are 
used to estimate variograms, then it is necessary to 
compensate for the support of the samples. Com- 
positing will lead to a reduction in the number of 
(apparent) sample locations. Hence the number of 
pairs for each plotted point is reduced and often 
the minimum distance between sample locations is 
increased thereby reducing information concern- 
ing the variogram at short lags. Finally there is 
also a theoretical consequence since the wrong 
variogram is being estimated, i.e., the sample 
variogram in this case estimates an averaged value 
of the variogram. This ‘regularized’ variogram will 
have a smaller sill and an apparent shorter range 
of dependence. This problem was recognized early 
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in mining applications where samples are fre- 
quently represented by sectioned drill hole cores 
or by samples composited from all the blast holes 
in a mining block. When the compositing corre- 
sponds to a reasonably regular geometric shape, 
there are formulas for inverting the process after 
the variogram has been modeled. If composited 
samples are used as data in the kriging estimator, 
then the kriging equations must also be modified. 

To easily see the effect of compositing on vario- 
gram computations, consider a rectangular array 
of pixels, perhaps 100 X 100. If the values of the 
pixels were those of a random function with vari- 
ance 100, the variogram should have a sill of 100. 
If now the pixels were composited either as 2 x 2 
squares or 5 x 5 squares, then the sill will be 
reduced to 25 and 4 respectively. Moreover, for 
the original data there will be many pairs for a 
distance of 1 whereas for the 2 X 2 squares the 
minimum distances between centers will be 2 and 
5 for the 5 x 5 squares. If the original range had 
been less than 2 then the sample variograms for 
the composited data will appear as pure nugget. 
The compositing effect is an intuitively obvious 
one since the data is being smoothed and hence 
local heterogeneities are being removed. The vari- 
ance is reduced and short range correlations are 
smoothed out. 

5 SOFTWARE 

Before the advent of the personal computer 
equipped with a numeric co-processor, sufficient 
memory and disk space, it was necessary to use a 
mainframe computer or at least a minicomputer 
for geostatistical analysis. Commercial software, 
while available, tended to be very expensive, ex- 
cept for large users such as mining or oil compa- 
nies. Consequently, most non-commercial users 
wrote their own or modified an available program. 
Geostatistics programs are frequently published in 
the journal Computers and Geosciences. The 
mathematics of a geostatistical package are not 
very demanding, since it basically only involves 
solving a system of linear equations together with 
appropriate input/output and internal data 
management. The advent of the microcomputer 

has not only made sufficient computing power 
easily available, it has also spawned several public 
domain packages one of which has become a 
defacto standard in terms of features, ease of use 
and the availability of good documentation. The 
Gee-EAS [9] package was produced under the 
sponsorship of the U.S. EPA Environmental 
Monitoring Systems Laboratory at Las Vegas, 
Nevada, and was officially released by EPA into 
the public domain. Moreover, EPA continues to 
provide support for the package. Geo-EAS in- 
cludes a number of geostatistical components such 
as PREVAR, VARIO, XVALID, KRIGE as well 
as utilities such as TRANS, POSTPLOT and 
CONREC. The use of these will be described later 
in the example. An earlier package, STATPACK, 
produced by the U.S. Geological Survey at Den- 
ver, Colorado, was in part a downloading of com- 
ponents written for a mainframe computer and 
reflected a batch mode of operation to a consider- 
able degree, whereas the Geo-EAS package is 
highly interactive with extensive graphics. The 
Geo-EAS package has been used in the following 
example. The Geo-EAS documentation should be 
consulted for program details. The executable code 
is available from the Las Vegas office and the 
source code is available from ACOGS [lo] 
(Arizona Computer Oriented Geological Society). 

TABLE 1 

Format of Geo-EAS data file 

Dallas Lead Study, average of first inch of soil, lead data 
4 
Easting 

Northing 
Lead 
ID # 

13.643 41.303 29.000 7 

14.643 41.513 22.ooo 8 
14.193 11.023 28.ooo 363 
. . . . . . . . . . . . . . 
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6 AN EXAMPLE 50. 

Several years ago the U.S. EPA was concerned 
with lead contamination in the air and soil of 
certain parts of Dallas, Texas and subsequent 
accumulation at significant levels in humans. It 
was asserted that the contamination came from a 
smelter which had been shut down, but it was still 
necessary to determine the extent of the pollution. 
To this end, data of various kinds were collected, 
together with soil samples. The data used in this 
example pertain only to the soil samples, for which 
sample position coordinates were given as well as 
the concentration of lead. Table 1 shows the header 
required on the Geo-FAS file together with the 
first few records of the data set. There were 361 
data locations in the study. One of the columns in 
the data file is used only for sample identification. 

6.1 Exploratory analysis 

Since the sample locations were spatially 
located, it is important to consider not only the 
empirical distribution of the data values but also 
the pattern of sample locations when considering 
the effect of possible outliers. It is useful to pro- 
duce a plot of the locations either on screen or in 

I 

1 1 I 
0. 10. 28. 30. 41 

Eating 

Fig. 1. Sample locations. 

hard copy. Some programs will code each location 
by the value of the variable at that location. Fig. 1 
is such a plot for the Dallas Lead data, which was 
produced by POSTPLOT. The POSTPLOT incor- 
porated into VARIO uses color to code the data 
values, but the separate POSTPLOT utility allows 
the use of symbols, symbol size, color and numeric 

Statistics 

N Total : 
N Niss : 
N Used : 

Nean : 92.598 
Variance: 41931.380 
Std. Dev: 204.771 
% C.U. : 221.139 
Skeuness : 11.952 
Kurtosis: 182.831 

Ninimum : 6.888 
25th % : 29.888 
Nedian 1 46.888 
75th z : 90.750 
Naximum 1 3357.889 

361 

36: 

Lead 

Fig. 2. Histogram for original data. 
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values. This also allows coding sample locations 
by the values of several variables at the same time. 
Perusal of this plot indicates the spread of the 
sample locations both in terms of distance and 
direction. This information can be useful in set- 
ting the parameters for the variogram estimation 
program. Based on the plot and possibly also on 
the histogram of the data values, it is sometimes 
useful to partition the data set spatially into one 
or more subsets. The histogram is important for 
providing evidence of bi-modality or skewness of 
the distribution. While the derivation of the krig- 
ing equations did not depend on any distribu- 
tional assumptions, both the kriging estimator and 
the sample variogram are weighted averages and 
somewhat sensitive to skewed distributions. Chem- 
ical data are often found to be lognormally dis- 
tributed and the histogram is a quick way to 
examine the data for such characteristics. Figs. 2 
and 3, respectively, show the histograms of the 
original data and log transformed data; these fig- 
ures were produced by STATl. In the case of 
multivariate data it may be useful to consider 
principal components analysis, correspondence 
analysis or multiple regression in the exploratory 
analysis stage. 

6.2 Variogram estimation 

In Geo-EAS this is done in two stages. PRE- 
VAR sorts the data set into pairs of locations 
identified by separation distance and separation 
direction. This file is then the input for VARIO. 
PREVAR is the most restrictive of all the Geo-EAS 
programs with respect to the size of the data set 
since it will only use the first 150 records in the 
data file because of dimensioning and memory 
limitations. VARIO will compute the sample 
variogram given by (7) above as well as several 
other estimators. The user must specify the prin- 
cipal direction and the angle tolerance but the 
program will compute default distance classes al- 
though these may be changed by the user. The 
program will default to an initial direction of 0” 
and a tolerance of 90” which has the effect of 
ignoring the direction, i.e. the all-directional or 
isotropic sample variogram is computed. Unless 
information is available to indicate a particular 
direction of interest, the usual practice is to com- 
pute the all-directional variogram as well as direc- 
tional variograms for 0 O, 45 O, 90 O, 135 O, each 
with a tolerance of 22.5 O. If these appear to be the 
same and hence well represented by the aIl-direc- 

Statistics 

N Total: 361 
N Hiss : e 
N Used : 361 

Hean : .ElBB 
Std Deu: .825 

Hinimum: -3.074 
25th % : -.462 
Hedian : .a72 
75th z : ,589 
Haximum: 2.148 

Difference : Estimate-IN (Lead> 

Fig. 3. Histogram for log transformed data. 
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tional variogram, then an isotropic model is used. 
Otherwise, one must attempt to determine the 
direction with the maximum range for the vario- 
gram as well as the ratio of the maximum range to 
the range in the direction orthogonal to it. These 
are then used to specify the (geometric) aniso- 
tropy. Note that in general the directional vario- 
grams will have fewer pairs for each plotted point 
than the all-directional variogram. Therefore for 
some directions the plot may be so erratic as to be 
difficult to determine a model and an isotropic 
model may be used for lack of adequate plots. The 
sample location pattern may mask or induce an 
(apparent) anisotropy. In general consideration of 
the location plot is essential for interpretation of 
the variogram plots. 

As was noted earlier if the variogram plot ex- 
hibits a growth rate that is quadratic or larger, 
then it is necessary to use some method for remov- 
ing the drift before modeling the variogram. 
VARIO includes an estimator known as the ‘In- 
Cov’ (in a previous version it was called ‘Non- 
ergodic’). The algorithm locally estimates the drift 
at each sample location, computes a residual and 
then computes an estimate of the variogram. It is 
called ‘InCov’ in part because it computes an 
estimate of the covariance which is internally con- 
verted to an estimate of the variogram. Some 
programs include the use of a trend surface to 
estimate the drift and residuals are then computed 
and used to compute the sample variogram. 

This process of variogram estimation and mod- 
eling should be viewed as an interactive one since 
it may be necessary to try different variogram 
estimators, change the distance classes, limit the 
geographical extent of the data set, change the 
direction tolerances and then compare the plots. 
Note that it is not necessary to fit a model to the 
entire plot of the sample variogram since the short 
lag portion of the plot is the most important. 

6.3 Choosing a model 

In practice this means selecting a linear combi- 
nation of the models provided in the program 
(almost certainly all of the models given above 
will be included) and for each term in the combi- 
nation choosing the parameters. For example, we 

might choose a nugget with a sill of 5, a spherical 
with a sill of 10 and a range of 50 and a spherical 
with a sill of 15 and a range of 100. VARIO will 
allow interactive selection of the variogram types 
used in the linear combination as well as the 
parameters and then will plot that model against 
the sample variogram. It may be necessary to try 
different combinations to determine the (ap- 
parent) best fit. If some form of least squares is 
used to fit a model to the plot of the sample 
variogram, it should use some form of weighting. 
Even in that case the fitted model should not be 
considered to be optimal in terms of its use to 
determine the weights in the kriging estimator. 
For example, the plot can be altered, perhaps 
significantly, by changing the distance classes and 
hence the least squares fitted model may be differ- 
ent for these different plots. There are three initial 
pieces of information to look for in the plot: the 
magnitude of the nugget (or the absence of a 
nugget), the distance (called the range) at which 
the plot appears to level off (if it does) and if it 
does, the magnitude of that constant value. In 
general kriging is only useful when the nugget is 
moderately small compared to the total sill. The 
nugget may represent noise in the data such as 
measurement errors or it may reflect insufficient 
information at short lags to adequately determine 
the shape of the variogram. Figs. 4, 5 and 6 show 
the all-directional variogram for the transformed 
lead data, the 90” directional variogram and a 
model plotted against the all-directional vario- 
gram. The comparison of these is used to justify 
the use of an isotropic variogram. Table 2 tabu- 
lates the computed values of the variogram for the 
log transformed data (all-directional variogram). 

6.4 Cross-validation 

While one may be interested in estimating and 
modeling the variogram for purposes other than 
kriging, that is the most common use. Hence it is 
important to consider the relationship between the 
estimation/modeling process and the subsequent 
use of the variogram in the kriging equations. 
XVALID will produce the various cross-validation 
statistics described above. To use the program the 
user must specify the variogram model and the 
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Parameters 
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f X f: 
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Pairs : 10729 

8 
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Fig. 4. Sample variogram, all directional and model. 

search neighborhood parameters. The latter in- Ordinarily the search neighborhood is set to 
clude indicating whether the neighborhood is cir- match the variogram model, i.e. as a default value 
cular or elliptical, the radius or lengths of the the radius of search neighborhood is set equal to 
major and minor axes, the minimum number of the range of the variogram. If an insufficient num- 
sample points to be used for each estimation, and ber of data points are found within the search 
the maximum number of points for each estima- neighborhood for a particular location, then that 
tion. estimate will be skipped. If more than the speci- 
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llaxBand : 

.me 
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Haximum : 8.119 

tlean : 
Var. : 

;* 

3.985 
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Dis trnce 

Fig. 5. Sample variogram, O” direction and 22O tolerance. 
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TABLE 2 

Computed values of variogram, all directional 

Lag No. Number of Average distance 

pairs 

y * 

1 42 1.082 0.664 

2 516 1.628 0.505 

3 827 2.874 0.531 

4 1173 4.159 0.608 

5 1290 5.437 0.655 

6 1294 6.662 0.725 

I 1391 7.840 0.738 

8 1503 9.038 0.740 

9 1370 10.231 0.795 

10 1263 11.350 0.797 

TABLE 3 

Nested structure for variogmm model 

Term No. Twe Sill Range 

1 nugget 0.0 0.0 

2 spherical 0.4 4.0 
3 spherical 0.3 7.0 

4 spherical 0.05 9.0 

fied maximum number of points are found in a 
neighborhood, then only the closest ones are used. 
In XVALID this process can be seen graphically 
as it occurs by choosing the Debug option. Table 
4 shows the Results screen giving the numerical 

TABLE 4 

Cross-validation results 

Data Estimate Krg. std. Normalized 

dev. 

Minimum 1.792 2.057 0.362 - 6.024 
25th percentile 3.367 3.556 0.484 - 0.842 
Median 3.829 3,934 0.494 0.169 
75th percentile 4.500 4.348 0.506 1.045 
Maximum 8.119 6.083 0.811 4.728 

Mean 3.985 3.982 0.501 - 0.003 
Std. dev. 0.908 0.636 0.044 1.641 

statistics resulting from cross-validation. Figs. 7 
and 8 show scatterplots of ‘estimated vs. observed 
and of ‘estimated vs. normalized error of estima- 
tion’. These results cannot be judged against ab- 
solutes but rather they provide a tool for ranking 
the choices for the variogram model. Therefore it 
is usually necessary to try several possibilities. 
Note that the cross-validation statistics can be 
affected by the choice of the search neighborhood 
parameters. In some instances these statistics are 
relatively insensitive to changes in the variogram 
or the search neighborhood. 

6.5 Kriging 

This is perhaps the easiest step since all the 
parameter choices will have been made at previous 

Parameters 

File idave .pcf 

Pairs : 2638 

x Direct.: 90 A08 
I Tol. : 22. flee 

tlaxBand : da 

LN (Lead) Limits 

llinimun: 1.792 
tlaxinum: 8.119 

Nean : 3.985 
Var. : .82370 

0. 2. 4. 6. 8. 18. 12. 

Distance 

Fig. 6. Sample variogram, 90“ direction and 22O tolerance. 



222 Chemometrics and Intelligent Laboratory Systems w 

7. 
t I M I I 

,o t 6.- 

2 Xt + 

M 
* X 

4 5.- 

d 

6 

i 4m- 
X 

XX 

-4. -2. 8. 2. 

Difference: Estimate - IN <Lead> 

Fig. 7. Scatter plot of Z* vs. Z. 

steps, namely the choice of the variogram model 
(Table 3) and search neighborhood parameters. 
KRIGE provides for two forms of kriging, point 
and block (block kriging corresponds to estima- 
tion of spatial averages). In each case the esti- 
mates are produced for a grid whose position and 
mesh are chosen by the user. If block kriging is 
chosen then the size of the block must also be 
chosen. The output from either form of kriging 

I I 

=I 
/ 

x 

x I 
..- 

0. 2. 4. 6. 8. 10. ’ 

IN <Lead> 

Fig. 8. Scatter plot of Z * vs. Z * -Z. 

4. 

may be used with a contouring package to pro- 
duce a map of the estimated values and also a 
map of the kriging standard deviations. The latter 
is useful in interpreting the former since the con- 
tour map of the kriged variable is not of the same 
degree of reliability over the entire region. Geo- 
EAS includes a component called CONREC which 
will produce an on-screen contour plot. It does 
this by first producing a metacode file which can 
be VIEWed or it can be transformed into a 
Hewlett-Packard plotter file. With the exception 
of PREVAR all of the computation programs in 
Geo-EAS produce Geo-EAS files and hence can 
be used as input files for other components. Krig- 
ing is a smoothing process and hence the variance 
of the kriged values is less than that of the original 
data. The use of the log transform does cause 
some problems since a simple exponentiation of 
the estimate will result in a bias. The necessary 
corrections can be found in Journel [ll]. The plots 
and variogram model used above do not neces- 
sarily represent an optimal modeling of this data 
set but are given here for illustration only. 

One of the best ways to grasp the usefulness of 
geostatistics is to apply the various components of 
Geo-EAS to a particular data set and to take 
advantage of the interactive capabilities of the 
programs. This allows the user to quickly see the 
effect of choosing different variogram models and 



n Tutorial 223 

different variogram and search neighborhood 
parameters. 

7 EXTENSIONS 

There are a number of extensions of kriging 
that have been developed. Some are linear and 
others are non-linear. Each has been developed in 
response to some particular application problem 
or perceived lack in kriging. In many applications 
there may be several variables of interest. For 
example in many copper mines molybdenum is 
also extracted from the ore; and the two metal 
grades are found to be not only separately spa- 
tially correlated but they are also correlated with 
each other. Cokriging is a linear estimation method 
which incorporates both the spatial and inter-vari- 
able correlation and hence data on both variables. 
In hydrology there are often many variables of 
interest, such as hydraulic conductivity, permea- 
bility, and porosity. Early applications emphasized 
the use of data from one variable to enhance the 
estimation on another more important variable. 
Often the proxy variable was one that was easier 
or cheaper to sample. A complete presentation is 
found in Myers [12,13]. 

Because the estimator is a linear combination 
of the data and the variogram estimator is an 
average of squared differences; both of these are 
sensitive to ‘outhers’. In some cases this effect is 
reduced by a transformation such as a logarithm, 
this being motivated by an assumption of or an 
apparent indication of log normality. Because in 
many applications one is interested in a particular 
cutoff value and the associated proportion of an 
area or volume above (or below) the cutoff, the 
use of an indicator transform is indicated. Treated 
as a stationary random function the indicator is 
closely related to the marginal probability distri- 
bution; therefore a linear estimator for indicators 
can be used leading to a set of kriging equations. 
This work is largely due to Joumel[14,15] and his 
students at Stanford. 

One of the advantages of viewing spatial data 
as a sample from a realization of a random func- 
tion is that it leads rather naturally to the idea of 
generating other realizations perhaps conditioned 

on the data. Simulation of a random function 
could be viewed in several contexts, i.e. if the new 
realizations are to be from the ‘same’ random 
function, then certain characteristics must be pre- 
served. In geostatistics this is usually taken to 
mean that the first and second order moments are 
preserved as well as the marginal distribution. 
Other characteristics could be considered. The em- 
phasis on the moments is partially a consequence 
of the fact that kriging only depends on the first 
two moments. Simulation of random functions in 
l-space, i.e. time series, was well-known but there 
remained the question of producing simulations in 
2- or 3-space and preserving the spatial depen- 
dence. The Turning Bands method of Matheron 
[16] produces a simulation in higher dimensional 
space by producing many independent simulations 
in l-space. Simulations are useful for a variety of 
applications such as mine planning, modeling the 
spatial variability in a pollutant dispersal, evaluat- 
ing potential sites for waste disposal to name a 
few. Kriging provides a method for conditioning 
the simulation to the data. 

For most distribution based statistical tech- 
niques it is possible to determine a sample size 
that is sufficient with respect to some criterion 
such as the power of a test or the width of a 
confidence interval. In the case of spatially located 
data however it is not sufficient to consider only 
the number of locations. The sample location pat- 
tern is also important. Since the kriging variance 
does not depend on the data as such (although in 
general the data is used to estimate and model the 
variogram); this variance can be computed a priori 
for a given model and sample location pattern. 
Hence the sample location patterns can be ranked 
by the kriging variances. Determination of an 
optimal sampling pattern may arise in several 
different contexts. One may have a large number 
of locations such as wells and wish to monitor 
only a smaller number but maintain nearly the 
same level of information. One may wish to add 
additional locations to an existing pattern (adding 
only one is easy, simply find the place where the 
kriging standard deviation is largest on the con- 
tour plot) or a set of locations is to be chosen with 
an assumed variogram model. This problem has 
received considerable attention in the geostatisti- 
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cal literature and a brief history is given by Barnes 

LI71. 

8 APPLICATIONS 

As indicated by previous citations geostatistics 
has been and is being applied to a wide variety of 
problems in a number of disciplines. These range 
from the characterization and contouring of the 
likelihood of sudden soil collapse in a semi-arid 
environment as detailed by Ali et al. [18-211 to 
the assessment of the movement of a multi-pollu- 
tant plume by Myers [22]. Myers [23] and Myers 
et al. [24] describe the application of kriging to 
hydrogeochemical data collected as a part of the 
NURE project. Morkoc et al. [25] use kriging with 
generalized covariances in a soil physics applica- 
tion. Yates et al. [26] use a non-linear form of 
kriging together with field measured reflectance 
and soil temperature data to evaluate field crop 
heterogeneities. Tabor et al. [27,28] compare 
nitrogen content in soil with nitrogen content in 
cotton plant petioles as an indicator of need for 
fertilizing. Myers and Carr [29] re-examine multi- 
variate data from a Wyoming Bentonite clay de- 
posit and compare multivariate geostatistics with 
dimension reduction using principal components 
analysis. 

9 COMPARISON WITH OTHER METHODS 

One of the motivations for the introduction and 
application of kriging was that it incorporated the 
spatial nature of the data and it has the property 
that data from nearby locations are weighted more 
heavily than those far away when estimating at a 
particular location. There were and are other 
methods that have similar characteristics. One of 
these is Trend Surface Analysis wherein the data 
are fitted to a polynomial in the position coordi- 
nates by least squares. In general this method 
estimates at an unsampled location by evaluating 
a regional value as represented by the polynomial 
but does not incorporate the local fluctuations. 
Moreover, as shown explicitly in Marcotte and 
David [30], Trend Surface Analysis produces the 

same estimated values as Universal Kriging with a 
pure Nugget variogram except at the data loca- 
tions (Trend Surfaces are not exact interpolators). 
This is a consequence of treating the local fluctua- 
tions as ‘errors’ or noise to be removed. The 
estimated variance of the error of estimation is 
constant and reflects an estimate of the magnitude 
of the errors. 

One of the simplest ways to assign weights in a 
linear estimator is to make them inversely propor- 
tional to the distance of the sample location to the 
point to be estimated, i.e. inverse distance weight- 
ing (IWD). This technique has some of the same 
characteristics and advantages as kriging but not 
all. In particular the weights in the kriging estima- 
tor are also affected by the intersample location 
distances and directions whereas for IWD only the 
relationship of sample locations to the point to be 
estimated are used. The process of estimating the 
variogram, although not perfect, does have the 
capability of adapting to different variates and 
also incorporating anisotropies. It is possible to 
empirically optimize the exponent on the distance 
function in IWD by the use of a training set as 
shown by Kane et al. [31], but one must then 
assume that the modeling is transferable to the 
remainder of the data set. While no assumptions 
are necessary, nor is there even a derivation for 
the IWD estimator, it might be best thought of as 
(nearly) a special case of kriging. 

The kriging estimator can be rewritten as fol- 
lows by substituting the solution for the weight 
vector into the estimator. 

Z*(xo)=Cbiy(xi-xx,)+u 

where 

(8) 

Cbiy(xi-xj)+a=Z(xj); j=l,...,?r 

Cb,=O (9) 

In this form the estimator is analogous to a thin 
plate spline and in fact the thin plate spline can be 
obtained as a special case of kriging. For an 
elementary demonstration see Watson [32] and 
also Myers [2]. The smoothing spline can be ob- 
tained as a special case of cokriging. 
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10 GLOSSARY 

Anisotropic: This term is applied both to a random 
function and to its variogram (or covariance) when 
the values of the variogram depend on both the 
distance and the direction. Also see Isotropic. 
Cross-validation: A method for comparing two or 
more conjectured variogram (or covariance) mod- 
els. The technique depends on Jackknifing the 
data and on the exactness of the kriging estimator. 
Drift: The expected value of a random function, it 
may be constant or it may depend on the coordi- 
nates of the location. In order for a random func- 
tion to be stationary, second-order stationary or to 
satisfy the Intrinsic Hypothesis; the drift must be 
a constant. The drift is a characteristic of a ran- 
dom function and not of data. 
Exact(ness): A property of an estimator/interpo- 
lator, namely that if estimating a value at a data 
location and if that data value is used in the 
estimation; then the estimated value will coincide 
with the data value. In some literature this is 
called Perfect. 
Intrinsic Hypothesis: A weak form of stationarity 
for a random function sufficient for deriving the 
kriging equations corresponding to the (Ordinary) 
kriging estimator. See (i) and (ii). 
Isotropic: A term applied both to a random func- 
tion and to its variogram. See anisotropic which is 
the complementary property. 
Kriging Equations: A set of linear equations whose 
solution includes the values of the weights in the 
kriging estimator. 
Kriging Estimator: While the estimator may be a 
linear or a non-linear function of the data, in both 
instances the weights in the estimator are de- 
termined by requiring the estimator to be unbi- 
ased and have minimum error variance. 
Kriging Variance: The minimized value of the 
estimation variance, i.e., the variance of the error 
of estimation. This variance is not data dependent 
but rather is determined by the variogram and the 
sample location pattern as well as the location of 
the point to be estimated relative to the sample 
locations. 
Nugget: The variogram may exhibit an apparent 
discontinuity at the origin. The magnitude of the 
discontinuity is called the nugget. 

Positive Definite: A term applied both to matrices 
and to functions, (Auto) covariance functions must 
be positive definite whereas the negative of vario- 
grams must be conditionally positive definite. 
Conditional positive definiteness is a weaker con- 
dition. 
Random Function: A random function may be 
seen in two different forms; it may be thought of 
as a collection of dependent random variables 
with one for each possible sample location. Alter- 
natively it may be thought of as a ‘random vari- 
able’ whose values are functions rather than num- 
bers. 
Range (of a variogram): The distance at which the 
variogram becomes a constant. The Power model 
does not have a (finite) range. The Exponential 
and Gaussian models have only an apparent range. 
Sill (of a variogram): The value of the variogram 
for distances beyond the range of the variogram. 
The Power model does not have a sill. 
Spatial Correlation: Used both as a generic term 
to denote that data at two locations are correlated 
in some sense as a function of their locations and 
also to denote the value of a spatial structure 
function such as a variogram or (auto)covariance 
for a pair of locations. 
Stationarity (of a random function): Several dif- 
ferent forms of stationarity are utilized in geosta- 
tistics. Stationarity, in one of its forms, is a prop- 
erty of a random function rather than of a data 
set. It expresses the property that certain joint 
distributions are translation invariant or that cer- 
tain moments of the random function are transla- 
tion invariant. See second order stationarity and 
the Intrinsic Hypothesis. 
Support: The term is used in both a mathematical 
and in a physical sense. Many, if not most vari- 
ables of interest in geostatistics, such as the con- 
centrations of chemical elements or compounds, 
only have values at ‘points’ in an idealized sense 
although the random function treats them in this 
manner. The data values are usually associated 
with a physical sample having a length, area or 
volume; the concentration then represents an 
average concentration over this length, area or 
volume. This length, area or volume is called the 
support. Although it is common to report labora- 
tory analyses in such a way as to not reflect the 
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original support, non-point support has a signifi- 
cant effect on the variogram modeling process and 
there is a significant difference in estimating the 
average value over a large volume and in estimat- 
ing the average value over a small volume. The 
kriging estimator and equations allow this to be 
incorporated. 
Trend: While sometimes used interchangeably with 
the term ‘drift’, in geostatistics the two are consid- 
ered separate. The term is usually reserved to 
denote the deterministic representation obtained 
by the use of Trend Surface Analysis, i.e., a func- 
tional representation for spatially located data 
(usually taken as a polynomial in the position 
coordinates). The ‘trend’ is obtained by a least 
squares fit to the data. As an estimator to the 
mean of a random function it is sub-optimal. If 
the residuals from trend surface analysis are used 
to model the variogram, a biased variogram esti- 
mator results. 
Variogram (originally called semi-variogram): This 
function quantifies the spatial correlation and in 
the case of second order stationarity it is ex- 
pressible in terms of the (auto)covariance func- 
tion. See part (ii) in the Intrinsic Hypothesis and 
eq. (2). In order to apply kriging to a data set it is 
necessary to model the variogram. The variogram 
must satisfy certain positive definiteness condi- 
tions. 
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