28

Rapid #: -2894414

Ariel
IP: 150.135.238.50

V

Status

Rapid Code

Branch Name

Start Date

Pending

CRL

Main Library

10/24/2009 9:44:17 PM

Centery-Research Libraries
GLOBAL RESOURCES NETWORK

CALL #:

C-27124

LOCATION:

CRL :: Main Library :: crls

TYPE:

Article CC:CCL

JOURNAL TITLE:

Annales Polonici Mathematici

USER JOURNAL

Annales Polonici mathematici.

TITLE:

CRL CATALOG

Annales Polonici mathematici

TITLE:

ARTICLE TITLE:

Ultra-weak convergence in Lp

ARTICLE

D.E. Myers

AUTHOR:

VOLUME:

32

ISSUE:

ţ

MONTH:

1976

YEAR:

71-75

PAGES:

71 75

ISSN:

0066-2216

OCLC #:

421512062

CROSS

705312

REFERENCE ID: VERIFIED:

BORROWER:

AZU :: Main Library

Myers, Donald E

PATRON:

PATRON ID:

PATRON ADDRESS:

PATRON PHONE:

PATRON FAX:

PATRON E-MAIL:

PATRON DEPT:

PATRON STATUS:

PATRON NOTES:

universityofarizona.worldcat.org:worldca

This material may be protected by copyright law (Title 17 U.S. Code)
System Date/Time: 10/26/2009 8:12:10 AM MST

On ultra-weak convergence in L^p

by Donald E. Myers (Tucson, Ariz.)

Abstract. Let $\{\varphi_n\}$ be a sequence in L^p on the unit circle such that $\lim_{n\to\infty} \int f(e^{i\theta})\varphi_n(\theta)\,d\dot{\theta} = l(f)$ exists for all $f_{\epsilon}H^q$, 1/p+1/q=1, $1\leqslant p\leqslant\infty$.

Then there exists $\varphi \in L^P$ such that

$$l(f) = \int_{T} f(e^{i\theta}) \varphi(\theta) d\theta$$

for all $f \in H^q$. The result is known for p = 1, $q = \infty$, the purpose of this paper is to supply the proofs for the remaining cases.

1. Introduction. Let Δ denote the unit disk and T its boundary. L^P denotes the usual Lebesgue space considered on T and H^q the Hardy space on Δ . If f is in H^q , then $f(e^{i\theta})$, the boundary function of f, is considered as an element of L^P .

Piranian, Shields and Wells [5] proved the following; which was conjectured by Taylor [6]

THEOREM 1. Let the sequence $\{a_0, a_1, \ldots\}$ of complex numbers have the property that for each function $\sum b_n z^n$ in H^{∞} the limit

$$\lim_{r\to 1}\sum a_nb_nr^n$$

exists and is finite. Then there exists a function $\varphi \in L^1(0, 2\pi)$ such that

$$a_n = rac{1}{2\pi} \int\limits_0^{2\pi} \varphi(t) e^{int} dt = \hat{\varphi}(n) \quad (n \geqslant 0).$$

The converse is true. At the end of [5], they conjecture Theorem 2 which if true would imply Theorem 1. Kahane [2] has shown that Theorem 2 is true if H^{∞} is replaced by A. A denotes the subspace, of H^{∞} , of functions having continuous boundary values. Mooney [4] then completed the proof of Theorem 2 utilizing Kahane's result.

Theorem 2. Let $\{\varphi_n\} \subset L^1$ such that

$$\lim_{n\to\infty}\int\limits_0^{2\pi}f(e^{i\theta})\varphi_n(\theta)\,d\theta\,=\,l(f)$$

for all $f \in H^{\infty}$. Then there exists $\varphi \in L^1$ such that $l(f) = \int_0^{2\pi} f(e^{i\theta}) \varphi(\theta) d\theta$ for all $f \in H^{\infty}$.

In this paper we will extend Theorem 2 by replacing L^1 by L^P and H^{∞} by H^q , where 1/p+1/q=1, $1 \leq p \leq \infty$. Although the method of the proof is similar it is necessary to separate the cases 1 < p, $q < \infty$ and $p = \infty$, q = 1 since L^1 is not reflexive.

2. Comments on the proof of Theorem 2 and the more general result. Since $H^{\infty} \subset L^1$, $1 , the hypotheses of Theorem 2 are strengthened if <math>L^1$ is replaced by L^P and H^{∞} by H^q . Therefore, Theorem 2 still asserts the existence of $\varphi \in L^1$ such that

$$l(f) = \frac{1}{2\pi} \int_{0}^{2\pi} f(e^{i\theta}) \varphi(\theta) d\theta$$

for $f \in H^{\infty}$ if the stronger hypotheses are satisfied. To obtain the stronger conclusion by using Theorem 1 would require two seemingly difficult steps, (1) to show that $\varphi \in L^P$, rather than $\varphi \in L^1$, (2) to show that the representation is valid for all $f \in H^q$, instead of just H^{∞} . Although Mooney [3] did complete the proof of Theorem 2 by extending the validity of the representation from a subspace to all of H^{∞} , this does not seem viable when comparing H^{∞} with H^q . In fact, it is much simpler to proceed directly. However, the attempt to proceed from Theorem 2 makes the general result seem plausible. The case $p = \infty$ and q = 1 does not seem to be suggested by Theorem 2.

3. The case $1 < p, q < \infty$.

Theorem 3. Let $\{\varphi_n\} \subset L^p$, 1 , such that

$$\lim_{n\to\infty} \frac{1}{2\pi} \int\limits_0^{2\pi} f(e^{i\theta}) \varphi_n(\theta) d\theta = l(f)$$

exists for all $f \in H^q$, 1/p + 1/q = 1.

Then there exists $\varphi \in L^P$ such that

$$l(f) = \frac{1}{2\pi} \int_{0}^{2\pi} f(e^{i\theta}) \varphi_n(e^{i\theta}) \varphi(\theta) d\theta$$

for all $f \in H^q$.

Proof. Set

$$l_n(f) = \frac{1}{2\pi} \int_0^{2\pi} f(e^{i\theta}) \varphi_n(\theta) d\theta;$$

then $l_n \in (H^q)^*$ which by the Hahn-Banach Theorem has an extension $\hat{l}_n \in (L^q)^*$. Moreover, by the Uniform Boundedness Principle the l_n 's are uniformly bounded and hence the \hat{l}_n 's. Since $(L^q)^*$ may be identified with L^P the l_n 's may be identified with a bounded subset of L^P . Since L^P is reflexive bounded subsets are weakly compact, there exists $\varphi \in L^P$ and a subsequence $\{\varphi_{n_k}\} \subset L^P$ which converges weakly to φ , i.e.

$$\lim_{k\to\infty}\frac{1}{2\pi}\int\limits_0^{2\pi}g(\theta)\varphi_{n_k}(\theta)d\theta=\frac{1}{2\pi}\int\limits_0^{2\pi}g(\theta)\varphi(\theta)d\theta$$

for all $g \in L^q$. If $f \in H^q$, then

m

ld.

зd

lt

地質質

10

١.

ul

$$\frac{1}{2\pi} \int_{0}^{2\pi} f(e^{i\theta}) \varphi_{n_k}(\theta) d\theta = \hat{l}_{n_k}(f) = l_{n_k}(f)$$

but $\lim_{n\to\infty} l_n(f) = l(f)$ so that

$$l(f) = \frac{1}{2\pi} \int_{0}^{2\pi} f(e^{i\theta}) \varphi(\theta) d\theta.$$

The proof of Theorem 3 is considerably shorter than that of Theorem 2 for several reasons, although it is basically similar. In Kahane's construction it is necessary to restrict l_n to A in order to obtain the integral representation for l(f). Unfortunately the representation is given by a measure so it is then necessary to show that it is absolutely continuous and hence given by an L^1 function. Because of the restriction to A, Mooney's construction is necessary to show that the representation is valid for H^{∞} .

4. The case $p = \infty$, q = 1.

THEOREM 4. Let $\{\varphi_n\} \subset L^{\infty}$ such that

$$\lim_{n\to\infty} \frac{1}{2\pi} \int_{0}^{2\pi} f(e^{i\theta}) \varphi_n(\theta) d\theta = l(f)$$

exists for all $f \in H^1$. Then there exists $\varphi \in L^{\infty}$ such that

$$l(f) = \frac{1}{2\pi} \int_{0}^{2\pi} f(e^{i\theta}) \varphi(\theta) d\theta$$

exists for all $f \in H^1$.

Proof. Proceeding as in the proof of Theorem 3 set

$$l_n(f) = \frac{1}{2\pi} \int_0^{2\pi} f(e^{i\theta}) \varphi_n(\theta) d\theta.$$

Then $l_n \in (H^1)^*$ and extends to $\hat{l}_n \in (L^1)^*$. Since $(L^1)^*$ may be identified with L^{∞} , the l_n 's may be identified with a bounded subset of L^{∞} (use the U.B. Principle again). By Alaoglu's Theorem, the unit ball of L^{∞} is weak* compact. Without loss of generality we may assume $|l_n|| \leq 1$ so that there is a $\varphi \in L^{\infty}$ and a subsequence $\{\hat{\varphi}_{n_k}\}$ which converges weak* to φ , i.e.,

$$\lim_{k\to\infty}\frac{1}{2\pi}\int\limits_0^{2\pi}g\left(\theta\right)\hat{\varphi}_{n_k}(\theta)\,d\theta\,=\,\frac{1}{2\pi}\int\limits_0^{2\pi}g\left(\theta\right)\varphi\left(\theta\right)d\theta$$

for all $g \in L^1$, where $\hat{\varphi}_{n_k}$ is identified with \hat{l}_{n_k} which in the extension of l_n . For $f \in H^1$

$$\frac{1}{2\pi} \int_{0}^{2\pi} f(e^{i\theta}) \hat{\varphi}_{n_k}(\theta) d\theta = \hat{l}_{n_k}(f) = l_{n_k}(f) = \frac{1}{2\pi} \int_{0}^{2\pi} f(e^{i\theta}) \varphi_{n_k}(\theta) d\theta$$

and by hypothesis

$$\lim_{n\to\infty} l_n(f) = l(f)$$

so

$$\lim_{n\to\infty}\frac{1}{2\pi}\int\limits_0^{2\pi}f(e^{i\theta})\varphi_n(\theta)d\theta=l(f)=\frac{1}{2\pi}\int\limits_0^{2\pi}f(e^{i\theta})\varphi(\theta)d\theta.$$

Combining Theorems 2, 3, 4 gives the desired complete general result.

4. Results. E. A. Heard [1] has announced a new proof of the weak sequential completeness of L^1 using Kahane's results. A similar approach to the weak sequential completeness of L^p , 1 , is of no consequence, however, since the reflexive property was used in the proof of Theorem 3.

Unlike Kahane's and Mooney's results, Theorems 3 and 4 are independent of dimension, that is both generalize to Δ^N and T^N without any change in the proofs as follows.

THEOREM 5. Let Δ^N and T^N denote the N dimensional polydisc in C^N and its distinguished boundary, $N \geqslant 1$. Let 1 , <math>1/p + 1/q = 1. If $\{\varphi_n\} \subset L^P(T^N)$ such that

$$\underset{n\to\infty}{\operatorname{Lim}} l_n(f) = \underset{n\to\infty}{\operatorname{Lim}} \underset{T^N}{\int} f^* \dot{\varphi_n} = l(f)$$

exists for all $f \in H^q(\Delta^N)$ (f^* is the boundary function of f), then there exists $\varphi \in L^p(T^N)$ such that

$$l(f) = \int_{T^N} f^* \varphi$$

for all $f \in H^q(\Delta^N)$.

ified (use

| | €1

eak*

m of

esult.

weak

મળાલા

delice,

ин 3,

: inde-

if any

or t^{est} g = 1. As observed by Kahane the hypothesis of Theorem 2 is the existence of

$$\lim_{n\to\infty}\sum_{k=0}^\infty\,a_{n,k}b_k, \text{ where } \varphi_n(\theta)=\sum_{k=-\infty}^\infty\,a_{n,k}e^{-ik\theta}, \text{ for all } \sum_{k=0}^\infty b_ke^{ik}\,\epsilon\,H^\infty(\varDelta).$$

The conclusion of the theorem is $\lim_{n\to\infty} a_{n,k} = \int \varphi(\theta) e^{ik\theta} d\theta$ for some $\varphi \in L^1(T)$. Theorem 1 is a special case of this re-statement. In like manner Theorems 3 and 4 can be re-stated to give results analogous to Theorem 1.

An example. In the proofs of Theorems 2, 3, 4, 5 a crucial step is the extraction of a convergent subsequence. This convergent subsequence is obtained by the weak* sequential compactness of the unit ball, rather than just weak* compactness; and separability is a sufficient condition. The following example found in [3], p. 311, shows that in general separability can not be omitted.

By the natural imbedding l^1 is a subspace of $(l^{\infty})^*$ then $\{e_k\} \subset l^1$ is a bounded sequence in $(l^{\infty})^*$ but no subsequence is weakly convergent in $(l^{\infty})^*$.

References

- [1] E. A. Heard, Kahanes construction and the weak requestial completeness L¹, Abstract #73T-B128, Notices Amer. Math. Soc. Vol. 20, No. 3 (1973).
- [2] J. P. Kahane, Another theorem on bounded analytic functions, Proc. Amer. Math. Soc. 18, No. 5 (1967), p. 827.
- [3] G. Köthe, Topological vector spaces I, Springer-Verlag, New York 1969.
- [4] M. C. Mooney, A theorem on bounded analytic functions, Pacific J. Math. 43, No. 2 (1972), p. 457.
- [5] G. Piranian, A. L. Shields and J. H. Wells, Bounded analytic functions and absolutely continuous measures, Proc. Amer. Math. Soc. 18, No. 5 (1967), p. 818.
- [6] A. E. Taylor, Banach spaces of functions, analytic in the unit circle, II, Studia Math. 12 (1951), p. 25.

Reçu par la Rédaction le 25, 2, 1974

crists