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ABSTRACT

The radial basis function interpelator befongs fo & general class of Interpolaters which Include the thin plate and
smoathing spline. The latter two are derivable by imposing a smoothness condition on the interpolating function anil
correspond to a specific choice of the kernel or structure function but these choices are not unique. I is well-knovw
that positive definiteness of an appropriate form is sufficient to ensute that the system of equations, delermining 1l
coefMicients in the radial basis function representation, will have a unique solution. Hence any valid choice of the kernel
will produce an exact interpolator, i.e., the interpolated surface will pass through the data points. The "oplimal” chivice
of the kernel function is not determined by a least-sguares il of the interpolating surface to the data and an alterngdine
measure of the fit is needed.Imposing such a condition may be justified by a priori knowledge of the funciion 1o be
interpolated. By using an aliernative but equivatent formulation of the interpolator the exactness property is used o
evaluate the fit of the kernel function to the data. There are several natural measures of 1he collective closeness of the
pairs. These include the mean error, the normalized mear square error (normalized by the minimired variance of the
interpolation error), the correlation of the data vs the Inlerpolated values, the correlation of the interpulated valocs v
the normalized interpolation errors, and the frequency Qistribution of the normalized errors, Thew are usually called
cross-validation statistics. The applicability of cross-validation [0 the choice of the kerndl Tar radial bosis Tuncbing
interpolation is demonstrated.

INTRODUCTION

Let 3,00, be in R* and f(x},..[,(x) real valued linearly independent functions and pivan a ssmmcic faution
defined on R* x R Consider an interpolator of an unknown function ¥ of the form

Y'03) = bg(xx,) + . + b pix.x,) L
There are two general conditions that can be lmposed on ¥, one Is exactness, i.e,, the interpolated valves af data points
maich the data #nd secondly, that " is "close™ ta the data values ot the data points. The latter conditien is wsalls

imposed when another condition such 85 maximal smoothness ks required although thar i nol 1he piype vhaice
Exaciness leads Lo the system of eguations

b,g(x;x;) + .. + bg(x,x) 5 J=1,...n 1h

where ¥(x},....y(x,] are the values of the unknown function y. Although the coefficient matrix in (b} is squire i m.
nat be invertible. It is known that for some choices of g that the invertibility problem is solved if Gy is replaced by

Yx) = bgxx) ¢ wn + bglxx) + af(x)+ 48,1 {x) h
Invoking the Exactness condition gives the system
bigfax) + e+ bigin ) + Bl N+ . 4y T (x) = ¥(x) 3 j=leean e
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However in that case the coefTicient matrix is not square and additionz] conditions of the forim

bfix) + - + b fi(x,)=0; k =0,_,p 13

There are two special cases thal are of interest, first the I’s migh! be polynomials in the coordinates of x and secondiy
g m.ght be function of x-y or in particular g function of (he magnitude of x-y. As noted by Micchelli [1], even with these
modifications this system may not have a unique solution. Micchelii has gshown that conditional positive definitenss
of g with respect to the polynomial functigns is a sufficient eondition for invertibility. Micchelli’s resulls will extend Lo
the more general class of s provided that g is conditionally positive definite with respect to the se1 of Ts, this result
is given in Myers [2,3]. If the system (2) is modified slightly as in Cressie (4] then 3 smoothing interpolator is obtuined.
The thin plate and smoothing splines ace special cases. As shown in Myers|2], [3] ¥ can be re-written inun cquisalon
form

Yix) = e (XI¥ix) + o+ Clx)ylx,) ('
and the system {2} is replaced by

COORMX) 7 e+ k)0 K) + d(xIfx )+ o +d ()R(x) = gix.x) i j=1lp-un 5
and 3y

c iy + o (x(x) = [(x); k=0,....p AN

The alternalive form is obtained by considering » 25 a realization of a Fanduin funciion Y and Fequining tit 3 be the
minimum variance, unbiased LINEAR predictor of Y(x). This form of the interpolator has been derived by a numbe
ef authors including Goldberger 5] and Matheron [6] alihough Matheron is considerably more genersl. Matheeon 178
has shown the equivalence of the form given by (1), {2} and {3") with the thin plate spline. Watson 9] gave a ol
rudimentiry derivation of this equivalence and in the case of the thin plate spline shows the relutionship brlwecn it
kernel and the Green's funclion of a certain differential operator, In the case that g=1, Dolph and Wuoodhury [11; e
given a very general result linkicg the covariance of @ second order stationary process and the Green's Fonction of .
of 4 particular form of differential vperator. ¥When g is the covariance of a second order slabonary rantows funcinm
there there is @ distance {called the range) such that for two points at & greater distance Ihe covarianee is constant (ol
the covariance is asymptotically constant in which case there is an effective range, Givew a finite aumdicr af g
locations there exists a neighhorhood sufficlently large such that for any lecation x outside the neighboerhaol, the value
of gix, 3V is a constant {or nearly so). IF further at least one of the s is a constant function then e sum af (he b
in {1} is zero. 1 is seen then that when (17 is used as an EXtrapolator, its behavior is largely delerminetl by the s
Moreover the sum in {1} involving the s is the unbiased estimator of the mean of ¥ 21 x, When p=0 and £, =1 1hen
the mean is a constanl and is eslimated by a weighted sum of the data vatues If in sddition 1he data beations ave
sulficiently spread out then the weighted sum is just the arithmetic sum. Some characieristics of the interpolitor i
more easi[y seen or described by using {1'). As the distance from x 1o 8 data location %, increases, the weight oo
diminishcs. That is, the location x, has tess "influence” on the interpolation at x. In practice then it s commuon o use
only the nearesl data Yocations Tor interpolation at a particular point. In (1) the coefTicients du not depend un v b i
(1'1 they do and hence (1') is somewhat easier to use. Since any valid g, Le, Bny g having the requisiic positive
definiteness property will produce an exact interpolator, it Is necessary 10 impose addilional conditions te obiuin g
unique or optimal choice of g. In the case of the thin plate spline g is uniquely determined by imposing tle manini
stoothness condition. In some instances this may be too strong a condition of In the case when v is unkiown 1he
appropriate degree of smoothness may be indelerminate. By combining the exactness properiy and the e nd minving
neighborhoods it is possible to quantify the fif of & particular kerne! to the data.

COMPARISON OF THE TWO FORMS

When the interpalator is writien in the radial basis function form given by (13 the cocloicats depeid anls as
the kernel, the sample location pattern and the datz values, The differentiabilits propertics including smonthness v
all captured in 1he kernel function as it appears in the interpalator (1), In this form i is somew ha fess alvious

a moving neighborhood might be used but it has the advanlage that it provides a clear funciiungl reprosentitios T

554



the interpolator which would be convenient for plotting. Yrhile the squatlons given In (2) are seen to be Lhe eaacines
<ondition it is not as obvious as t¢ the purpose of the conditions in (3} except thai they are tufhicien Jor the system 1o
bave a unjque sulution. This form of the interpolator does dearty show the decompasition of ¥ inta the isterpoday e
and the "extrapolator®.

In contrast the form given by (1) clearly shows the dependence an the data values bul the dependence on » is
hidden in the coefficients. The differentiability and smoothness properties of ¥° are somewhat hidden in the coefficitnis.
As x changes 3 new set of coefficients must be computed. In practice one jdentifies & set of lpcations where T 1 be
estimated or interpolated. Unless the sample location pattern in the moving neighborhood remains fixed as x changes
it is necessary to re-solve the system for each choice of x. While the problem is simplified somewhal by using a uniyue
neighborhood, L., all deta localions are used {0 estimate at all points and hence the coefficient matrix must be thvertes
only ence, this is in general not practical when the da1s set is Jarge. In the geosiatistical literature it Is commun praciive
te use ynly the nearest locations, usually Yess than 18, Since in {1°) the weigh!s on the data salucs are direcly uliiiced
it is easy to classify the important duta locatigns when estimnating or interpolating at a particular point a. Perluaps ihe
most important reason for wtilizing the alternative form is that it Is easily derived from the random function model and
the condilions given in {3'} correspond 1o the unbiasedness. As a by-product It by natural (o consider Jackknifing the
diata Jocations and to consider interpolation ai o data localion when that dats locstion is suppressed. This is the basis
for what Is calied cross-validation and it provides a means for evaluating the fit of the kernel lo the dura.

The interpolation problem can be generafized in another way, Rather than estimating/interpolaring the value
of 3 al 2 point, estimate the value of & linear functional. The value at the point x is simply & spedial cose Anothy
imporiant case is given by spatial integrals. Le¢ ¥ be a volume then consider the average valse sl y wer S 3
alternzlive form (1°) will not change, only the right sides of the equations in (2" wil) change huing replaces Tn e w
valges. T the form given by (1) is used then Lhe estimator itself must change,

There is one additional advantage of the alternative form that is warth mentioning. Both furms are essentially
independent of the dimension of the domain space R® bul it is much simpler 1o extend the ahiernative furo tu the cise
where Y has values in R™ In particulszr chereis a natural way to guantify the interrelationship betvween thy vompooeni.
of the vector valued Y by the use of cross-covariances or eross-variograms., This extension is discussed io Mycers |31,

In the remainder of the paper we assume that gix,u) is 8 function of x-u and hence we write siinply grv-pn

ERROR CHARACTERIZATION

The system of equations (2*), (3' Is obtained by requiring that (I') be an unhiused, wininm vt
interpolator, that is, the coefTicients in (1') sre chosen so that ¥ar{Y'(x)-Y(x)} is minimized. Using the resifting susten
of eguations Lthe minimized variance (called the kriging variance In the geostatisticel literarures is given in

GLR)EE,Y - e & gl ) - AR o +dix)TiX) 4,

DIRECT ESTIMATION OF THE KERNEL

One of the advantages of the alternative formulation glven by (1), (2*') and (¥} is 1t the kerpel s o
generalized covariance as defined in Matheron [5). To Diustrate the method we consider anly the cases whoere @i
covariance or & variggram. A covariance is positive definite whereas if g s 2 variogram then - i< comlitionally pusiesy
definite of arder zero. In addition if g [s 2 covariance then gi0)-g(x) Is & variogram hence it is sefficient e cunsiio
estimation of variograms. More explicitly the randorn function F Is assumed to satisfy the latrinsic Hyputhesi

(i) F{Yix+u)-Y(x)} = O for alf x, u

(in 0.3vVar{Yix+u}-Fix)} = gix) exists and depends only on x
That is, the first order increments of Y are second order stationary, Note that it is not pecessary o assone that g is
isotropic (s function of the magnitude of x oniy). H is common to model peomelric anisotropies in sariczeons. 1 ron
(i) and (i) it is easy to see that

B0 = (NDT Dyxyi T




A

is an unbiased estimator of gix), the sum is taken gver &l pairs of data locktions guch that xex, =x. In praclive, us is
described in Myers|12,13], it is necessary to consider distance classes and directional windows especialiy in the cace of
irvegular daia grids. Lnfortunately this estimator only produces estimates of g for certain values of x wnd it is necesairy
to know g in functional form. The practical solution is to consider positive linear combinations of known vatid kerneis,
A piot of g' as 2 function of the magritude of x and for a particular direction will indicate certain imporiant
parameters as well as mode! types. Therc may be a discontinuity ai the origin, called the "nugget effect” and if the glot
levels off and becomes approximaltely constant then the height is the sill and the distance at which this oceurs is the
range. In variogram farm the nuggel effect model is given by

g0} =0 and gix) =g= forx=10.

In the cuse of Gaussian or Exponentia) models there is an effective range, If the data is noisy and an exact interpolater
is used then the nugget effect will include the variante of the noise term, more generally il represents a spatal
correlation structure at @ distance less than the minimum intersample location distances. There sre severa. advantsges
to using @ varingram estitnaior in lieu of 8 covariance estimator, A variogram can be unbounded and this will not ve
detected with a covariance estimater. Estimation of the covariance requires separate estimation of the wean, In genvral
the xample variogram given by §° will be somewhat noisy and is known Lo be an imperfect estimator of the the
variogram, There are various reasons for this. A regular grid does not produce & suiTittent number of pairs fur shur
lag distances ynless the mesh distance is quite small whereas it is the values of g for shart distances that are i wis
important. There are empirical results for the use of beast squares fitting to valid models and for the use of RN
jikelhond but the latter in particu)ar is dependent on & strong multivariate normality assumplion for Y. In prociic
the fitting is done visually and requires both experience and a knowledge of the funciion or phenoimenon bey
interpolated. This visual fitting is frequently combined with the cross-validation technigue discssd b

There is an addilional complication that should be mentioned. Tn the case where vundlitinn 101 is nal sl el |
but rather & weaker condition

("1 E[YIX)) 2 ofl )+ o #1,1,(5)

where ihe 4's are unknown coelficients then g' is nol &n unbiased estimator of g, Unfortunaldls 1his Jeads o u circoln
problem without a fully satisfactory selution, ¥hile Yix) might nol satisfy (), Yix)- EIY(\] would andd hence it s
necessary 1g estimnate the unknown coefficients. The optimal estimation of those corfficients roquires kavsing i wingh
¢dan not he estimated or modeled until the cuefMcients are estimated. This problem has bevn eatensively vanslerod o
the geostalistical Literature,

SMOOTHNESS DETERMINANTS

Asnoted above the differentiability properties of I* are easily seen o be those of the kernel ¢ when (B, (2. and
{J) are used, provided that al) data Jocations are used at one time so that the coefficients in {1) are compurcd only vy
Il an additionsl term b o™ ! is added to the ieft side of (2) or c,(x}d“' is added 10 the left side of (2% Then Ha
interpolztor is no longer exact. In the context of {1'), (2'} and (3') this corresponds to wssunring thial 3he Findon
function Y js replaced by Z(x) = Y{x) + ¢({x} where ¢{x} is 2 noise term. The noise lerm s ussumed 1o be unvorrehated
with respect to Y(x) and to have & pure nugget variogram. Then the data values ¥(x),..v(x) it (2 ane ()
replaced by 2(x h.2ix,). ¥ Is then a smoothing interpolator and the parameterg=* which could be interpreted as tie
varignce of the noise term represenis the degree of smoothing relative 1o the smoothness characieristics of the kernel
g- When a pure nugget effect variogram is used the [nterpolator given by {17} differs from a pornmuial treml s b
only 2t the data locations.

CROSS-YALIDATION

Sequentially, one at & time, the data focitions are suppressed and st interpolated value is oblained using inh
the remaining data locations (or only those in 8 neighborhood about the suppressed locationd. AL eavh duta lacudion
x, there will be three pieces of information, the data value y(x), the interpolated value »"{x ) and the minimisd
estimualion varianced]. Note that the Jarter two may be somewhat sensitive to the choice of 1he maving neighbortwd
anc the limitation on the number af data locations used in the interpolation. For & " weli-choson™ kernel, b, variograin.
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the interpolated values should be ¢lose to the corresponding date values where ¢lose is In the sense of the minimized
estimation variance. While the peneral guestion of choosing the kernel is not well-posed (given only w finile numbyr ol
data locations), choices of the kernel and/or of the parameters of the kernel can be ranked with respect lo the clgseness
of the interpalated values to the data values There nre at least five statistics for quantifying this cluseness, as shown
in Myers [11]. These include the following:

E, = 0m){ly(x)-y ()} ¢ o + ix 3y (60}

E, = (Fo){oo)y (03 + an » 00007

Ey = (Vm{(x -y ()0 + e + (¥ 0y 00— F )
E, = sample correlation ({¥{x), ¥'(x}}
E, = sample correlation {(y(x}-y(x),¥'(a}}

In addition it common practice to construct the histograms of the errors end of the normalized errrors. Under moderale
assumplions it is possible 10 compute the expected values of these statistics. The expected vaive of E; should ke zern
and hence one would expect the sample value to be close te zero. The expecled value ol E; is the ascrupe ol the
minimized estimation varignces while the mean of E, shoyld be gne. IF Y is assumed {o second ordec stationaey thea
the variance of E, can be computed but the variances of 4l the rest either require strong disributivnal yssumptiuns
(such as multivariate normality! or knowledge of fourth order moments of ¥, Under the second order slationarii
assumplion the expected valtues of E,, E, respectively should be close to one and zerg, They are in gencral only cliw
because of the presence of the Lagrange multipliers in (27). In addition to computing the sample correlationu il isuwlul
1o construct scatter plots. In some instances it is preferable ta use the normalized ervor in E, ia livw of 1the estimiding
error. Nute that a form of cross—validation is used in connection with the smpothing parameler in & smocihing spling,
that is rather different from the form described above. The smoothing splire is not exact and the kernel i asmicd
already delermined hence in that case the cross-validation is not viilized for kernel selectivn or ranking

THE USE OF CROSS-YALIDATION

While ¢ross-validation provides some measure of the goodness-of-fit of & particular kernel, it is st useful in
comparing differen? choices or different parameter values. There are a number of known variogram gnd covarimce
medels and in general there are (wo parameters associated with a model. 1t Is easiest to describe the isotraplc models
first ard then describe how 10 intorporate geomelric anisotropies into those models. Some of the standurd models ary
described in greater detsil in Myers [11,12], If Y is second order stationary then the value of the covariance at distance
zerg is calted the STLL, alternatively it is the constant value that the variggram achieves ar approaches asymptutically.
The distance at which the covariance is zero iy called the RANGE, tn the case of the Exponential and Gaussian nuslels
there is only an effective range, Any postive linear combination of valid models is again g valid madel, mcaning tha
the appropriate positive definiteness condition is satisfied. Some variograms do pot correspond Lo covarignees and henwe
du not have sills or ranges but there will be corresponding parameters, Cross-validation can then be wsed to evilialy
such linear combinations by varying the parameter choices.

In examining the inlerpolator given by (1) it is easy 10 see that far & fixed point x, the values of 3"(x3 depend
on 1. the kernel function (and its parameters), 2. the data values, 3. the data location pattern, 4. the relationship ot 1in
point x (o the data locatien pattern. If 8 moving neighborhood is used then both 2. and 4. change as x changes. Whon
applying cross-validation however one can fix 2., 3. and 4. hence only the variogram (or its parameiersl chanpus
although one can consider different search neighborhoods. The continuity of ¥* relative 10 the variogran is semitive
t0 the search neighborhood and ir turn this is sensitive to the smoothness of the unknowe funciion, Cross saliealaion
then will be used both 1o rank the variogrem choices and also to identify unusugl features of the e sl | hes o
objectives are nat totally separable,

SUMMARY




A radia) basis function interpolator is generated by any kernel with the appropriafe positive definileness
property and hence is not uniquely delermined. When the princpal information concerning the fundtion lu be
interpolated consists of the data values, it is important to fit the kernel, eg., the interpolator tv the data. By using an
aliernative but equivalent form of the interpolator and the exaciness properly, cross-validation siatistics allow ranhing
choices of the kernel with respect to their fit 10 the data.
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