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Abstract
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LA

Krigimg 15 o regressioy siethod used with wregolarly spaced Juia in 1., 2« or 3-space for the estimaton of values at unsampled
locations or for the caionation of the spatial aversge over a [ength, arca or volume The estimator 15 hnear o the data and the weights
are ohtained Trerm o saslem of linear equations in which the coefficients are (he values of sariograms or covanance functions
quantfyiog the corcelaion berween data at two sumple locations or between a sample location and the Iocation te ke esumated The
equations atg ohtwned by munumang the vanarce of the error of estimation, the vanunce bemng computed from a thearcucal model
br the covrzlavon funcuoan rather than from empurical values as 1o most regression fortnulations, Esumaton and modeling of this
structure function ks the most important and potentially the most difficult step 1n the process. Wihale the methad 15 not implemented
i ostandard stabstizal packages, pulbls doman software for vse on an IBM personal computer or clone 15 available The theory 1s
bricfly rewewed, pracucal aspects of the application of the methed aee discussed and avalable seftware and extensions are putlined
The US EMA Dallas Lead Study data is used o diustrate the problems and the method
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1 INTRODUCTION

Kriging 1 o regression techntque used for the
estumation /interpolation of spaually located and
spatially correlated duta. There are several fea-
tures winch set it apart from related or similar
techniques such as trend surface analysis or fram
wore classical parameter estimation problems and
techmques. First of all the lecation(sy of the sam-
ples 15 presumed to reflect valuable information
and there 1x an assumed or apparent spatial corre-
latton quanufiable in terms of separation distance
and duection. Samples taken close together are
expecied o be more alike than samples fur apart,
In many casgs samples are physically extragted
from the carth, for example, m the case of soil or
dnll core samples. The solume or arca of the
sample 1 likewise an important piece of informa-
tion and reflects the existence of short range non-
homogeneities. The associated volume or area 1s
referved to as the support of the sample.

The technique grew out of problems encoun-
tered in miming and hydrology and gave birth to
ihe discipline now known as geostatistics, which
has found apphicavon tn g variety of fOelds includ-
ing environmental montonng and  assessment.
Much of the early development is due to the group
working under the direction of G. Matheron at (he
Ecole des Mines, France, although similar devel-
opments occurred in Sweden for applications in
forestry and in the Soviet Union for applications
m meteorology. In each case dawa is collected at a
small number of locations 1 1-, 2- or 3-dimen-
sional space. The extent to which the number of
sumple locations is considered small is related w0
the peopraphic size of the region to be sampled
and alvo to the scale of spaval dependence. In
contrast to the case of more classical statistical
techniques where sample sjze 15 related 1o distribu-

224
224
225
226
2l6
226
227

tion type and parameters such as the vanance,
sample size for geostatistical analyses 1s affected
by a number of pon-statistical charactersties n-
¢luding the dimension of the space. The eollection
of spatial duta usvally mcorporates costs [ar
physically retnieving the samples. reading the in-
strument recording the Jdita or the cost of labora-
tory analysts. The latter may be guite signuficant
Usually the locations are net on a regular grid and
the objective 1» 10 estimate values at unsampled
jocatons, 1o estimate average values over volumes
or areas or to estimate the proporuon of a region
where the concentration level s above a vcutoff
level, In the latter cases the sumple locations may
not all be inside the volume or area of interest.

Matheron and others formulated the problem
in a4 random function context and the data are
considered to be a2 non-random sample from one
realization of the random function. This is rather
different from the usual statistical formutation
where the datu are considered as multiple realiza-
tions of a random variable. In addition to oblain-
ing a “best’ estimate, in a certain sense. the vari-
ance of the error of estmation is also obtained.
This variance 15 not constant but rather reflects
the spatial correlation and especially the sample
location pattern. Kriging can be re-formulated in
other equivalent ways, one of which Jeads to the
thin-plate sphne. This connection will be dis-
cussed below.

The applicatton of kriging to a data sct can be
broken into several stages: exploratory statistical
analysis of the data; estimation and modeling of
the function which quantifies the spatial correly-
tion; use of the spatial correlaton function 1o
determine the set of hinear equations that de-
termine the weights in the hriging estimator, and
finally production of the esiimated values and the
associated (minpmizedy estimaton siundard devia-
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tons, Often these estimates are obtained for points
on a regulsr grnid and the results are then used as
the inpul for a contouring package. Both the van-
able of interest and the kriging standard deviation
could be contoured. Nearly all of these steps would
be exceedingly tedious without the aid of the
computer, but fortunately software is now readily
available. The method is not, however, a black box
device. One cannot simply enter the data into a
program and obtain the estimates (nor should
one). It requires some comprehension and appreci-
ation of the phenomena being analyzed as weli as
of the strengths and weaknesses of the method.
Consequently the analysis is often the joint work
of a statistician and a soil physicist, hydrologist,
mining engineer or chemist.

2 MHE KRIOGING ESTIMATOR

We begin by considering the kriging estimator
first and then later consider the problem of the
estimation and modeling of the spatial correlation
function. The kriging estimator has a practical and
intuitive basiv as well as a theoreucal one. let
Xy,....x, denole points in 1-. 2- or 3-space, Since
we will have few occasions to refer to the coordi-
nates of a sample location, using x to denote a
point instead of the first coordinate will not lead
to confusion. Let Z represent the variable of inter-
est and thus Zix) ..., Z{x,) represent the data
{values). Given an unsampled location xy or a
volume V. we wish to estmate Z{x;} or the (spa-
tial) average vatue over Y. If the sample locations
were all inside V and corresponded to random
selection, then estimation of the spatial average
over ¥V would correspond 1o the usual problem of
estimatng the mean {of a distribution}). Therefore,
the sample mean, i.e., the arithmetic mean, would
he a natural choice for the estimator. That is, one
would form a linear combination of the data with
all weights (coelficients) being equal to 1/n. This
analegy would not apply if some locations were
outside of ¥, in which case 1t would seem reason-
able to use unequal weights with the closest loca-
tions having the largest weights. In a practical
sense a lincar combination is the simplest function
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portant for several reasons. I the random
function formulation 1s used, then Z{x} ...,
Z{x,), Z(x,) could be considered as jointly dis-
tributed random vanables. In that case the muni-
mum variance unbiased prediclor of Z{ x), given
the data Z{x,),....2Z{x,). would bec the condi-
tional expectation of Z(x,), given the data
Zix ), ..., & x ). Moreover, in the case of mult-
variate normality the conditional expectation i1s a
hnear function of the data. Motivated by this
special case. the kriging estimator 1s given by

Z* (¢ V=X (x)Z{x,) {1

Although, as indicated, the weights, A (). are a
funcuon of x,,, we shall wne them simply as A,
We now need a method for determining the
weights, which should be chosen so as to minimize
some measure of the error of estimation. The
variance is an obvious choice for this measure,
partly because it leads easily to a system of hinear
equations. This variance and the assignment of the
welghts is dependent on the spatial correlation
function hat not on the data values.

Without some maodel assumptions it is not pos-
sible to formolate a solution. We will impose
condivtons on the random function which, of
course, are not (statistically) testable in terms of
the available data. These assumptions are usually
called the Intrinsic Hypothesis.

(1 E{Z(x+ k)~ Z{x)} =0 for all points x and
all vectors A
iy 0.5Var{Z{x + h) — Z{x)} = y(h) exists and
depends only on A
It 1s possible to weaken (i) by assuming that the
mean of Z{ x) is representable as a linear combi-
nation of known functions usually taken 10 bz
monomials in the positton coordinates, The func-
tion representing the mean 1s calied the dnft and
hence (i) corresponds to constant drift. When y{ A},
called the variogram, depends only on the length
of the vector A and not on its direction; the
variogram and the random function are said to be
isotropic. Otherwise they are said to be amiso-
tropic. The most common form of arusotropy is
called geometric. Such an anisotropy is removable
with an alfine transformation applied to the do-
main ofF the random function An affine transfor-



mation combines a rotation with a streiching
andor a shrinking. If Z{x) 15 second order sta-
tionary, then y(A) is retated to the covariance
function C{h) as follows:

y{h) = C(0) - C(h) (2)

Whereas the covariance function 1s bounded and
asymptoucallv goes to zero as the magnitude of k&
gets large, the variogram can exist when the co-
variance does not and i need not be bounded. Tt
s also somewhat simpler to estimate the vario-
gram since it is nol necessary to sepafately esti-
mate the mean of Z({x). Using the variogram, the
varlance of the error of estimation can be written
as a quadratic form in the unknown weights. A
Lagrange multiphier 1s introduced in order to ob-
tain unbizsedness, Le. to compensate for the con-
straint which resulis in unbiasedness. Minimizing
the vanance leads to the following systemns of
linear equations

A ylx, —x ) tp=vy{x, ~x); j=1.... n
TA, =1 (3}

For the details of the derivation see Journel and
Huijbrechts [1].

In the case of non-constant drift, additional
Lagrange multipliers are required because of ad-
ditional constraints needed to ensure unbiased-
ness. While the estimator does not change. the
system of equations does and this is called univer-
sal kriging (as contrasted with ordinary knging).
In matnx form the sysiem appears as

N RN @

where K is the block consisting of the values of the
variogram corresponding to pairs of sample leca-
tions and K, consists of the values of the vario-
gram for pairs consisting of a sample location and
the point where an estimate 15 desired. E is a row
of 1s. E’ is a column of 1s and p is the Lagrange
multiplier introduced because of the constraint,
The minimized estimation variance is given by

LA y(x, = xp) + g (5)

The estimator has a number of useful proper-
ties in addition to the unbiasedness and minimum
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variance conditions imposed 1n order to derive the
kriging equations given in (3). [t 1s easily seen that
if the estimator 15 used 10 obtain an estimate at a
location where there is data and if that data 1s
used: then the estimated value is the observed
value, that i1s. the estimator 1s exact. 1t 1y less
obvious that the estimator has the desirable prop-
erty of assigning larger weights to sample loca-
tons that are close to x,. Wote that although the
sum of the weights is T, the weights need not be
positive and hence estimated values could be
negative. Moreover. an esimated value could be
larger than the largest data value although in
practice neither of these circumstances occurs
often.

The kriging equations given in (3) can also be
written 11 terms of the covariance funcuen (under
an assumption of second order stationantyy by
using {2). When there is no spatial dependence,
i.¢,, the variogram is a positive constant for all
non-zero lags, all the weights in the estimator are
1/n and the kriging estimator reduces 1o the arith-
metic average. Certain sample location patterns
may have the same effect even with a non-nuggel
vartogram.

3 YVARIOGRAM ESTIMATION AND MODE]L ING

While empirical values of the variogram could
be used in the coefficient matrix 1n {4). the vario-
gram entries on the right hand side would have o
be computed from a theoretical model or inter-
polated. In practice the esumated values of the
variogram for certain distances 1s used to fit a
theoretical model which is then used to compute
the entries mm the system of equations. Not all
functions can be variograms; 1n particular the
estimation variange should be non-negative and of
course the coefficient matrnix in {4) should be
invertible. A weak form of positive definiteness s
sufficient for both of these properties. (See Myers
f2].y Unfortunately, it 1s not simple to test a func-
tion for either ordinary or conditional positive
definiteness and in practice the theoretical model
15 constructed as a positive linear combination of
known valid models. (This is known as a nested
structure.)
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Recalt from matrix theory that a function g{x)
defined in p-space 1s positive definite if for any
pomnts x,,...,x, and any coefficients c,,...,¢,
the quadratic form

Yle,cogl{x, —x,) (6)

1s greater than or egual to zero. If a covariance
function is used instead of a vadogram. then the
estimation vanance is an expression of this form
and covariances are known 1o be positive definite,
In this case the matnx K in (4) will be positive
definite. If 1t 1s stricily positive definite. then the
coefficient matrix in (4} is invertible and hence the
system has a umgue solution. When a variogram is
used instead of a covariance, then the negative of
{6) must be non-negative, but only for those coef-
ficients which add to zero. This is the defimtion of
conditional positive definiteness. While 1t does not
ensure that K is invertible, it does ensure that the
coefficient matrix is invertible as shown in Myers
[2]. Unfortunately, neither positive definiteness nor
conditional positive definiteness are easily de-
termined by a plot of a function and as a practical
matter we consider only nested structures of cer-
tain known valid models.

These models have the advantage that they are
charactenzed hy a few parameters which are inter-
pretable from the plots. All variograms are zero at
lag zero. but they may have a discontinuity. This
discontinuity 1s known as the nugget effect. The
other two characteristics are the sill and the range.
In terms of a covanance function the sill would be
the value of the covariance at zero less the nugget
and the range is the distance at which the covari-
ance becomes zero. In general the plot of a covari-
ance is the same as the plot of a variogram except
that it 1s inverted. Five of the standard (isotropic)
models are as follows:

Spherical

_ C‘l{l.S(r/a) —O.S(r/a)s}, O0=<r<a

.. r>a

y(r)

Exponential
y(r)=C{l1-exp—(r/a)}, O0=<r

Gaussian

v(r)=C{l-exp(=(r/a)}}, O=<r

Each of these models corresponds to a covarance
and for each €| is the sill and a is the range. In
the case of the Exponential and the Gaussian
models there is only an effective range generally
taken to be a’ = 3a.

FPower
Y(;):C]r”, O{Qﬁ?'
Nugget

y(r)=GCy r=0

Q, r=10
The power model does not correspond to a covari-
ance and does nol have a sill or range. The case of
a =1 for the Power model gives the Linear model.
For simplicity, however, most computer programs
will denote €} as the sill and a the range even
though these are not the true sill and range. One
may be tempted to use a truncated linear model,
1.e., linear up to a range and then constant there-
after, but such a model 15 not valid except
1-space.

By analogy with estimators used in classical
problems in statistics, the natural estimator for the
variogram 18 the experimental or sample vano-
gram given by

v* (k) = {0.5/N(B))Z[Z(x, + h) — 2(x,)]" (7)

where x, + k&, x, is a pair of sample locations
apart and N(A) is the number of such pairs. When
the sample locations are not on a regular grid,
there may not b¢ more than on¢ pwr for any
particular A. In that case pairs are grouped nto

Aictarnca nmAd amnala lacesne Tha cBeagno ~fF tha ~]oeeoe
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will be iJlustrated i the numencal example to
follow. Note that in general we do not simply fit a
curve on the plot of the sample vanogram for
several reasons: (a) the model must satisfy the
appropnale positive definiteness conditions; (b)
not all plotted points are of equal 1mportance or
reliability in estimating the value of the model for
that lag; (c) there 1s some arbitrariness in the
choice in the length of the distance classes and
hence of the points for which an estimate is plotied.
In general the variogram model, 1.e., the values of
the variogram, is more important for short than
for long distances since the kriging estimator has
the property that 1t gives larger weights to data at
points close to the location where an estimate 1s
destred and lesser weights 1o those far away. Con-
sequently the modcling process is more crifical for
short than for long lags.

As an average of squares the sample variogram
15 not very robust. A number of other variogram
estimators have been considered as well as direct
estimation of the parameters in the model{s). These
include the use of weighted least squares and
maximum lkelihood. The latter requires an as-
sumption of normality, For a more extensive dis-
cussion see Myers [2].

While one may be interested in the variogram
or covariance for reasons other than therr use in
the kriging equations; that 1s the most common
reason. [t is reasonable then to link the estimation
to the behavior of the kriging estimator. Although
it was not imposed when deriving the kriging
equations, one of the properties of the knging
estimator is that it is exact (someumes called
perfect). If one estimates at a data location using
all data including the data at that location, then
the estimated value will be the observed value.
This suggests a way of testing the vaniogram mod-
eling. Namely one systematically deletes each
sample location one at a time and estimates a
value for that location using only the other data.
This is known as cross-validation and it produces,
for each location, the data value, an estimated
value and the minimized estimation variance. If
the variogram has been adequately modeled, then
the estimated values should be ‘close’ to the ob-
served values (in an appropriate sense). There ate
several possible measures of ‘closeness’ such as the

mean error (which should be close to zero); the
normalized mean square error (which should be
close to one); the correlation of the estimated and
observed values (which should be close o one);
and the correlation of the estimated and the error
of estimation (which should be ¢lose to zero). One
can vary the parameters in the variogram model in
order to try to optimize all the cross-validation
statistics. Thus is {llustrated later in the example

4 PRACTIC AL ASPECTS

The form of the kriging equations given in [3]
makes it appear that all data are vsed to eshimate
all locations. In the case of large data sets, the
coefficient matrix in (4) would be large and would
require special methods for inversion. However,
except for the nearby {ocations, the weights will be
zero or nearly so. Hence in practice a moving
neighborhood 1y used and only data {rom nearby
lecations {those in the search neighborhood) are
used in the esumator. When implemented in
software, the user must specify the size of the
neighborhood and the number of locations to be
used (both mimimum and maximum). In praclice
1t 15 seldom useful to set the maximum at more
than 25 and the size of the neighborhood 1s gener-
ally taken to be the same as the range of the
VAriogran.

Returning to the guestion of the choice of the
number of distance classes and the width of the
classes when computing the sample vanogram for
irregularly spaced data, there are two desirable
features for the sample variogram which work
against each other. In order that detailed informa-
ticn about the shape be gleaned from the graph.
the classes should be narrow: but in order to
enhance the reliability of each plotted point, the
number of pairs used to produce that point should
be large. Unfortunately for a given sample loca-
tion pattern one cannot have hoth. Increasing the
number of sample locations or using somewhat
unusual sample location patterns as shown by
Warrick and Mvyers {4] 1s the only way to attain
both. Often however the data have alrcady heen
collected and neither the number of locations nor
the pattern can be altered. In this case it is neces-
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sary to experiment with the number and the width
of the classes to optimize the information gleaned
from the plot. Recall that the behavior of the
VAnogram Oor covariance is most important for
short lags and in many cases one ignores the plot
for longer lags. [n particular the longest lag should
notl exceed half the maximum distance between
sample Jocations. Note thac there 1s no purpose in
using lag distances smaller than the smallest
inter-locaton distance.

As pomnted oot by Myers [8] stationarity is a
property of the random function and not of data.
If, as ymplicit in the geostatistical model, the data
are viewed as one sample from one realization of
the random function; then it s not possible to test
for stattonarity of the random function. Neverthe-
less. various aspects of the analvses of the data
can be indicative of non-stationary. For example.
the sample variogram estimates hall of the mean
square difference rather than half of the variance
of the difference and these two only coineide in
the case of a constant mean {(of the random func-
tion), If the mean of the random function is not
constant, then the plot of the sample variogram
will exhibit a growth rate that is greater than 1s
theoretically possible for a valid varogram. A
valid variogram dees not have to be bounded, but
the growth rate as a function of the lag distance
must be less than quadratic. Hence, if the plat of
the sample vanogram exhibile a guadrate or
higher growih rate, there are no valid madels o i
to the plot.

The solution 1s 1o decompose the random func-
hon into a statiopary random function and a
deterministic compoenen! representing the non-
constant mean. The problem is how ta determine
this decomposition using enly the data. There are
several possible approaches. One 18 to first fit a
trend surface to the data. which represents the
deterministic component. Using the trend surface,
residuals are computed und used to compute the
sample varlogram. However, trend computed in
this fashion is not the same as the drift. In particu-
lar, the trend surface as an estumator of the drift is
not optimal in the sense of minimizing the van-
ance of esumaton. Moreover, when these residu-
als are used to compute the sample variogram, it is
a hiased estimatar of the vanogram as shown by

Sabourin [6]. While tlus technigue is defensible as
a practical technigue, it has theorenca! as well us
computational disadvantages, as descnbed by
Nevmann and Jacohsen [7] and Cressie [R]. One
must use this technique with some care. The ab-
jective of using the restduals is 10 oblain a sample
variogram that does not exhibit the rapid growth
rate. The important charactenstics to lock for s
the lack of quadratic growth in the variogram of
the residuals when it is present in the variogram of
the data.

Non-stationarity and anisotropy are sormetimes
difficult o disunguish and the non-stalionarnity
often has a directional aspect. This interrelation
can sometimes be exploited. For example non-
stationarity may occur only in one direction as in
the case of a subsurface flow, whereas i a per-
pendicular direction no non-stationarity 18 evi-
dent. In that cose it may be possible to model the
variogram using the sample vanogram for the
direction perpendicular 10 the direction corre-
sponding to the non-s1ancnarity using an sotropic
model.

For economic or analytical reasons one afien
uses composited samples. This practice can cause
problems in the geostatstical analysis 1n several
ways. If there was no spatial dependence and the
data were constdered as a random sample from a
single population; then the statistical effect of
compositing corresponds (o the use of samples of
size preater than one. This 1s olien desirable since
there is a reduction in the variance of the estima-
tor. When the data are spatially correlated. the
effect is different and less desirable. if the data are
used Lo estimate variograms, then it is necessary to
compensate for the support of the samples. Com-
positing will lezd to a reduction in the number of
(apparent) sample locations. Hence the number of
pairs for each plotted point is reduced and often
the minimum distance between sample locations is
imereased thereby reducing information concern-
ing the variogram at short lags. Finally there 1s
also a theoretical conseguence since the wrong
variogram 1s being estumated, te, the sample
variogram in this case estimates an averaged value
of the variogram. This ‘regularized’ variogram will
have a smaller il and an apparent shorter range
of dependence. This problem was recognized early



in mining appheations where samples are {re
quently represented by sectioned drill hole cores
or by samples composited from ail the blast holes
in a rmning black. Whern the compositing corre-
sponds to a reasonablv regular geometnic shape,
there are [ormulas for inverting the process after
the variopram hzs been modeled. If compostted
samples are used as data in the krging estimator,
then the krging equations must also be modified.

Ta easly see the effect of compositing on vdrio-
gram computations, consider a rectanpgular array
of pivels, perhaps 100 > 100, I the values of the
poels wers those of a random funcaon with var-
ance 100, the variogram should have a sill of 100.
If now the pixels were composited either as 2 xX 2
sguares or 5 5 squares, then the sill will be
reduced 1o 25 and 4 respecuvels. Mareover, for
the original data there will be many pairs for a
distance of 1 whereas for the 22 squares the
minimem distances between centers will be 2 and
5 for the 5 x5 squares. If the onginal range had
heen less than 2 then the sample vanograms for
the composited duta will appeur as pure nugget.
The compositing effect is an intwtively obvious
one since the dais s bring smonthed and henee
local heterogeneities are being removed. The vari-
ance 1s reduced and short range correlations are
smoothed but

5 SOFTWART

Before the advent of the personal computer
equipped with a numeric vo-processof, sufficient
memory and disk space. it was necessary 1o nse a
mainframe computer or at least a nunicomputer
for geostaustical analysis. Commercial software,
while available, tended 1o be very expensive. ex-
cept for large users such as mining or oil compa-
nies, Conscyuentily, most non-commerclal users
wrote their own or modified an available pregram.,
Geostatistios programs are {requently published in
the juurnal  Computers and  Geosciences. The
mathematics of a geostatistical package are not
very demanding, smce 11 basically only involves
solving a system of linear equations tagether with
appropriate  input ‘ouiput and anternal data

Chemumetnes and Inielhgent Labcratory Systems B

has not only muade sofficient computing power
easily available, it has also spawned several public
domain packages one of which has become a
defacto standard in terms of features, ease of use
and the availability of good documentation. The
Geo-EAS |9] package was produced under the
sponsorship of the US. EPA  Environmental
Momitoring Systems Laboratory at Las Vegas,
Nevada, and was officially released by EPA into
the public domain, Moreover, EPA continues to
previde supporl for the package. Geo-EAS in-
cludes a number of geostatstical components such
as PREVAR, VARIO, XVALIL, KRIGE as well
as utilites such as TRANS, POSTPLOT and
CONREC. The use of these witl be described later
in the example. An earlier package, STATPACK,
praduced by the US. Geological Survey at Den-
ver, Colorado, was in part a downloading of com-
ponents written for a mainframe computer and
reflected a bateh mode of operation (o a consides-
able degree, whereas the Geo-EAS packsge i
highly interactive with extensive graphics. The
CGrec-EAS package has been uvsed in the following
example, The Geo-EAS documentation should be
consulied for program details. The cxecutable code
15 available from the Las Vegas ollice and the
source  code iy available from ACOGS [10]
{Arizona Computer Onented Geological Sonety),

TARLE I
Format af Geu-EAS data file

Duallas Lead Study. average of first irch of soil lead data
4
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6 AN ENAMPLE

Several vears ago the U.S. EPA was concerned
with lead contamination n the air and soil of
certain parts of Dallas, Texas and subsequent
accumulation at significant Jevels in humans. It
was asserted that the contamination came from a
smelter which had been shut down, but it was still
necessary 1o determine the extent of the pollution.
To this end, data of various kinds were collected,
together with soil samples. The data used n this
example pertain only to the soil samples, for which
sample position coordinates were given as well as
the concentration of lead. Table 1 shows the header
required an the Geo-EAS file together with the
first few records of the data set. There were 361
data locations in the study. One of the columns in
the data file is used only for sample identfication,

6.1 Exploratory analysis

Since the sample locations were spatially
located. it is important to consider not only the
empirical distribution of the data values but also
the pattern of sample locations when considering
the effect of possible outliers. It 1s useful to pro-
duce a plot of the locations either on screen or in
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Fig 1 Sample locations

hard copy. Some programs will code each location
by the value of the vanable at that location. Fig. 1
is such a plot for the Dallas Lead data, which was
produced by POSTPLOT. The POSTPLOT incor-
porated into YARIO uses color to code the data
values, but the separate POSTPLOT utility allows
the use of symbols, symbol size, color and numeric

Statistics

4 N Total 361
i N Miss 3}
408 1 N Used 361
— Mean : 92 .598
3 Variance: 41931.3688
5 3909 Std. Dey: 284.771
el #» C.V. 221.139
: Skeuness: 11.952
e Kurtosis' 182.831
298, -
Hinimum @ .98
25th » ¢ 29.888
1808 . - Hedian 46 .80
’ 75th « 98,758
Maximum @ 3357 .808
e, l_-l—— T T T 1
n. 1809 . zppa, 3008 . 4008 ,

F P |



214

Chemomeines and Intelhgent Laboratory Systems &

vialues. This also allows coding sample locations
by the values of several vanables at the same time.
Perusal of this plot indicates the spread of the
sample locations both in terms of distance and
direction. This information can be useful in set-
ting the parameters for the variogram estimation
progrant. Based on the plot and possibly alse on
the histogram of the data values, 1t is sometimes
useful to partitionn the data set spatially into one
or more subscts. The histogram 1s important for
providing evidence of bi-modality or skewness of
the distribution. While the derivation of the krig-
ing equations did not depend on any distribu-
uonal assumptions, both the kriging estimator and
the sample variopram are weighted averages and
somewhat sensitive 1o skewed distnbutions, Chem-
ical data are often found to be lognormally dis-
tributed and the histogram s 2 quick way to
examine the data for such charactenistics, Figs. 2
and 3, respectively, show the histograms of the
original data and log transformed data; these fig-
ures were produced by STATIL. In the case of
multivariate data it may be useful to consider
principal components analysis, correspondence
analysis or multiple regression in the exploratory
analysis stuge.
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Difference: Estimate-LN (Lead?

Fig 3. Histogram for log transformed data.
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6.2 Variogram estimation

In Geo-EAS this is done in two stages. PRE-
VAR sorts the data set mto pairs of locations
identified by separation distance and separation
direction. This file is then the wput for VARIO.
PREVAR is the most restrictive of all the Geo-EAS
programs with respect to the size of the data set
since 1t will only use the first 150 records in the
data file because of dimensioning and memory
hmitations. VARIO will compute the sample
variogram given by (7) above as well as several
other estimators. The user must speaify the prin-
cipal direction and the angle tolerance but the
program will compute default distance classes al-
though these may be changed by the user. The
program will default to an imitial direcuon of ¢°
and a tolerance of 90° which has the effect of
ignoring the direction. 1e. the all-direcuonal or
isotropic sample variogram is computed. Uniess
information is available to mdicate a particulur
direction of interest, the usual practice is 1o com-
pute the all-directional variogram as well as direc-
tional vartograms for 0°, 45°, 907, 135°, each
with a tolerance of 22.5°. If these appear 10 be the
same and hence well represented by the all-diree-

Statistics

N Total: J61
H Miss 3}
N Used @ 361
Mean : .aag
Std Dev: .B25
Minimum: -3.874
25th »# ¢ ~.462
Median @ 872
Sth ¥ 5689
Maximum: 2.14B
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tional variogram, then an isotropic model is used.
Ortherwise, one muost attempt to deterrune the
direction with the maximum range for the vario-
gram as well as the ratio of the maximum range to
the range in the direction orthogonal to it. These
are then used to specify the (geometnic) aniso-
tropv. Note that in general the direcuonal vario-
grams will have fewer pairs for each plotted point
than the ali-directional variogram. Therefore for
some directions the plot may be so erratic as 1o be
difficult to determine s model and an isotropic
mode! may be used for lack of adequate plots. The
sample location pattern may mask or induce an
tapparent) anisotropy. In general consideration of
the focation plot iy essential for interpretation of
the vaniogram plots.

As was noted earlier 1f the vanogram plot ex-
hibite o growth rate that is quadratic or larger,
then it 1» necessary 1o use some method for remov-
g the drift before modeling the wvartogram
VARIO includes an estimator known as the “in-
Cov' (in a previous version it was called “Non-
ergodic’y. The algonihm locally estimates the dnft
at each sample location, computes a residual and
then computes an estimate of the vanogram. It is
called "InCov’ in part because it computes an
estimate of the covariance which is internally con-
verted to an estimate of the variogram, Some
programs include the use of a trend surface to
estimale the drift and residuals are then computed
and used to compute the sample variogram,

This process of variogram estimation and mod-
eling should be viewed as an interactive one since
it may bc necessary to Iry different variogram
estimators, change the distance classes, limit the
geographical extent of the data set, change the
direction tolerances and then compare the plots.
Note that it 15 not necessary to fit a model 1o the
entire plot of the sumple vanogram since the short
lag portion of the plot 1s the most important.

6.3 Choosing a model

In practice this means selecting a linear combi-
nation of the models provided in the program
{almost certainly all of the models given above
will be included) and for each term in the combi-

N 4 - — e -

might choose a nugget with a sill of 5, a sphencal
with a sill of 10 and a range of 50 and a spherical
with a sill of 15 and a range of 100. VARIO will
allow interactive selection of the variogram types
used in the linear combination as well as the
parameters and then will plot that model against
the sample variogram. it may be necessary 1o try
different combinations to determine the (ap-
parent) best fit. If some form of least squares 1y
used to fit a model to the plot of the sample
variogram, it should use some form of weighting,
Even in that case the fitted mode! should not be
considered to be optimal in terms of its use to
determine the weights in the knging estimator.
For example, the plot can be ahered, perhaps
significantly, by changing the distance classes and
henee the Jeast squares fitted model may be differ-
ent for these different plots. There are three mitial
pieces of information to look for in the plot: the
magnitude of the nugget (or the abscnce of a
nugget), the distance (called the range) at which
the plot appears to level off (if it does) and if n
does. the magnitude of that constant value. In
general kriging 13 only useful when the nugget 13
maoderately small compared to the total sill. The
nugget may represent noise in the data such as
measurement errors or it may reflect insufficient
information at short lags to adequately determine
the shape of the variogram. Figs. 4, 5 and 6 show
the all-directional variogram for the transformed
lead data, the 90° directional vanogram and a
model plotted against the all-directional vario-
gram. The comparson of these 15 used to jusufy
the use of an isotropic vanogram. Table 2 tabu-
lates the computed values of the variogram for the
log transformed data (all-directional variogram)

6.4 Cross-vafidainion

While one may be interested in estimating and
modeling the vanogram for purposes other than
kriging, that is the most common use. Hence 1t is
important to consider the relationship between the
estimation /modeling process and the subsequent
use of the variogram in the knging equations.
XVALID will produce the various cross-validation
statistics described above. To use the program the

= 1 3 1 ERE
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Frg. 4 Sample vanogram, all direcuenal and model.

search neighborhood parameters. The latter in-
clude indicating whether the neighborhood 1s cir-
cular or elliptical, the radius or lengths of the
major and minor axes, the mintmum number of
sample points 10 be used for each estimation, and
the maximum number of points for each estima-
t1omn.
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Parameters

File idave.pcl

Pairs 184729
Direct.: .Aag
Tol. : 98 .PB4
MaxBand: n’a

L¥ (Lead) Limits

Hinimum: 1.792
Maximum: B.119
Mean : 3.985
Uar. : .8237P

Ordinarily the scarch neiphborhood 1y set to
m:tch the variogram model, 1e. as a default value
the radius of search neighborhood is set equal to
the range of the variogram. If an insufficient num-
ber of data poimnts are found within the search
neighborhood for a particular location, then that
estimate will be skipped. 1f more than the speci-

Parameters

File ‘dave.pcf

Pairs : 2685
Direct.: .peB
Tol. : 22.958
MaxBand: wa

LN (Lead) Linits

Hinimum: 1.792
Maximur:: B.115
Kean : 3.985
Uar. : 82378
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TABLE 2 TABLE 4
Computed values of vanogram, afl directional Crosy-validaton resulty
Lag e Number f Averape distance ¥* Daw Estimate  Krg. sid. Nurmu!ucd__
pairs dev.
1 a2 1082 0.664 Minumum 1.792 2057 Q.362 -a(l2
2 376 1.62% 0.50% 25th percenuie 3367 3556 0,484 - 0842
3 527 IE74 0.531] Medan 1829 1944 {494 a1ey
4 1173 4,159 AT 5 percenile 4500 4348 {3 50k [WER
s 1250 5437 635 Maximum 8119 6083 &1l 4,728
4 1294 6.662 0725 . .
. 1301 ~ 840 0 738 Meun 3985 3982 0.50) —0.003
! 1<i3 0 038 0 74 Sid. dev. 0908 D636 004 e
9 1370 LN 07485
10 1163 L350 0,797 . . . .
' ’ S staustics resulung from cross-validation. Figs. 7
and 8 show scatterplots of ‘estmated vs. observed’
TABLE 3 and of ‘estimated vs. normalized error of estima-

Nested struciure for vanogram moded

Tera N T vpe Sill Runge
1 lu.‘g:gct b oo
2 sphienical 4 40
3 sphecial 0.3 70
4 sphercal 005 9.0

fied maximum number of points are found 1n a
neighborhoed, then only the closest ones are used.
In XVALID this process can be seen graphically
as it oceurs by choosing the Debug option. Table
4 shows the Results screen giving the numerical
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tion’. These results cannot be judged against ab-
solutes but rather theyv provide a too! for ranking
the choices Tor the variogram model. Therefore it
15 wsually necessary 1o try several possibilities.
Note that the cross-validation statistics con be
affected by the choive of the search neiphharhoed
parumeters. In some instances these stanstics are
relatively insensitrve to changes in the variogram
or the search neighbarhood.

6.5 Kriging

This is perhaps the easigst step since all the
parameter cholces will have been mude at previcus

Parameters

File ‘dave.pel

Pairs 2638
Direct.: 96 . BAA
Tol. : 22 .884
MaxBand: n/a

LN (Lead) Limits

Minimum: 1.792
Max imum: 8.119
Hean : 3.985
Uar, : .B2378
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Fig 7 Scater plot of 2% wa 7

steps. namely the choee of the variogram model
{Table 3) and scarch neighborhood parameters.
KRIGE provides for two forms of kriging, point
and hock (block kniging carresponds o estimg-
ton of spatial averages). In each case the esti-
mateés are produced for o grid whose position und
mesh are chosen by the user. If block kriging 1
chosen then the size of the bliwk must also be
chosen. The output from either form of kngag

ip.

Kriged Ezstinate

1a.

LN (Lead)
Fig % Scaties photof 2= v %L,

may be used with a contouring puckage o pro-
douce a map of the estimated valuzs and alwo a
map of the knging standard deviatuons, The later
is useful in interpreting the former since th2 con-
tour map of the hnged variable 1s not of the sume
degree of relability over the entire region, Geo-
EAS includes a component called CONREC which
will produce an on-screen contour plot [t does
this by first producing a metscode lile which can
be VIEWed or it can be transformed 1ato a
Hewlent-Picksrd ploiter file Wiuth the exception
of PREVAR all of the computation programs in
Geo-EAS preduce Geo-EAS files and hence can
he used as input files for other components. Krig-
mg 1 a smoothing process and hence the vanance
of the kriged values 1s less than that of the original
data. fhie wse of the jop transform does cause
some problems since a simple exponentiation of
the estimate will result in 3 bias, The accessary
corrections can be found in Journel [11]. The plois
and variogram model used above do not neces-
sarily represent an optimal modchng of this data
set hut are given here for iflustration only.

One of the best ways (o grasp the usefulness of
geoslatislivs s to apply the varions components of
Geo-EAS 1o a partcular data set and to lake
advantage of the mteractive capabilities of the
programs. This allows the user to guickly see the
effect of choosing diffzrent variogram models and
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T EXTFNSIONS

There are a number of extensions of kriging
thut have been developed. Some are hinear and
others are non-linear. Each bas been developed 1n
response o some particular application problem
or percenved lack in kriging. Tn many applications
there may be several variables of mierest. For
exampic I many copper mines molybdenum s
alens extracted from the ore: and the two metal
grades are found 0 be not only separately spa-
tially correfated but they are also correlated with
each other. Cokriging 15 a lingar estimation method
wlich incorporates both the spatial and inter-vari-
able correlation and hence data on both variables,
in hvdiology there are often many vartables of
interest, such as hydraulic conductivity, permea-
hility. and porosity . Larly apphications emphasized
the use of data from one vanable to enhance the
estmation on another more important variahble,
Often the proxy vanable was one that was easter
or cheaper to sample A complete presentation is
found m Myesy [12.13).

Because the estimator 8 g linear combination
of the data and the vanogram esumator is an
average of squared differences; both of these are
sensitve 1o toutliers’, In some cases this effect 1s
reduced by transformation such as a logarithm,
this heing mouvated by an assumption of or an
apparent indicauon of log normality. Because in
muny applications one 15 interested 1n & particular
cutedl value and the associated proportion of an
area or volume above (or below) the cutofl, ihe
use of an indicator transform 1< indicated. Treated
as a stanonary random funcuon the indicator is
closelv related to the marginal probahitity distri-
bunon; therefore a hnear esumator for indicators
can be used leading to a set of kriging equations.
This work s largely doe 1o Journel [14,15) and s
students at Stanford.

One of the advantages of viewing spatial data
as a sample from a realization of a random fune-
tron is that it leads mt}\:r naturally Lo the idea of

I PO S H R [ S |

on the data. Simulauuon of a random funcuon
could be viewed in severud contexts, i.e. if the new
realizations are to be from the “same’ random
funcuon. then certain characteristics must be pre-
served, In peostatistics this 1s wsoally taken to
mean that the first and second order moments are
preserved as well as the marginal distnhution.
Other characteristics could he considered. The em-
phasis on the moments 15 partially a consequence
of the fact that kriging only depends on the first
two moments. Simulation of random functions in
1-space, e, lime series, was well-known hut there
remained the question of prodacing simulations in
2- or 3-space and preserving the spaual depen-
dence. The Turning Bands method of Matheron
(16] produces a simulation 1n higher dimenswonal
spuce by producing many independent simulations
i l-space. Simulations are useful for a vaniety of
applications such as mine planning, modeling the
spatial vanahility in a pollutant dispersal, evaluat-
ing potennal sites for waste disposal to name a
few. Kriging provides a method for conditioning
the simulation Lo the data.

For most distribution based statistical tech-
nrjues 1l 1s possible to determine a sample size
that is sufficient with respect to some criterion
such as the power of a test or the width of a
confdence interval. In the case of spanally located
data however it 1s pot sufficient to consider anly
the pumber of locatons. The sample location pat-
tern Iy also important. Since the kriging vanance
does not depend on the data as such (although in
general the data s used (o estimate and model the
variogramy); 1his variance can be computed a priori
for a given model and sample location pattern.
Hence the sample Jocation patterns can be ranked
by the kriging wvariances. Determination of an
optimal sampling pattern may arise in severdl
different contexts. OOne may have a large number
of locations such as wells and wish to monitor
only a smaller number but maintain nearly the
same Jeve! of information. One may wish 10 add
additional locations to an exiing patiern (adding
only one 15 easy, simply find the place where the
kriging standard deviation is largest on the con-
tour plot) or a set of locations is 1o be chosen with
an assumed variogram model. This problen has
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cal literature and a brief history is given by Barnes
[17}.

B APPLICATIONS

Ay indicated by previous citations geostatistics
has been and is being applied to a wide variety of
problems in a number of disciplines. These range
from the characterization and contouring of the
likelihood of sudden soil collapse 1n a semi-arid
environment as detalled by All et al. [18-21] to
the assessment of the movement of a multi-pollu-
tant plume by Myers [22]. Myers {23] and Myers
et al. {24] descnbe the application of kriging to
hydrogeochemical data coliected as a part of the
NURE project. Morkoc et al. [25] use kriging with
gencralized covariances i a soil physics applica-
tion. Yates et sl {26] use a noa-linear form of
kriging together with field measured reflectance
and soil lemperature data to evaluate field crop
heterogenertics. Tabor et al. {27.28] compare
nitrogen conient n soil with nitrogen content In
cotton plant petioles as an indicator of need for
fertilizing. Myers and Carr [29] re-examine multi-
vartate data from a Wyoming Bentonite clay de-
postt and compare multivariate geostatistics with
dimension reduction using principal components
analvsis,

2 COMPARISON WITH OTHER METHODS

One of the motivations for the introduction and
application of kriging was that it incorporated the
spatial nature of the data and it has the property
that data from nearby locations are weighted more
heavily than those far away when estimating at a
particular location. There were and are other
methods that have similar charactenistics. One of
these is Trend Surface Analysis wherein the data
are fitted to a polynomial in the position coordi-
nates by least squares. in general this method
estimates at an unsampled location by evaluating
a regional value as represented by the polynomial
but does not incorporate the local fluctuations.
Moreover, as shown explicitly in Marcotte and
Dawvid [30f. Trend Surface Analysis produces the

same estimated values as Universal Kriging with a
pure Nugget variogram except at the data loca-
tions (Trend Surfaces are not exact interpolators).
This 1s a consequence of treating the local fluctua-
tions as ‘errors’ or nolse to be removed. The
estimated variance of the error of estimation is
constant and reflects an estiimate of the magnitude
of the errors.

One of the simplest ways 10 assign weights 1n 4
linear estimator is to make them inversely propoc-
tional to the distance of the sample location to the
point to be estimated, 1.¢. inverse distance weight-
ing (IWD). This technique has some of the samg
characteristics and advantages as kriging but not
all. In particular the weights in the kriging estima-
tor are also affected by the intersampie location
distances and direcuons whereas for IWD only the
relationship of sample locations to the point to be
estimated are used. The process of estimating the
variogram, although not perfect, does have the
capability of adapting to different vanates and
also corporating amsotropies. It 1s possible o
empirically optimize the exponent on the distance
function in IWID by the use of a training set as
shown by Kane et al. [31]. but one must then
assume that the modeling 15 transferable o the
remainder of the data set. While no assumptions
are necessary, nor is there even a derivation for
the IWD estimator, it might be best thought of as
(ncarly) a special case of kriging,

The kriging estimator cun be rewntten as fol-
lows by substututing the solution for the weight
vector into the estimator.

Z*(xy) =Lhy(x,—xo) +a (8)
where

Lhy(x,~xY+a=2Z{x,); j=1,...n

Lh =0 (9)

In this form the esumator is analogous to a thin
plate spline and in fact the thin plate spline can be
obtained as a special case of krging. For an
elementary demonstration see Watson [32] and
also Myers [2]. The smoothing spline can be ob-
tained as a special case of cokriging.
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10 GLOSSARY

Anisarropic: This term is applied both to a random
function and to 1ts vanogram (or covanance) when
the values of the vanogram depend on both the
distatice and the direction. Also see Isotropic.
Cross-rahdation: A method for comparing two or
more conjectured variogram (or covariance) mod-
els. The technigue depends on Jackhkmfing the
data and on the exaciness of the knging estimator.
Drifr: The expected value of a random function. it
may be constam or it may depend on the coords-
nates of the location. n order for a random func-
tion to be stanonary, second-order stationary or to
sabisfy the Intrinsic Hypothesis; the doft must be
a constant, The dnft 1s a charactenstic of a ran-
dom function and not of duta.

Euuctiness): A property of an estimator/interpo-
lator, namety that 1f estimating a value at a data
location and if that data value is used in the
estimation; then the cstimated value will coincide
with the dita value. Tn some literature this is
called Terflect.

Intrsie Myvpodhesis: A weak form of stationarity
for a random function sufficient [or deriving the
kriging equations corresponding to the (Ordinary)
kriging estimator. See (3) and ().

tsotropic: A term apphied both 1o a random func-
t1on and to its variogram. See anisotropic which 1s
the complementary property.

Kriging Equanens: A set of linear equations whose
solution includes the values of the weights in the
kriging estimator.

Kriging Estimator: While the estimalor may be a
linear or a non-linear function of the data. in both
instances the weights in the estimator are de-
termined by requiring the estimalor to be unbi-
ased and have munimum error variance.

Kriging Variance: The minimized value of the
estimation variance, ie., the variance of the errar
of estimation. This variance is not data dependent
but rather is determined by the variogram and the
sample location pattern as well as the location of
the point to be estimated relative to the sample
locations.

Nugger: The variogram may exhibit an apparent
discontinuity at the origin. The magnitude of the

5 T U N [ (RSN (R SR

Pasitive Definite: A term applied both to matnces
and to funcuions. (Auto) covariance functions must
be positive defirute whereas the negative of vario-
grams must be condiuonally positive definite.
Conditional positive definiieness is a weaker con-
dition.

Random Funciion: A random function may be
seen in two different forms; it may be thought of
as a collection of dependent random varnables
with one for each possible sample lacation. Alter-
nalively tt may be thought of as a ‘rundom van-
able” whose values are funcbons rather than num-
bers.

Range (of 4 variogram): The distance at which the
variogram becomes a constant. The Power mode!
does not have z (finie) range. The Exponentii
and Guoussian models have only an apparent range.
Sifl (of a variogram): The value of the varogram
for distances beyond the range of the variogram.
The Power model does not have a sill.

Spatal Correfation: Used both as a generic term
to denote that data at two locations are correlated
1n some sense as a funcuon of their locations and
also 1o denote the value of a spatial structure
funclion such as a variegram or (auto)covariance
for a patr of locations.

Strationariry (of a random function): Several dif-
ferent forms of stationarity are utilized in geosta-
tistcs. Stationarity, in one of its forms. is a prop-
erty of a random function rather than of a data
set. It expresses the property that certain joint
distributions are translation invariant or that cer-
tain moments of the random function are transla-
tion invariant. See second order stationarty and
the Intrinsic Hypothesis.

Supporr: The term is used 1n both a mathematicai
and in a physical sense. Many, if not most vari-
ables of interest i geostatistics, such as the con-
centrations of chemical elements or compounds,
only have values at ‘points’ in an idealized sense
although the random function treats them in this
manner. The data values are wsually associated
with a physical sample having a length, area or
volume; the concentration then represents an
average concentration over this length, area or
volume. This length, area or volume is called the
support. Although it i1s common to report lahora-

terr armaliicoae v ok o tararr ac tey vt rafloor 1hoa




220

Chemometnes and Intelligent Laboratory Systems  ®

original support, non-point support has a signifi-
cant effect on the variogram modeling process and
there is a significant difference in estimatung the
average value over a large volume and {n estimat-
ing the average value over a small volume. The
kniging estimator and equatiens allow this to be
incorporated.,

Trend: While sometimes used interchangeahly with
the term ‘dnft’, in peostanstics the two are conmd-
ered separate. The term is usuaily reserved 1o
denote the deternunistic representation obtained
by the use of Trend Surface Analysis, ic., a func-
tional representation for spatially located data
(usually taken as a polynomual in the position
coordinates) The ‘trend’ is obtuned by a least
squares fit to the data. As an estimator to the
mean of a random function it 1y sub-optimal. If
the residuals from trend surface analyvsis are used
to model the variogram. a biased varogram esti-
mator results.

Varsagram {onginally called semi-vanogram): This
function quantfies the spaual correlation and in
the case of second order stationanty it is ex-
pressible in terms of the (autoyoseriance fune-
ton. See part (i) 1in the Intnnsic Hypothesis and
eg. (2. In order 1o apply knging 1o a data set it s
necessary to model the veriogram, The varogram
must satisfy cerunn positive definiteness condi-
Hans.
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