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A number of constructions, have appeared in the past two decades,
of spaces of generalized functions, notably L. Schwartz, Theorie des distri-
butions, I, 1I. Some of these obtain generalized functions as confinuous
linear functionals on an appropriate test function space. Others obtain
distributions as boundary values of analytic functions and others proceed-
ing from Van der Pol’s operational calculus begin with Laplace trans-
forms. Each-approach has certain advantages of completeness, generality
and simplicity. Beginning with the elementary premise of defining
derivatives for functions not differentiable in the usual sense, Laplace
transforms or operational calculus provides an easy way to formally
extend the class of functions. Various authors have given ways of
justifying this formal extension. In what follows we propose to compare
certain aspects of such valid extensions. We will discuss only extensions
beginning with functions possessing Laplace transforms, this is not to
claim that extensions are inherently better but merely recognize that
for some problems the extensions can be more easily described. More-
over, in a large class of applications Laplace transforms are an important
tool.

Let L1[0, oo) denote, as is usnal, the space of measurable functions,
with support in the right half line and which are Lebesgue integrable.
The Laplace transform is then a mapping of L! into ® (Rz > 0). The usual
topology for @ is the compact open topology or uniform convergence on
- compact subsets. The domain, L, is a commutative Banach space and the
mapping is multiplicative but the image is not a closed subset of @ nor
is it a normed space. Moreover, the image does not contain the most
elementary analytic functions, i.e., polynomials., We shall attempt to
show that this discrepancy ig, in fact, one of the underlying motivations
for beginning with Laplace transforms to construct generalized function
spaces. L' is “complete” algebraically and topologically except for an
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identity and inverses for all elements. Although standard constructions
are available for adjoining an identity and imbedding the ring in a field
of quotients, this does not seem appropriate in terms of applications of
Laplace transforms. Rather, the adjunction of derivatives is the most
elementary and perhaps the most important extension. Adjunction cf
derivatives corresponds to adjunction of polynomials to the image space.
While we will not concern ourselves with the construction of generalized
function spaces, we will be interested in different topologies that can be
utilized on a space of functions possessing Laplace transforms and how
they relate to the extension problem. The details of such extensions may
be found in Mikusinski [4], which is an algebraic construction, Miller [3],
which is topological and this author [6], among others. One essential
difference between [3], [4], [6] and what follows is that here one considers
a space of functions possessing Laplace transforms without fixing the
half-plane of convergence. This space will be a linear metric space and be
closed under multiplication but the metric does not behave properly under
multiplication. The motive was given by Mukherjee and Ganguly [5]
and several of their results are quoted for reference.

A. ONE-SIDED TRANSFORMS

I. Notation. A function, F, defined and measurable (at least) on
[0, oo) I8 said to be (absolutely) Laplace iransformable if there exists o
such that

[v]
fe*stm Nt < oo, §>0.
0

For such a function, let op = inf{s}, oy is called the abscissa of con-
vergence (see [1], among others). As has been pointed out in [5], the sum
of any two funections is again transformable and

GF—[—G < maJX(O'F7 Ug).
It is also easily seen that with * denoting convolution
Opu << Max (og, og)

by an elementary application of Fubini’s theorem. The space of trans-
formable functions is denoted T
‘We shall also be interested in the following subspaces

(1) Ty — {FIF eT', sup fooe—S‘]F(_t)|dt< oo};

S>CF o
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Ty may be normed by

IF—@ =  sup f ¢ F (1) — G (b))t

s>max (o, 0g) 0

and it follows that ‘
i) IF+a| <P+,
(i) |jaF|| = |a| - |17,
(iil) |\F = G| < |F]| - 1G]
LEMMA 1. If FeTy, then

[ e eriB@lar = |F.

Probably this is a known result but it does not appear to be stated
explicitly anywhere, we therefore include it for the sake of completeness.
A proof may be constructed as follows: 7

Let @ be the set s > op which is ordered by inverse inequality. The
set of functions {¢~*|F(t)|s > o5} converges, in the sense of limits with
respect to directed sets, to ¢ °¥*|F(t)| a.e. on [0, co) note the monotonic
property of the convergence. Since all the integrals are bounded by | F|,

[ e °F'|F (1) dt exists and is the limit,

; ;

(2) T (o) = {F|F T, o = o},
(3) ‘ Ty(o) = {F|F e Ty, op = o}.

The latter two collections of supspaces are of interest because they
can be used to characterlze T, Ty as inductive limit spaces.

1I. Propertles of T'. As noted above T" is an algebra but as yet has
no topology. For those functions in 7' — T}

o

sup [ ¢~ F(1)|dt =

s>op g

but since the sup is taken over non-negative numbers we can construct
a Fréchet type metric. This metric is given by Mukherjee and Ganguly
in [5] and for elements in T} is eqmvalﬂnt to the norm-topology. For F,
GeT"

(i) m f TR @) — G ()] &ty

S m, (¥, G)
() M(F, &) —E;Tim

(iii) o(F, @) = [op—ogl+M(F, G).
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LEMMA 2 (Mukherjee and Ganguly).
1. For F, G, H in T"
() o(F,G) =0 < F =@ (a.e.),
(0) 0< o(F,G) =0(G, F)<1
() ¢(F, H)< o(F, @)+ o(G, H).
2. The mapping F — GF is continuous from T'— R with the metric
topology on T". ‘
3. T" is complete with the metric topology.
4. T" s mot connecled.

Consider the mapping §,: F — ¢"F, h >0 which is an isometry of
T'(o) into T(s+h) and T%(o) into Th(s+h) so that
" = U T'(0)

>0

as an inductive limit space, since T" is already known to be complete and
the mappings F — op is continuous, the representation is of no great impor-
tance. However, completeness remains to be shown for T% and hence if
it could be represented as an inductive limit of a countable number of

complete spaces, then completeness of 7% would follow. For each integer #,
let '

Tp)* = U 8,0 Tx(o)

n<o<n

note that B — 8, F is norm preserving, i.e.

sup fooe‘s‘}F(t)]dt = sup fe steht | F (4)] dt .

s<op g s>opth

s
The injections T%(n)* = TL(n-+1)* are continuous, hence
Ty = U Tx(n)*
n=0

is an inductive limit space. It remains then to be shown that each T%(n)*
is complete.

LeMMA 3. For each n >0, Ty(n)* is a commutative Banach algebra.

It is obvious from the preceeding that completeness is the only prop-
erty yet requiring proof. But by Lemma 1

Tp(n)*

is Just the L' space with respect to the measure é‘"*dt such spaces are
known to be complete.
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III. Induced topologies. As we indicated in the introduction, it is
sometimes useful to induce a topology from either the range or image
space to the other. For FeTh

f(z) = foo e~ (1) dlt

exists and is analytic for # = R(2) > op furthermore
If@ < |F| for B, > op.

- Denote by A% the set of functions, f, such that for each there is a half-
plane, E(z) > o;, where f is analytic and uniformly bounded. In particular,
| this means that all the functions in A} are of polynomial growth degree 0.
- As is well-known, all such functions are representable as Laplace trans-
forms. A} is an algebra with pointwise addition and multiplication, and
we norm it by

[fll = sup f(2)
R(2)>0p

It is immediate that the norm topology for A% is equivalent to the
compact-open topology, further, it is shown in [8] that the degree of
polynomial growth is preserved under convergence with the compact
open. topologies, hence by the completeness of f, A} is a commutative
Banach algebra which is the image of Tk, the topology of A} coincides
with that induced from T%.

Miller [3], however, has shown that if T% is given a topology induced
by the compact-open topology on AL, then T% is not complete since
in the completion all members are infinitely differentiable. For other
comparisons of topologies that can be utilized for AL and T, see [7], [8].

B. BILATERAL TRANSFORMS

In this part we will consider some extensions of the results in A to
the space of functions possessing bilateral transforms, the particular
construction we will use does not include as a subspace 7", but it can be
imbedded in the space obtained. :

IV. The space 1?. By analogy with the notations in I, a function
defined and measurable on (— oo, oo) is said t0 be (absolutely) Laplace
tramsformable if there exists (o, 77), ¢ < 7, such that

o

[Pt < o for o <5<y
in like manner 5, = sup{y}, ox = inf{c} and (op, ny) is called the con-
vergence pair for F. In order to define the sum or product of two functions
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it is necessary to insure that the common region of existence is non-empty.
Suppose 0 is fixed and unless otherwise indicated we shall suppose that
— o0 < o < 0 < np < oo for all F. The collection of such functions will
be denoted T?, T? is given an algebraic structure as follows

o

max(op, 05) =1 7 min(rp, ng) < |

OF«@ s Uiaed)
and addition of F, G is pointwise multiplication being convolution. The
conditions oy < 0 < g, 0g < 8§ < 1 insure op, ¢ < 0 < Vg, q-

T? can be given a metric topology in a manner similar to 7"

(i) m,(F, @) = f[e_"FtF(Jf) ¢ HE(t i+ f16 W (1) — e G (1) b,

.. . m,(F, &)

(i) M(F, @) = Lim 2= 25,

(ili) o(F, @) = [op— ogl+ [np— el + M (F, G).

LEMMA 4. '

1. For any F, G, H in T*

(a) o(F,G) =0 «F =@,
(b) 0< o(F,G) = o(G, F)< 1
(¢) o(F, H) < o(F,G)+ (G, H).

2. The mapping F — (o, ny) of T* — R* is continuous, where T° has
the metric topology.

3. T* is complete with respect to the metric topology.

Proof. 1 is a straightforward consequence of the definition so we
will not give the proof. 2 follows immediately by noting that the topo-
logy on R* given by ¢"(py, p.) = max{|n,— s, |y, — Ysl}, P1 = (1, Y1),
P2 = (#2, ¥,) is equivalent to the Euclidean metric. To establish 3 write
each function as the sum of its restrictions to the left-half and right-half
line respectively. From the definition of ¢ it follows that a sequence {F,}
is Cauchy if and only if the sequences of restrictions {F}}, {F, }are Cauchy.
The proof given in [5] suitably modified completes the proof.

We remark at this point that F — (o5, 4) is not linear (nor is ¥ — op
which contradicts Note 4, [5]).

V. Subspaces. Let

T2 — {F[ sup [ e | F ()] dt < oo};
CPSESNF —oo
then T% < T® and T% has an obvious norm topology which is equivalent
to the metric topology of T°.
The following is contained in more general results in Taylor [9] and
we state it for completeness.
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LeMMA 5. T%(o, n) is @ commutative Banach space. and its maximal
ideal space is identifiable with o << R(2) < n. It is necessary to change the
norm for the bilateral case since in general one can only expect

o0 . 0
1P < [e P @ldi+ [o ) de

0 —00
and one of the terms on the right might be infinite.
The classes of subspaces T'(s), T%(s) have as their counterparts

T(o,n) = {F|FeT?, op =0 <n =g},
(o, 5) = {F1Fe T, 00 = 0 <1 = 17}

Although one can define inductive limit spaces for 7%, T% it is less
interesting because of the restriction ¢ < 6 < 5. In both cases the inductive
limit will be the class of functions, ¥, such that ¢ " Fe L'(— oo, o), i.e.,
has a Fourier transform The 1mbedd1ng map is also different

T( 777)_”_> T2(0+h777 k),
where
MF(M), t>0,

—
e"E (), t<0,
and

c+h<<O<n—Fk.
VI. Induced topologies. For Fe T%

= f AP (1) dt
exists and is analytic for op < # = R(2) < np. Also

|f(2) < 7).

Let A% denote the class of functions analytic in some strip o; < E(2)
< 7y, 0;< 0 < 7; and uniformly bounded in the strip. In exactly the
same way as for AL,

sup (£ = If)

of<R(z)<77f _

provides a norm topology and ¥ — [ ¢ “F (t)dt is an isometric isomorphism
of T% onto A%. -

Although the result is not stated in [3], it is poss1ble to show that
if A% were completed by the compact-open topology as a subset of 6,
then T% with the induced topology is not complete; as before the lack
of completeness is a consequence of the infinite differentiability of all
E elements in the completion. :
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VII. Misc. comments. There are some intrinsic differences between %
and T which could be better seen if one defines T% by weight functions.
Let w(f) be a continuous funetion on (— oo, oo) such that

W (b 1) < w(ty)w(ty)
for all #,, ¢,. Further suppose that
wt)yze ™, —co<o<s<y< oo,

Using the weight function, one constructs a measure, w (¢)dt, and then
the L' space for that measure. The space

™= U IMw@d).

w
—oo<o<h<n<oo

If, however, n = co = 0, then the sub multiplicative character is
lost so that T is not obtained from such spaces. Taylor [9] has used such
a construction in a more general setting to study ideals in the measure
algebra of a locally compact group.

We note also that if absolute convergence of the integtals for 77, T
is veplaced by conditional convergence that very little of this will apply.
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