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1. INTRODUCTION

The virtually limitless
materials encountered in nature
uncertainty in defining their engineering
properties. A statistical approach to
defining soil properties provides a rational
basis to achieve more economical solutions to
geotechnical engineering problems by avoiding
the use of extreme values in analysis and
design and by quantifying the uncertainty
involved.

The properties of
soils and their relation to
problems in Tucson, Arizona,
investigated extensively (e.g.,
Anderson, 1968; Crossley, 1969; Abdullatif,
1969; Nowatzki, 1980; Sabbagh, 1982; Sultan,
1969) . Previous studies, however, were
limited either to specific areas within the
City or to specific so0il parameters. The
purpose of this study was first to apply
statistical techniques to a wide range of

of soil
leads tc

variety

collapse susceptible
foundation
have been
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collapse criteria and collapse-related soil
parameters in order to determine which
criteria and parameters are the most reliable

indicators of collapse susceptibility and then
to obtain the probability distribution for
each of those indicators within the Tucson
Basin without bias and with known variance.

In order to accomplish these goals, field
and laboratory test data for 922 sample points
at 411 different Ilocations within the City
were collected from the job files of 1local
consulting engineers and from the reports of
previous researchers. These data were reduced
and organized into a massive data Dbase
containing the following information for each
sample:

1. Coordinates of the sampling location on
a grid corresponding to the street plan
of the City of Tucson.

2. Sample depth (D) from surface to 12 m.

3. Collapse-related soil parameters:
Insitu dry unit weight ( Yg)
Insitu moisture content (wg)
Insitu void ratio (eg)

Insitu porosity (ng)

Insitu degree of saturation (Sgy)
Plastic 1limit (PL)
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4. Collapse criteria:

a. Gibbs' (1961) collapse ratio (R)

b. Alfi's (1984) collapse parameter (A)

c. Percent Collapse (Jennings and
Knight, 1957) following saturation

under load (Cp).

The data were arranged into seven sets
according to depth. The range of depths
considered and the total number of sample
points for each set are shown in Table I.

Data Set 1 through 6 each contains values for
the parameters D, Cp, eg, Ng, So, Y4, and wg.
Data Set 7 contains values for three
additional parameters, R, A, and PL. Because
of space limitations, only a brief description
of the geostatistical techniques followed in
evaluating these data sets will be given, and
only the results for Cp will be presented.

2. CONVENTIONAL STATISTICAL ANALYSES

In order to establish the
each parameter as an indicator of soil
collapse susceptibility, conventional
statistical analyses consisting of descriptive
statistics, probability analyses, regression

reliability of
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TABLE I

Data Set Characterisitics

Data Depth Range Number of
Set (m) Observations
1 0 - 0.30 125
2 0.30 - 0.61 286
3 0.61 - 0.91 254
4 0,918~ 1522 100
5 1.22 - 1.83 104
6 1.83 - 12.2 123
7 0 — 12,2 219*

*Data from other sets containing values
for three additional parameters.

analyses, and factor analyses were performed
on the data in each data set. A Dbrief
description of the results of these analyses
follows.

Descriptive Statistics: The mean value
(), standard deviation (@), coefficient of
skewness (ﬁl), coefficient of kurtosis (32),
and coefficient of wvariation (COV) were
determined for each parameter in each of the
seven data sets. The COV, which is a commonly
used relative measure of the degree of
uncertainty associated with a random variable,
was found to increase linearly with depth for
all parameters. This increase is attributed to
the greater chance for a higher degree of
sample disturbance at increased depths.

Probability Distribution: The development
of a probability distribution for a random
variable is a simple way to verify the
homogeneity of its spatial distribution and to
identify extreme or suspect data. The
adequacy of a proposed theoretical
distribution to describe the empirical
distribution determined for each parameter was
evaluated by the Kolmogorov-Smirnov (KS) and
the Chi-square (CS) goodness of fit tests. The
theoretical distribution represents what would
be expected under the "null hypothesis.”" All
parameters of each data set were tested
against the Normal, Lognormal, and Gamma or
Weibull distributions. The results of the KS
and CS goodness of fit tests showed that all
parameters followed the Gamma distribution,
except Yq which was found to follow the
Weibull distribution. Therefore, in this study
the Gamma distribution was used to describe
the probability distribution of C,.

Regression Analysis: Stepwise linear
regression analyses were performed on all
data sets for each of the variables in order
to investigate possible functional
relationships among the wvariables and to
identify the '"strongest" variables from a
statistical perspective; i.e., those that
vield the largest percent reduction of
variance in the functional relationship being
considered (Holtz and Krizek, 1971).
Expressions were derived for each variable
from all possible combinations of the
parameters of interest.

The results of the stepwise linear regres-
sion analyses for Cp are presented in Table
II. The associate correlation coefficients
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TABLE II

Stepwise Regression Equations for Cp (%)
(All dimensionless variables
expressed as decimals)

Data Regression Equations % Variation

Set D=m; Yd=kN/m3. Explained
Cp = 8.03 - 19.5 S5 + 1.54D 10.8
Cp = 54.59 - 9.4 S5 - 0.068 Yd 26.4

- 787.8 Wg

3 Cp = 37.41 - 0.046 Y4 - 39.29 W, 29.2
4 Cp = 29.80 - 2.6 Sg - 0.035 74

- 29.26 W, 24.6
Cp = 73.22 - 0.086 7d - 17.1 e, 32.5

6 Cp=-19.14 + 7.2 S + 0.02 7d
- 47.23 W, + 13.4 eq 2743

are shown in Table III. Values of the
correlation coefficient range between + 1,
with "perfect prediction" indicated by either
+1 or -1 and "no association" by zero.
Although the strongest variables are seen to
differ among data sets, in general, C, is most
strongly related directly to Ya and
indirectly to Wo through moderately strong
correlations with e; and Sg [Speo = WoGg
where Gg = specific gravity of solids and is
assumed constant].

Factor Analysis: In order to obtain a
complete characterization of the variability
of the collapse criteria and the collapse-
related parameters, a higher order statistical
technique called "factor analysis"” was applied
to each of the data sets (Harman, 1967). The
main purpose of factor analysis is to define a
minimum number of hypothetical variables or
"factors" with which the correlations
determined previously can be reanalyzed.

Factor analyses for each data set and for
the combined data reveal that the most stable
factors are those associated with 74 and s,.
For most data sets unique factors were
extracted for Cp and D as sole variables. In
summary, the factor analyses validated all of
the findings of the previous statistical
analyses and lent confidence to the selection
of C as a valid measure of the collapse
susceptibility of soils in the Tucson Basin.

TABLE III

Correlation Coefficients for Cp

Associated Variable

Data Set D €o So Yda Wo
A 0.13 0.37 -0.29 -0.14 -0.24
2 -0.10 0.17 -0.42 -0.36 -0.26
3 -0.06 0.30 -0.36 -0.46 -0.15
4 0.10 0.33 -0.28 -0.46 -0.01
5 -0.05 0.44 -0.08 -0.52 0.10
6 -0.22 0.29 0.10 -0.37 0.10
7 -0.22 0.27 -0.43 -0.75 -0.10




3. KRIGING

A natural way +to compare the values of a
s0il parameter [Z(x) and Z(x+h)] at two points
in space [x and (x+h)] is to consider the
difference in the values. For a set of pairs
of sample points a certain separation distance
apart the absolute average of the difference
[Avg|Z(x) - Z(x+h)|] can be obtained easily.
For mathematical reasons, the squared
differences are considered instead and the
dissimilarity function is chosen as

27 (h) = Avg [Z(x) - Z(x+h)]2 (1)

The term 2 Y (h) is known as the "vario-
gram," Being a function of the distance
vector, it expresses how the average value of
a parameter varies with distance in a given
direction. If the data for the parameter
demonstrate directional anisotropy, then the
Y(h) function will also depend on direction as
well as separation distance and should be

written as 7(h,0). The variogram can also
be interpreted as the elementary estimation
variance of a variable Z(x) by another

variable Z(x+h) at a distance h units from x.
As such it can be expressed as:

27 (h) = E {[Z(x+h) - Z(x)]2) (2)

The variogram can be estimated by

2Y*k(h) = 1/N(h) T [Z(x3) - Z(xy+h)]2 (3)

where [(X1, x3+h); ...; (XN(h), XN(h) *+ h)l
are N(h) pairs of samples separated by the
distance vector h. In this form, (h) is
called the "semi-variogram." When it is
estimated by 7*(h) it is called the ‘"experi-
mental semi-variogram." This parameter bears

the same relationship to 7Y that a histogram
does to a probability distribution (Clark,
1979).

If a semi-variogram for a given soil
parameter indicates that it has a spatial
structure over an area of interest, it may be
advantageous to consider that spatial
dependence to describe the distribution of
observed values over that area. In such cases
the variogram may be used to estimate values
for the parameter by interpolating between
observed values. The geostatistical
estimation technique which provides the "best
linear unbiased estimation” of the values for
the parameter is known as "kriging."

There are three types of kriging: punctual,
block, and universal. Punctual kriging, which
provides estimates for values of a random
variable at points where there is no drift,
has two forms: simple kriging if the mean
value of the variable is known, and ordinary
kriging if the mean value is not known. Drift
is defined as a nonstationary expectation of a
random function. Block kriging is used when
an estimation of the spatial average is
required over a volume or an area. Universal
kriging is an optimal method of interpolation
that applies in all cases where drift must be
taken into account because of lack of data to
make stationary or quasigstationary estimates

{Matheron, 1963, 1969).
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A major advantage of kriging over other
interpolation methods is that the estimation
variances can be calculated before actual
sampling is made. The estimation variances
depend on the semi-variogram and the
configuration of the data points relative to
the origin. They do not depend on the
observed values of the parameter (Burgess and
Webster, 1980). Therefore, if the variogram
is known for a given soil parameter in a
region, sampling intervals for the desired
variance of estimation can be selected before
actual samples are taken at the site.

As indicated previously, the main goal of
this study was to obtain the probability
distribution of each collapse criterion and
collapse-related soil parameter at its three
pre-defined cut-off levels relative to
collapse susceptibility: high, medium, and
low. There are several geostatistical methods
for estimating probability distributions:
multi-gaussian kriging, disjunctive kriging,
indicator kriging, and probability kriging.
The former two are parametric estimation
techniques in which some assumptions regarding
the distribution of the variable under study
must be made. Their mathematical complexity
makes them harder to apply than the latter two
methods which, in addition to being
distribution-free, are also nonlinear.

In this study, variograms were estimated
for each collapse criterion and collapse-
related soil parameter in each data set by
using a discrete number of values obtained
from test data at incremental distances
corresponding to sampling locations throughout
Tucson. These variograms were then used in
conjunction with ordinary kriging to estimate
values of the parameters at unsampled
locations. Indicator kriging (Journel, 1983;
Journel and Huijbregts, 1978) was then
utilized to produce contour plots of estimated
probability and associated kriging variance
for each parameter in each data set. All of

the geostatistical computations, including
variogram estimation and kriging, were
performed by using the computer program

BLUEPACK developed by the Centre de
Geostatistique, Fontainebleau, France.

4. RESULTS AND DISCUSSION

Typical results of kriging analyses are
shown for Cp in Fig. 1. The solid line
contours represent the estimated probability
that soils having a "high" collapse potential
will be encountered within 0.3 m of the
surface. The cutoff values used to delimit
"high" (Cp > 5%), "moderate" (2% < Cp < 5%),
and "low" (Cp < 2%) collapse potential are
those proposed by Sabbagh (1982) based on the
work of Jennings and Knight (1975). The
shaded zones in the figure indicate areas
within Tucson where there is a 60%-80%
probability of encountering collapse
susceptible soils within 0.3 m of the surface,
i.e., within the founding elevation of
footings and floor slabs for most residential
structures built in the area.

The broken 1line contours represent the
estimation variance for the probabilities
shown in the figure. The variance is seen to
lie within a narrow range of moderate values
between approximately 0.5 and 0.6. Although
not presented here, similar contour plots were
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developed for "moderate" and "low" collapse
potential based on Cp. When the three plots
are combined, a clear picture of the
distribution of collapse susceptible soils in
Tucson within 0.3 m of the surface emerges.
Although not presented here, similar plots
were developed for all of the other collapse
criteria and collapse-related soil parameters
for each of the seven data sets.

5. CONCLUSIONS

(1) The geostatistical analyses described
in this paper predict a high probability of
occurrence of soils having a high collapse
potential in areas where the geomorphological
features also favor the presence of such
soils, i.e., predominantly within the flood
planes of the ephemeral rivers and streams in
the area. This supports the validity of the
geostatistical approach used in this study.

(2) The geostatistical techniques described
in this paper can be used to predict values of
other soil properties in unsampled areas
without bias and with known variance provided
there is a statistically significant amount of
reliable data available from tests performed
on soils from sampled areas.

(3) Kriging methods can be used to develop
probability contour plots for selected soil
parameters at predetermined depths. These
plots can then be combined to provide a unique
and comprehensive picture of the three-
dimensional spatial distribution of the
parameter within an area of interest. This
information is extremely valuable to planners,
developers, and practicing geotechnical
engineers. Its reliability can be improved
with time if the data base is continuously
updated.
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FIGURE 1
Probability Contours (solid) and Estimation
Variance (dashed) for Occurrence and of
"Highly" Collapsing Soils in Tucson, Arizona.
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