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SPACES OF GENERALIZED ANALYTIC FUNCTIONS 

By 

D. E. MYERS (Tucson) 

This author in some previous papers [5], [6], [7] has investigated certain pro- 
perties of complex functions analytic in a strip in the complex plane. The strip was 
considered because it is the natural domain for functions that are Laplace transforms. 
MACKEY [3], ELLIOr [21, ARENS and SI~q6ER [1] among others have given definitions 
of analytic functions defined on some subset of G x ~, the generalized character 
group of a locally compact Abelian Group. Mackey and Elliot used derivatives with 
respect to semigroups, Arens and Singer the duality contained in a Poisson represen- 
tation. None of the above papers contain any elaboration of the properties of the 
class of analytic functions like the Cauchy-Riemann  conditions or preservation 
of  analyticity under uniform convergence. One result of this paper is the existence 
of necessary and sufficient conditions for analyticity which are analogous to the 
Cauchy-Riemann  equations. In this paper I will also obtain those extensions 
which allow us to construct a Hilbert space of such functions. 

NOTATION. Let G be a locally compact group (not necessarily Abelian) and 
its character group. That is, C consists of those complex-valued functions, con- 
tinuous on G with modulus identically 1 and with a multiplicative property, d is 
also a locally compact group and the topology is that of uniform convergence on 
compact subsets of G. G denotes the set of real, continuous linear functionals on 
G. A subset 32, of G is said to be large convex if it is convex, contains the zero elem- 
ent and the closed linear span is G. G x G becomes a complex vector space by defining 
(u + iv)(x,, x2) = (uxi - vxz, vxl + ux 2) for u + iv complex and (xi, x2) E G x G. 
Finally for each x g. G, define a one-parameter subgroup of d by x[u] = exp (iux), 
u real. 

DEFINII"XON (MACKUV [4]). Let K be a large convex subset of G and x0 an interior 
point of K (i.e. there exists r > 1 such that rx C K). Let F(x,  y) be a complex-valued 
function defined on K x  G. It is said to be analytic at (x0, Y0) if 

(i) Lira F(x~ + uxl'  yoxz[u]) - F(xo, Yo) = F~: .. . .  (xo, Yo) 
u~O U 

exists for every (xl, x2) ~ G. 
(ii) The above limit is a complex-homogeneous function of (Xl, x2). As will be 

shown the complex-homogeneity condition is analogous to requiring that the partial 
derivatives satisfy Cauchy-Riemann  like conditions. 
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LEMMA 1.1. I f  F(x, y) is analytic at (x, y) E G • G and U(x, y), V(x, y) denote 
real valued functions such that F(x, y) = U(x, y) + iV(x, y) then U(~I. ~)(x, y), 
V(~, x,)(x, y) exist as complex-homogeneous functions of (Xx, x.,) and 

U(~l ,  o) = V(o, ~ o ,  U(oo ~ )  = - V ( ~ ,  o) 

for all xl E G. 

PROOF. Since 0 E G ,  F(~,,0) exists and F(~.o)= Ucx~,O ~ + iVtx, o). Since it 
follows easily from the definition that the differentiation is linear. Further i(x~, O) = 
= ( 0 ,  x a )  so that 

iF(x~, o) = iU(,:~, o) - V(~,o) = F(o, ~,) = U(o, xO + iV(o, xo 

and hence 

U(x,, o) = - V(xl, o), V(o, xo = U(xl, o). 

LEMMA 1.2. Let (x, y) E G • G, N a convex neighbourhood of (x, y) such that at 
each point (x', y') in N and for all xl E G, U(~, o)(X', y') exists. Then there is a 6 > 0 
such that for 0 < c~ < 6, there is a 0 < fi(~) < a where 

U(x + ~x~, y) - U(x, y) = ~v(~, o)(X + px~, y).  

PROOF. Let g(w) = U(x + wx~, y), then there exists 5 > 0 such that g'(w) 
exists for 0 _< w __ 5 since 

g'(w) = Lim 
~w~o Aw 

U(x + (w + A w)xl, y) - U(x + wx~, y) 

= Lim U(x + wxl + A wxl, y) - U(x + wxl, y) 
A ~ - - O -  Aw = U(~,o)(X + wxl, y) 

which by hypothesis exists for all (x + wxl, y) E N. 5 may be taken to be any positive 
number such that (x + 5xl, y)E N, by convexity (x + ~xl, y)E N for 0 < ~ _< 6. 
Applying the Mean-Value Theorem to g we have 

g ( ~ )  - g ( 0 )  = ~g ' ( /~ )  

for s o m e 0 < f i < ~ , o r  

U(x + exl, Y) - U(x, y) = c~U(xl, o)(X + flx~, y). 

COROLLARY. I f  further U(~, o) is a complex homogeneous function of  (xl, O) 
then 

U(x, y ) -  U(x + c~xl, y) = i~U(o, xl)(x + flxl, y) . 

LEMMA 1.3. Let (x, y) be in G • G and N a convex neighbourhood of (x, y) such 
that for all (x', y') in N and all Xl in G, Uco ' xl)(x', y') exists. Then there exists 3 > 0 
such that for all 0 < c~ < 3, there exists 0 < fl(c 0 < ~ such that 

U(x, yxl[~]) - U(x, y) = ~V(o, xl)(x, yxl[fl]) . 
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Pgooz. Let h(w) = U(x, yxl[w]) and the proof proceeds as for Lemma 1 if we 
note that 

U(x, yxl[w + A,,]) = V(x, yxl[wlxl[Aw]). 

COROLLARY. I f  further U(o, :,i) is a complex homogeneous function of  (0, Xl) then 

U(x, y) - V(x, y x ~ [ ~ ] )  = - iaU(~,, o~(X, yxiLe]). 

COROLLARY. I f  further U(o, xo is a complex homogeneous function of  (0, xl), 
(and hence U(x~, o) is of  (xt, 0)) then 

U(x, y x ~ [ ~ ] )  - U(x + ~x~, y) = i~ [u(~10~(x, y x ~ [ y ] )  - U(o,~)(x +/~"x~, y ) ]  

for some O < fl" < ~, O< fl" < ~ or 

V(x + ~x~, y) - V(x,  y x ~ [ ~ ] )  = ~ [~(~ , ,0 ) (x  + #"x~, y) - U(o.~(x, y x ~ [ / ~ ' ] ) ] .  

LEMMA 1.4. Let F(x, y) = U(x, y) + iV(x, y) and suppose that for all xl E G, 
U(x', y'), V(x', y'), U(~, o)(X', y'), V(~,, o)(x', y') exist and are continuous in a convex 
neighbourhood of  (x, y). Then i f  U(o, ~,)(x, y) = - V(~, o)(x, y), U(~,, o)(X, 30 = V(o, ~) 
(x, y ) fo r  all xl in G, F(x, y) is analytic at (x, y). 

PROOF. It is clearly sufficient to show that 

(~ + i/~)Lira F(x + uxx, yx2[u] ) - F(x, y) 
u~O H 

and 

Lira F(x + O~UX 1 -- ~UX2, yx2[~U]Xl[flU]) -- F ( x ,  y )  

u~O U 

exist and are equal for all c~ + i/~ E C and (Xl, x~) E G x G. Writing F(x, y) = U(x, y) + 
+ iV(x, y) we may consider U and V separately. 

(1) Consider 

U(x + c~uxl - flux2, yxz[~u]xa[flu]) ) - U(x, y) 
bl 

[ U ( x  -~ ~b/X 1 -- []blX2, YX2[~U]XI[]~U]) -- U ( X  -- flUX2, yx2[O~bl]Xl[flU]) ] + 

O~U 

U(x - flux~, yx2[~ulxl[t3u]) - U(x - flux2, yxl[fiul) + 
~U 

+  ux2,yxx, u, _  ux2,y ]_ t 
~ b l  - -  f l u  " 
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If we apply gemma 2 and Lemma 3 then we obtain 

U ( x  -}- o~ux I - f ix2 ,  YX2[O:bi]XI[flU]) - -  U ( x ,  y )  

u 

= ~V(xl, o)(X - [3uxo. + axl,  yx2[~ujx~[[3u]) + ~.U(o,~)(x - [3ux2, yx2[[3u]x.,(6"]) + 

+ [3U(o,~l)(x - [3ux~, yx~[6"]) - [3Vx2o)(X - 6 " % ,  y) 

where 0 < 5, 6' < wu, 0 < 6", 5 "  < flu. Using the continuity of the partials however, 
as u ~ 0 we obtain 

~U(x,,o)(X, y) + ~U(o,~2)(x, y) + [3U(o,~(x, y) - [3V(x~,o)(X, y ) .  

(2) Proceeding in a similar fashion for 

V(x  + ~ux~ - [3ux2, yx2[~u]x~LSu]) - V(x,  y) 

U 

we obtain, as u ~ 0 

v(~, o)(X, y)  + ~ V(o, x~)(x, y)  + [3 V(o, ~,)(x, y)  - [3 V(x~, o)(X, y) .  

Now utilizing the " C a u c h y - R i e m a n n "  conditions we obtain 

Lim F(x  + ~uxl - [3uxz, yx2[~u]x~[[3u]) - F)x, y) = 
u~O U 

= ~ u(~,, o)(X, y)  + ~ U(o, ~)(x, y)  - [3 v < ,  o)(X, y)  - tiff V(o, x~) + 

+ c~V(~, o)(X, y) + ~V(o..~o(x, Y) + i[3U(x,.O)(x, y) + i[3U(o, xo(x, y) = 

= (~ + ififi)[U(x~,o)(X, Y) + U(o.~o(x, Y)] + (~ + i[3)[iV(x~,o)(X, Y) + iVto, x~) ] =, 

= (~ + i[3)[U(x~,~)(x, y) + iv(  . . . . .  )(x, y)]. 
Since 

c~(~,o)(X, y) + Vo, ~2)(x, y) = u( . . . . .  )(x, y) 
and 

V(x,, o)(X, y) + V(o,x~)(x, y) = v( . . . . .  )(x, y ) .  

The proof  is now complete. We note that another way of writing the C a u c h y -  
Riemann equations is 

r(~,o)(X, y) + iF(o.~,) = O. 

DEFINITION 1. Let K be a large convex subset of G. Define H2(K) to be 

{F ] F analytic at each point o f  K x G, sup j" ] F(x, y) I ZdY < ~ } 
xCK 

(the integral refers to the left-invariant Haar measure on G). 

THEOREM 2. H2(K) is a Hilbert space with point-wise addition and inner product 

(Fx, F2) = sup .~ F~(x, y)Fz(x, y)dy ([ ]FI] = x ~ ,  F)) 
xEK 0 
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The p r o o f  will follow f rom a series of  Lemmas.  

LEMMA 2.1. I f { F , }  is a sequence in H2(K) such that l iEn - Emil --' 0 as n, m --, co 
then F n - F m  converges uniformly to zero on compact subsets o f  K x  G. 

PROOF. Suppose [] F , -  F m [] ~ 0 and there exists a compact  K such that  
F ,  - F~ --+ 0 uniformly on K. Since [1 17, - F m  l] ~ O, ] F,(x ,  y) - Fm(x, y) [ is bounded  
on K for each n, m. Let 

g~m(K) = sup [F.(x, y) - F,~(x, Y)I. 
(x, y )cK 

Since K is compact ,  for  each n, m there exists P.m = (X .... y. . , )  in K such that  

g.m(K) = ] F.(p,,,.) - Fm(p.,.) [ . 

N o w  since F . -  F m ++ 0 uniformly on K, there exist two unbounded  sequences 
{nk} , {mk} such thatg.kmx(K ) > e for all k. Let  K~ be the closure o f  {Pk},P.kmk = Pk" 
By the continuity o f  [F.(x,  y) - Fro(x, y)] for each k there is a ne ighbourhood  Nk 
of  Pk such that  p E N implies [f.k(P) - fm~(P) ] > #2. 

K. is covered by the collection o f  such ne ighbourhoods  and as a closed subset 
of  a compact  set, K. is compact  hence there exists a finite subscover Nk . . . . . .  Nks. 
Let 

Mk, = {y I y E G, B x o(x, y) E Nk,} . 

N o w  we note that  

11Fn - Fm II > .f lF.(x, y) - F,.(x~, y) l Zdy 
o 

for all Xk, and hence 

8 
l] G - f , .  [I ~ S I G(xk .  3:) - rm(xk~, y) 12dy ~ T I~(Mk,) 

Mk~ 

for n = nk,, m = mk,. I f  now 6 = min (l~(Mk,) . . . . .  p(Mki))  then 

i I f .  - f m  I I ~ ~6/2 for n = nk, m = mk all k ,  

which contradicts [] F, - Fro l[ --+ 0 and we conclude that  F, - F m -+ 0 uniformly 
on K. 

LEM~_~ 2.2. Let  F be analytic at each point o f  K x  G, K a large convex subset 
o f  G. I f  K is a compact subset o f  K x G then F is uniformly analytic on K, i.e. given 
g > 0, (Xl, x2)E G x G there exists  6 > 0 such that 

I F(x  + UXl, yx2[u]) - F(x, y) 
--  F( . . . . .  )(x, y )  < 

U 

for  O < ] u [ < 6 and all (x, y) E K. 
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PROOF. (a) Writing 

at z = 0 implies 

PROOF. Let e > 0, (xl, X2) C G • G, then for each (Xo, Yo) C K set 

N(xo, y o ) = { ( x , y ) [  F ( x + u x l ' y x 2 [ u ] )  - F ( x ' y )  } u - F ( x ~ , ~ ) ( x ,  y ) ] < e  if 0 <  lu[ < 6  

(6 is taken to be any non-zero value such that 0 < [ u] < b implies 

F(xo + uxl, yox2[u]) - F(xo, Y0) _ F(x~,~)(Xo, Yo) < ~). 
U 

Then U N(xo, Y0) is an open covering of K, which is compact. Then there exist 
(xo, Yo)c K 

a finite number of points (xl, Yl), (x2, Y2), �9 �9 -, (xn, Y,) associated 3's 31, �9 �9 �9 3, and 
neighbourhoods N(xl, Yl) . . . .  , N(x,,  y,) which is a finite subcovering of K. Let 
6 = rain (5~ , . . . ,  6~) and the result follows. 

LEMMA 2.3. Let F(x, y) be defined in a neighbourhood of  (x, y) E G • G. Then a 
necessary and sufficient condition that F be analytic (in the sense of  Definition 1) is 
that g(z) be analytic at z = O for all (Xl, x2) E G • G where g(~ .... )(z) = F(x + ux 1 - 
- v x 2 ,  y x . , [ u ] x l [ v ] ) ,  z = u + iv. 

1 ( 8  i ?  t 0z = 2- ~ u  + ~ v  as is customary then g~(z) analytic 

However 

and 

8z ~?g z=o = 0 "  

Ou ~g z=o = Lira._0 F(x  + uxl, yx2[U])u - F(x, y) = F( . . . . .  )(x, y) 

Qg z=o = Lira F(x - vx2, yxl[v]) - F(x, y) 

Og z=O 
Hence ~ 

o r  

= 0 implies 

F( .. . . .  )(x, y) + iF( . . . . . .  )(x, y) = 0 

= g(_x . . . .  )(x, y ) .  

F(  . . . . .  ) ( x ,  y )  = - i F ( _ x , , x l ) ( x ,  y )  

which together with the observations that - i ( - x  2, Xx)= (,xl, x2) provides the 
complex homogeneity required. The existence of the derivative follows from the 
existence of the derivative of g. Since the preceding assertions are reversible the 
foo~d of the theorem is complete. 

L~MMA 2.4. Let {Fn(x, y)} be a sequence of  complex-valued functions analytic 
at each point of  K x  ~, K large convex in G. I f  {F,} converges uniformly on compact 
subsets of  K x G then the limit function is analytic at each point o f  K x G. 
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PROOF. Let (x0, Yo) C K x  G, (x 1, x~) C G x G and 6 > 0. 

M( . . . . .  )(3) = {(x, y)[x -- Xo + uxl - vx2, y = yox2[UlXl[V], (x, y) C M, 

[z[ <= 5 , ( x , y )  C g x d } ,  

then M(x~. x~)(6) is compact and is nonempty for some 5 r 0. We see then that {F,} 
converging uniformly on M( . . . . .  )(3) is equivalent, to {g,} converging uniformly on 
]z[ < 5 where 

g,(z) = F, (x  o + ux 1 - vx2, yox2[u]xl[v]). 

Now g,(z) is analytic for [ z I < 5 if and only if F,  is analytic in M( . . . . .  )(3) with respect 
to (x 1, x2) by Lemma 2.3. Therefore {g,} has an analytic limit for I z l < 6 if and only 
if {F,} has an analytic limit at (xo, Y0). Since (x0, Y0) and (Xl, x2) were arbitrary, 
the proof  is complete. 

PROOF OF THEOREM 2. By Lemma 2.1 a Cauchy sequence in H2(K) is a Cauchy 
sequence in the topology of uniform convergence on compact subsets of K x  G. 
From Lemma 2.4 the limit under this latter topology is analytic. From the usual L 2 
topology we have that the limit function must be in H2(K). The algebraic closure 
of H2(K) follows in the usual way. 

THEOREM 3. I f  F(x, y) is analytic at (Xo, Yo) E K x  G, for all n, g(zl, z~., . . . , z,) 
is analytic at (zt, z2, . . .  , z,) = (0 . . . . .  0) where 

g(zl . . . . .  z.) = F(x  o + ~ (u,xi - vzxi+.), Yo f i  Xi[Vi]Xi+n[b/ i ] ) ,  
i=1  i=1 

(x i , x  i + . ) ~ G •  i =  1 , . . . n .  

PROOF. By n applications of Lemma 2.3, g is analytic in z, for each i and hence 
by the O s g o o d - H a r t o g  Theorem [3] g is analytic. 

COROLLARY 3. l. If F is analytic at (Xo, Yo) then for  all (xl, xz) C G x G, F( . . . . .  ) 
is analYtic at (Xo, Yo). 

PROOF. Let n = 2 in Theorem 3 then g(zl, z2) is analytic at (0, 0) and hence 
the double and iterated limits on the derivatives exist and are equal, i.e. 

29 (0,0)- a29 (o,0)= 0 
(~21~2 a52~2i " 

Evaluating these as in the proof  of Lemma 2.3 we have 

(F( . . . . .  ))( . . . . .  >=  (F( . . . . .  >)( . . . . .  > 

and both exist and are complex homogeneous functions of (x 1, Xa), (x 2, xa). By 
repeated applications of this corollary we have that F analytic implies the existence 
of all higher orders of derivatives. 
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If  we re-define analyticity then we can obtain a weak form of O s g o o d -  Hartog 
Theorem for these functions. 

DEFINITION 4. Let F(x,  y) be defined in a neighbourhood of (x0, Yo)E G x G. 
Then F is said to be analytic in xl at (Xo, Y0) if 

Lira F(xo + ux~, yx~[u]) - F(x,  y) 
= F(x . . . .  )(Xo, Y0) 

u+O H 

exists and is a complex homogeneous function of (xl, x,). 

THEOREM 5. (Weak O s g o o d -  Hartog.) I f  F is "analytic in xl  at (Xo, Yo)" f o r  all 
Xl E G then F is analytic (in the sense o f  Definition 1) .  

PROOF. We note that 

1 - i  1 + i  
(XI' X2) - -  2 (Xa, xl) + ~ (x2, x2) 

hence 

1 - i  1 + i  F 
F(~1,~2)- 2 F(x . . . .  ) + ~ ( . . . . .  ) 

and F( . . . . .  ) is a complex homogeneous function of (xl, x2) since F(xl, ul) and F(~,, ~), 
are complex homogeneous functions of (xl, xl), (x2, x2) respectively. 

In conclusion we note two other results. Lemma 2.3 asserts that Definition 1 
and Definition 4.10 [2] are equivalent. H2(K) is a subset of the set of LZ-analytic 
functions as defined by MACKEY [4] and hence by the Theorem, pp. 160 [4] each is 
the generalized Laplace Transform of a function in L z up to an equivalence relation. 

(Received 23 June 1969) 
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