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SPACES OF GENERALIZED ANALYTIC FUNCTIONS

By
D. E. MYERS (Tucson)

This author in some previous papers [5), [6], [7] has investigated certain pro-
perties of complex functions analytic in a strip in the complex plane. The strip was
considered because it is the natural domain for functions that are Laplace transforms,
Mackey [3], ELLior [2], ARENs and SINGER [1] among others have given definitions
of analytic functions defined on some subset of G'x G, the generalized character
group of a lecally compact Abelian Group. Mackey and Elliot used derivatives with
respect to semigroups, Arens and Singer the duality contained in a Poisson represen-
tation. None of the above papers contain any elaboration of the properties of the
class of analytic functions like the Cauchy— Riemann conditions or preservation
of analyticity under uniform convergence. One result of this paper is the existence
of necessary and sufficient conditions for analyticity which are analogous to the
Cauchy — Riemann equations. In this paper I will also obtain those extensions
which allow us to construct a Hilbert space of such functions.

NOTATION. Let G be a ]ocally compact group (not necessarily Abehan) and G
its character group. That is, G consists of those complex-valued functions, con-
tinuous on G with modulus identically 1 and with a multiplicative property. G is
also a locally compact group and the topology is that of uniform convergence on
compact subsets of G. G denotes the set of real, continuous linear functionals on
G. A subset K, of G is said to be large convex if it is convex, contains the zero elem-
ent and the closed linear span is G. G x G becomes a complex vector space by defining
(u + )(xy, X9) = (ux; — vXy, vX; + ux,) for u + iv complex and (x;, x,) € GXG.
Finally for each x € G, define a one-parameter subgroup of G by x[u] = exp (iux),
u real.

DEerINITION (MACKEY [4]). Let K be a large convex subset of G and x, an interior
point of K (i.e. there exists # > 1 such that rx € K). Let F(x, y) be a complex-valued
function defined on K'x G. It is said to be analytic at (x,, y,) if

() Lim F (xo + uxy, )’oxz[“]) — F(Xp, Yo)

u—~0 [£1

- Fx1 xz(x(b yO)

exists for every (x;, x,) € G.

(ii) The above limit is a complex-homogeneous function of (x;, x,). As will be
shown the complex-homogeneity condition is analogous to requiring that the partial
derivatives satisfy Cauchy— Riemann like conditions.
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6 D. E. MYERS

Lemma 1.1, If F(x, y) is analytic at (x,¥) € Gx G and U(x,y), V(x,y) denote
real wvalued functions such that F(x,y) = U(x,y) + iV(x,y) then U, ,(x, ),
Vix,, x)(X, ¥) exist as complex-homogeneous functions of (xy, x,) and

Uty0) = Vio, ) » Uoxp= = Vixp0»
Sfor all x; € G.

ProOF. Since 0€G, Fi, o exists and Fy g = Uy, o + iV, 00 Since it
follows easily from the definition that the differentiation is linear. Further i(x;, 0) =
= (0, xy) so that

iF 00 = WU, 0 = Vo = Fo,x) = U, x) + Vo,
and hence '
U(xx, 0) = — V(xl, 0) > V(O, x) T U(xl, 0)*

LemMa 1.2, Let (x, y) € G x G, N a convex neighbourhood of (x, y) such that at
each point (x', y') in N and for all x, € G, Ui, 0)(x’, ¥') exists. Then there is a 6 > 0
such that for 0 < o < 6, there is a 0 < B(o) < o where

Ulx + oxy, y) — Ulx, y) = aUg,, ox + Bx1, ¥).

ProoF. Let g(w) = U(x + wxy, y), then there exists d > 0 such that g’(w)
exists for 0 £ w £ § since

o) — Lim GO+ A05,5) = U+ wn )
Aw—~0 Aw

U Awxy, y) — U ,
— Lim (x + wx; + dwx, 3) (x + wxy, ¥)
Aw—-0 AW

= U(xn 0)('x + wxy, y)

which by hypothesis exists for all (x + wxy, ¥) € N. 6 may be taken to be any positive
number such that (x + dx;, ¥) €N, by convexity (x + ax;, V) EN for 0L a < 6.
Applying the Mean-Value Theorem to g we have

g9(@) — g(0) = ag'(B)

for some 0 < f < «, or
Ux + axy, ) — Ulx, y) = alUp, o(x + Bx1, ¥).

CoroLLARY. If further U, o is a complex homogeneous function of (x, 0)
then
Ulx, p) — Ulx + axy, ) = iaUg o)(x + Bx1, ).

Lemma 1.3, Let (x, y) be in G x G: and N a convex neighbourhood of (x, y) such
that for all (x', y') in N and all xy in G, Uy, (X', ¥') exists. Then there exists 6 > 0
such that for all 0 < o < b, there exists 0 < (o) < o such that

U(xs yxl[a]) - Ulx, y) = aU(O, xl)(xa Fyxi [ﬁ]) .
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PrOOF. Let (w) = U(x, yx;[w]) and the proof proceeds as for Lemma 1 if we
note that '

Ux, yx[w + 4w]) = Ulx, yxwix[4w]).
COROLLARY. If further Uy ., is a complex homogeneous function of (0, x,) then

U(xa y) - U(xv yxl{d}) = - iaU(x1, 0)(X, yxl[ﬁ]) .

CorOLLARY. If further Uy ., is a complex homogeneous function of (0, xy),
(and hence U, g is of (xy, 0)) then

U(Xa yxl[“]) — Ulx + axy, y) = ix [U(x1 (% yx1[B]) — U(o,xj)(x + B7xy, J/)]
Jor some 0 < ' <o, 0 < " < or
Ulx + axg, y) — U(x, )’x1[°‘]) =« {U(xl,m(x + %, y) — U, xl)(% yxl[ﬂ,])] .

Lemma 1.4. Let F(x,y) = U(x,y) + iV(x,y) and suppose that for all x, € G,
U, ¥, V(X' ¥, U, X5 ¥, Ve (', V') exist and are continuous in a convex
neighbourhood of (x,y). Then if Ug . (x,¥) = — Vix, 0%, 1)s Uiy, 0% ¥) = Vio, )
(x, ) for all x; in G, F(x, y) is analytic at (x, y).

Proor. It is clearly sufficient to show that

F(x + uxy, yxy[ul) — F(x, y)

(@ + if) Lim
w0 u
and
L P aux, — B, e [Bul) — Fx, )
u— 0 u

exist and are equal for all « + i € C and (xy, x,) € G x G. Writing F(x, y) = U(x, y) +
+ iV(x, y) we may consider U and V separately.
(1) Consider

U(x + owxy — Buxy, yx,[ouln[Bul)) — Ulx,y) _
u

_ oc[ U(x + ouxy — Buxy, yxs[oulx [Bul) — U(x — Pux,, yxz[ocu]xl[ﬁu])] .
o

+

5 U(x ~ Pux,, yxz[“u]xl[ﬁ“]) - U(x — fux,, yxl[ﬁ“]) I
ou

N B[U(x = Puxy, yxy[Bul) — Ux — ux,, y)} _ ﬁ[ U(x — Bux,, y) — U(x, y)}.

oau — pu
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8 D. E. MYERS

If we apply Lemma 2 and Lemma 3 then we obtain

U(x + aux; — Bxy, yxyoulx; [Bul) — Ulx, y) _
u

= aU, (X — Puxy + 0xy, yXo[oaulxi[Bul) + aUg ,n(x — Puxy, yx,[Bulx,(8']) +
+ IBU(O, xl)(x — Pux,, J’x1[5”]) - ﬁUm 0)(x — 6" xy, ¥)

where 0 < 8,8 < oau, 0 < 8", 8" < pu. Using the continvity of the partials however,
as u — 0 we obtain

U, 0%, ¥) + aUg, (X, ¥) + BUg, (X, ¥) — BU,, 0(X, ¥) .

{2) Proceeding in a similar fashion for

V(x + auxy — puxy, yxoloulx[ful) — Vix, y)
u

we obtain, as u - 0
Ve, 0% ) + Vo (X, 1) + BV, xy(%, ¥) — BVix, 0(X, ¥).
Now utilizing the “Cauchy — Riemann” conditions we obtain

Lim F(x + awx; — Puxy, yx,[oulx[ful) — F)x, y) _

u—0 u
= aUq, (X, ) + aUg (X, ¥) — BV, 0f(% ¥) — BVio 5 +
+ Vi, (X V) + Vg vy, ¥) + iBU, 0y (X, ¥) + iBUg, xp(x, ¥) =
= (a + B[ Uq, 0%, ¥) + Ug, x)(X, W]+ @ + iP) iV, ofx, ¥) + iV x] =
= (o + B[ U, 2%, ¥) + IV (, x)(% J’)]

Since

U(xl,O)(xa y) + U(O, XQ)(xa y) = U(xl,xz)(x: y)
and

V(xl, 0)()6, y) + V(O, xz)(xs y) = V(xl, xz)(xﬂ y) .

The proof is now complete. We note that another way of writing the Cauchy—
Riemann equations is

B

F(xl, 0)(X, y) + iF(O,x]) =0.
DerINITION 1. Let K be a large convex subset of G. Define H%K) to be
{F| F analytic at each point of Kx G, sup { | F(x, y) | *dy < oo}
x€K
(the integral refers to the left-invariant Haar measure on G).

THEOREM 2. HX(K) is a Hilbert space with point-wise addition and inner product

(Fi, F)) = sup | Fi(x, pFy(x, p)dy  (I|F|| =/(F, F))

x€K @
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The proof will follow from a series of Lemmas.

LemMma 2.1. If {F,} is a sequence in HK) such that ||F, — F,l| > Qasn,m —» o
then F, — F, converges uniformly to zero on compact subsets of KxG.

ProOF. Suppose || F, — F,,|| = 0 and there exists a compact K such that
F, — F,, — Ouniformly on K. Since || F, — F,, || = 0, | F,(x, y) — F,(x, )| is bounded
on K for each n, m. Let

gnm(K) = Ssup \Fn('x9 y) - Fm(x3 y)I
(x, y)EK

Since K is compact, for each n, m there exists p,,, = (X, Vun) In K such that

gnm(K) = ! Fn(pnm) - Fm(pnm) | .

Now since F, — F,,+ 0 uniformly on K, there exist two unbounded sequences
{m}, {m,} such that g, (K) > ¢for all k. Let K, be the closure of {pi}, Ppm, = Pr-
By the continuity of | F,(x,y) — F,{(x, )| for each k there is a neighbourhood N,
of p, such that p € N implies | f,,(p) — f,,.(p) | > &/2.

K, is covered by the collection of such neighbourhoods and as a closed subset
of a compact set, K, is compact hence there exists a finite subscover N, ..., Ny,
Let

Mki = {yKyEGJ 3 X'S(x, J’) Ejv-ki} .
Now we note that

HFn - Fm” = { IFn(xa y) - En(xk’ y)szy
@

for all x;, and hence
&
H Fn - Fm H ; S‘ | Fn(xki’ J) - Fm(xki9 J’) ] Zdy g 7:“(Mk,)
Mk,

for n = ny, m = my,. If now 6 = min (u(My), . . ., u(My,)) then
|F, — F,, |l = 8)/2 for 1= ny, m = my all k,

which contradicts || F, — F,, || = 0 and we conclude that F, — F,, — 0 uniformly
on K.

_LemMma 2.2, Let F be analytic at each point of K% G, K a large convex subset
of G. If K is a compact subset of Kx G then F is uniformly analytic on K, i.e. given
e > 0, (x5, X5) € GXG there exists 0 > 0 such that

| F(x + uxy, yxylu]) — F(x, »)
u

- F(xl,xz)(X, y) <e
Jor 0 < |u| < 6 and all (x,y) € K.
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10 D. E. MYERS

PrROOF. Let & > 0, (x;, x,) € Gx G, then for each (x,, y,) € K set

F(x + Uxy, J’xz[“]) - F(X, y)
U

N(xq, yo) = {(x, 2N ’ = Fla sy, p)<e if O<|u{ <6

(0 is taken to be any non-zero value such that 0 < |u| < & implies

- F(xl,xg)(-x()v yO) < 8) .

l F(xo + uxy, yoxo[ul) — F(xg, yo)
u

Then U N(xq, o) is an open covering of K, which is compact. Then there exist
(%0, Yo)EK
a finite number of points (xy, 1), (Xa, Vo), . - - » (X,, ¥,) associated §’s d;, ..., 9, and

neighbourhoods N(x;, v1), ..., N(x,, y,) which is a finite subcovering of K. Let
0 = min (6, ..., d,) and the result follows.

LemMMA 2.3. Let F(x, y) be defined in a neighbourhood of (x, y) € GxG. Then a
necessary and sufficient condition that F be analytic (in the sense of Definition 1) is
that g(z) be analytic at z = 0 for all (x,, x,) € G x G where g, .,(z) = F(x + ux; —
— UXy, yXo[ulx [0]), z = u + iv.

.0 1 (0 é . .
ProcF. (a) Wr1tmg—a; =— {E +i -é——l as is customary then g, (z) analytic
at z = 0 implies
99 _4
0z |,.q
However
6 . F 3 — F s
_g_ = [1m (x + ! yXZ[uD (x y) = F(x x)(-x: y)
au z=0 u—0 u b
and
0 F(x — vx,, — F(x,
99— Lim (r = v yalel) = Flxy) Floxy (X, 9).
0v |, v-0 v v
Hence _6_g_ = 0 implies
Z |z=0
F(xl,xz)(-x5 y) + iF(—xz, xl)(x’ y) =0
or

Flay ey ) = — iF, 25(%, ¥)

which together with the observations that —i(—x,, x;) = (X, X,) provides the
complex homogeneity required. The existence of the derivative follows from the
existence of the derivative of g. Since the preceding assertions are reversible the
fooxd of the theorem is complete.

LemMMA 2.4. Let {F (x, »)} be a sequence of complex-valued functions analytic
at each point of Kx G, K large convex in G. If {F,} converges umformly on compact
subsets of Kx G then the limit function is analytic at each point of Kx G.
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PROOF. Let (X, ¥o) € Kx G, (x3, X5) € Gx G and 6 > 0.

M. y8) = {(x, Y)x = xo 4 ux; — vXy, ¥ = yoxy[ulxi[0], (x, ¥) € M,
|z] £6,(x,») € KxG},

then M, .,(6) is compact and is nonempty for some ¢ # 0. We see then that {F,}
converging uniformly on M, ,,() is equivalent, to {g,} converging uniformly on
|z] £ 6 where

9.(2) = Fn(xo - UXp - UX, YOxz[u]x1[U])~

Now g,(z) is analytic for | z| £ ¢ if and only if F), is analytic in M, () with respect
to (x;, x,) by Lemma 2.3. Therefore {g,} has an analytic limit for |z| < ¢ if and only
if {F,} has an analytic limit at (x,, yo). Since (xo, yo) and (x;, x,) were arbitrary,
the proof is complete.

PrOOF OF THEOREM 2. By Lemma 2.1 a Cauchy sequence in H*(K) is a Cauchy
sequence in the topology of uniform convergence on compact subsets of Kx G.
From Lemma 2.4 the limit under this latter topology is analytic. From the usual 12
topology we have that the limit function must be in H*X). The algebraic closure
of H*K) follows in the usual way.

THEOREM 3. If F(x, y) is analytic at (xo, yo) € Kx G, for all n, g(zy, Zo, - - - » Zy)
is analytic-at (zy, Zy, . . ., 2,) = (0, ..., 0) where

n

g(Zla Ve ey Zn) = F(xO + Z (uixi - Ui'xi+n)7 Yo H xi[vi]xi+n[ui]),

i=1 i=1
(X X, ) EGXG,  i=1,...n.

Proor. By n applications of Lemma 2.3, g is analytic in z; for each 7 and hence
by the Osgood—-Hartog Theorem [3] ¢ is analytic.

COROLLARY 3.1. If F is analytic at (xo, yy) then for all (xy, x5) € Gx G, F .y
is analytic at (x,, y,).

ProOOF. Let n = 2 in Theorem 3 then g(z;, z,) 1s analytic at (0, 0) and hence
the double and iterated limits on the derivatives exist and are equal, i.e.

2% 0%
02105, |00y 0Z:07

=0.

(0,0)

Evaluating these as in the proof of Lemma 2.3 we have

Flay, 2 20 = Flayy x ), %)

and both exist and are complex homogeneous functions of (x, X3), (X3, x4). By
repeated applications of this corollary we have that F analytic implies the existence
of all higher orders of derivatives.
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12 D. E. MYERS: SPACES OF GENERALIZED ANALYTIC FUNCTIONS

If we re-define analyticity then we can obtain a weak form of Osgood — Hartog
Theorem for these functions.

DeriNITION 4, Let F(x, y) be defined in a neighbourhood of (x,, v,) € G x G.
Then F is said to be analytic in x; at (x,, y,) if

Lim F(xo + uxy, yx[u]) — F(x, y)

u+0 u

= F(x,,x‘)(xm yO)

exists and is a complex homogeneous function of (x, x;).

THeOREM 5. (Weak Osgood —Hartog.) If F is “analytic in x; at (xo, yo)” for all
x, € G then F is analytic (in the sense of Definition 1).

Proor. We note that

1 —i
——(xla xl) +

i
: — o ()

(x17 x2) = 2

hence

F(xb X5) = 2 F(xla x1) +

and F, ., is a complex homogeneous function of (x;, x,) since F,, ) and F,
are complex homogeneous functions of (xy, x;), (x,, X,) respectively.

In conclusion we note two other results. Lemma 2.3 asserts that Definition 1
and Definition 4.10 [2] are equivalent. H*(K) is a subset of the set of L*analytic
functions as defined by MACKEY [4]} and hence by the Theorem, pp. 160 [4] each is
the generalized Laplace Transform of a function in L? up to an equivalence relation.

X)g
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