
Contents lists available at ScienceDirect

Ecological Modelling

journal homepage: www.elsevier.com/locate/ecolmodel

Topological acoustic sensing of spatial patterns of trees in a model forest
landscape
Trevor D. Lataa,*, Pierre A. Deymiera, Keith Rungea, François-Michel Le Tourneaub,
Régis Ferrièreb,c,d, Falk Huettmanne
a Department of Materials Science and Engineering, University of Arizona, Tucson AZ 85721, USA
bUnité Mixte Internationale iGLOBES, CNRS, Ecole Normale Supérieure, Université PSL, Université of Arizona, Marshall Building, 845 N Park Avenue, Tucson AZ 85721,
USA
c Institut De Biologie de l’ENS, Ecole Normale Supérieure, Université PSL, CNRS, INSERM, 46 rue d’Ulm, 75005 Paris, France
dDepartment of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
e -EWHALE lab- Institute of Arctic Biology, Biology & Wildlife Department, University of Alaska Fairbanks, Fairbanks, AK 99775, USA

A R T I C L E I N F O

Keywords:
Acoustic
Seismic waves
Sensing
Geometric phase
Landscape
Density

A B S T R A C T

Remote sensing of forest environments through sound holds promise for a renewed and extended effort in
monitoring vegetation distribution and associated characteristics. Here we introduce a new acoustic sensing
approach that exploits the geometric phase of ground-supported acoustic waves, such as seismic waves, resulting
from their scattering by trees in forest environments. Using a simulated model forest with different spatial
arrangements of trees as a testbed, we numerically calculate the geometric phase of acoustic waves and show
that it is exquisitely sensitive to the spatial pattern of trees. This topological acoustic sensing modality provides a
novel, quantitative, insightful way to characterize global properties of tree spatial distribution, which is fun-
damental to forest management. Sound has virtually never been used to support quantitative forest monitoring,
and here we elaborate on the wider implications and applications of topological acoustic sensing in remote
landscapes as a very promising concept.

1. Introduction

In natural forests, trees are not uniformly distributed but instead
form spatially heterogeneous patterns and distinct clusters shaped by
endogeneous and exogeneous processes such as fires (Larson and
Churchill, 2012) or resource distribution. Larson and Churchill (2012)
for instance describe tree spatial patterning in terms of clumps, in-
dividuals, and openings. A clump is a group of trees of similar size
clustered together; individuals are well separated trees forming
‘random’ patterns; and openings are gaps in the forest that are not oc-
cupied by trees. The spatial distribution of trees in forests influences
many metrics as well as dynamic processes such as timber volume,
future fires, nutrient distributions and forest regeneration. Given the
importance of spatial distribution, there is a need for quantitative de-
scriptions for classifying distributions of ecological elements (Greig-
Smith, 1952, 1983). While forests are not well monitored, specifically
for inaccessible locations, detection of tree spatial patterns in real-
world landscapes is an important component of forest monitoring,
needed to inform forecasts and scenarios for sustainable forest

management (Carrer et al., 2018).
Natural and human activities combine to produce sound that pro-

pagate through forests (Mullet et al., 2016). Sound can reveal dimen-
sions and structures of landscapes that are otherwise easily overlooked,
and not accessible, measured, or considered in conventional studies
(Sharma, 2018; Sahin and Ince, 2009; Turner et al., 2018). Acoustic
sensing and soundscape analysis yield novel insights with promising
applications. Acoustic sensing provides indicators of forest structural
changes, which inform about the intensity, direction, and modalities of
these changes. Acoustic sounding systems can provide data about forest
environmental change, and measures of the intensity of human activ-
ities and their impact (Sharma, 2018; Turner et al., 2018). Acoustic
sensing can also be used to detect early warnings of forest fires (Sahin
and Ince, 2009).

Conventionally, soundscape data have been analyzed in the fre-
quency domain, using the power spectral density as a central concept
(Turner et al., 2018). Such analyses, however, do not provide direct
information on the nature and dynamics of heterogeneity in the spatial
distribution of trees. In recent years though, topological acoustics has
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become a powerful approach to describe sound waves that now in-
cludes geometrical attributes as an additional source of information for
the analysis and applications of sound waves (Deymier and Runge,
2017; Zhang et al., 2018). Topological acoustics exploits the complete
range of acoustic wave properties—to extend beyond the traditional,
canonical attributes of sound wave frequency (ω) and wave vector (k),
and now embrace the geometric domains of amplitude (A) and phase
( ). Topological acoustics exploits the geometrical characteristics of
sound amplitude and phase imparted by the symmetry breaking that
results when an environment, such as a forest, scatters an acoustic
wave. As a result, the geometrical phase of the sound is a sensitive
measure of sound-environment interactions. The power of topological
acoustic sensing resides in this geometric phase being a global metric of
the sound-scattering environment. Thus, topological acoustics paves the
way for novel analytical strategies that extend acoustic sensing and
provide a more complete sound-based characterization of forest struc-
ture. This sound-based method would allow for continuous regular
monitoring over long periods of time and may help address issues of
transferability associated with expensive traditional remote sensing
platforms such as satellite imaging (Díaz-Delgado et al., 2017). Ad-
ditionally, due to its topological nature this method may aid in devel-
oping grid-based atlases of vegetal density for a variety of grid sizes
(Franklin, 2010).

Long-wavelength ground supported acoustic waves such as seismic
waves (Stein and Wysession, 2009) are pertinent probes for applica-
tions of topological acoustic to sensing forest environments. This has
been shown recently by the strong interaction that occurs between
seismic waves of a few tens of Hz and trees from a forest (Colombi et al.,
2016; Maurel et al., 2018). Here, we investigate whether and how
ground supported long-wavelength acoustic waves such as seismic
waves, that can propagate over great distances at the interface between
ground and above-ground forest cover, provide us with information
about the tree spatial pattern. Based on our previous work (Deymier
and Runge, 2017) we introduce a new approach for acoustic sensing
that utilizes the geometric phase of scattered ground supported acoustic
waves as a highly sensitive measure of the global properties of forest
spatial patterns. Thus providing a useful tool for, for instance, forest
inventories on a landscape scale. In the following section, we introduce
a numerical model that can be used to calculate the geometric phase of
acoustic waves resulting from the scattering of ground supported waves
by a model forest with different spatial tree distributions. The numer-
ical model is based on the Green’s function formalism of acoustic waves
and implemented utilizing the MATLAB computing environment. In
section 3, we consider a gradient of model forest structure, from a
random spatial distribution of individual trees to a single clump of
trees. The geometric phase of ground supported acoustic waves is
shown to be very sensitive to the spatial distribution of the trees, de-
monstrating that topological acoustic sensing can provide a global
sensing modality of forest spatial patterns. Conclusions from these re-
sults are drawn in Section 4.

2. Material and methods

2.1. Method

Conventional acoustic sensing provides spatial, temporal, and
spectral data on an environment’s sound field. Phase information, and
more specifically the geometric phase ( ), has traditionally remained
outside of conventional sensing methodology. Instead, here we in-
troduce a new approach for acoustic sensing that actually utilizes the
geometric phase of scattered acoustic waves as a measure of the global
properties of the scattering environment. We establish the important
relation between an acoustic wave’s and its Green’s function (Deymier
and Runge, 2017) (see Appendix A). The acoustic Green’s function re-
presents the acoustic field supported by some environment, resulting
from a “tap-like” mechanical stimulus applied at some location within

this environment. For a given environment, the Green’s function de-
pends on 1) a position variable describing the field; 2) a position
variable describing the location of the stimulus; and 3) the eigenvalue,
which is effectively the square of the frequency of the acoustic wave,

=E 2.
The Green’s function is a complex function. We first consider a

normalized Green’s function =Ĝ G
G G*

where G* is the complex con-

jugate of G. We have G E eˆ ( ) i E( ). We calculate the derivative of this
normalized function with respect to the eigenvalue E :

=dG E
dE G G

dG
dE

G
G G

d G G
dE

ˆ ( ) 1
2( )

( )
* * 3/2

*

(1)

From this derivative, we can obtain the Berry connection (BC)
(Berry, 1984) in the space of eigenvalues. BC is defined as the following
quantity:

=BC E i Tr G E dG E
dE

( ) ˆ ( )
ˆ ( )*

(2)

where Tr is the trace over the spatial domain spanned by the Green’s
function. Tr sums the quantity in parenthesis of Eq. (2) over the entire
spatial domain. The Berry connection relates to a change in the of the
acoustic wave field as a whole—a global measure of the environment
supporting the acoustic field. The function BC E( ) can then be under-
stood to describe the variation of the of the Green’s function along a
path in the space of eigenvalues, i.e., on the space of frequencies.

Using well-established Green’s functions identities related to the
properties of the Green’s function in the space of its eigenvalues (see
Appendix A for details), it is possible to show that:

= =BC E d E
dE

Im TrG( ) ( ) ( ) (3)

Eq. (3) relates to a scattering problem, i.e., the scattering of
acoustic waves by the environment. The , as a function of frequency, is
an experimentally measurable quantity, which is the phase accumu-
lated by an acoustic wave due to scattering by the environment. To-
pographical and structural features of the scattering environment, such
as the spatial distribution of trees in a forest, are reflected in the Green’s
function; the value of the geometric phase is not sensitive to details or
local features of the tree arrangement but is a more global measure. We
can utilize the geometric phase to classify the environment in terms of
global characteristics, relative for example to the spatial distribution of
constitutive elements such as trees. This approach is introduced in more
details below.

2.2. Model

We develop an elastic model of a forest including ground and tree
cover that can be used to calculate numerically the acoustic Green’s
function for given tree distributions and the corresponding phase . The
method is detailed in Appendix B. This model forest is used to nu-
merically investigate the correlation between tree distribution and .

We model the forest landscape as a semi-infinite elastic medium
(ground) supporting trees distributed in various patterns. In essence,
each ground-anchored tree acts as an elastic resonator (here four re-
sonances), which scatters ground-propagating acoustic waves. For this
each tree is discretized into a one dimensional (1D) linear chain of four
masses connected by elastic springs (Fig. 1(a)). The spacing between
masses is denoted by a. All trees have the same height and constitution,
i.e., the same characteristic vibrational resonances.

The ground is discretized into a three-dimensional simple cubic
lattice of masses connected via elastic springs (Fig. 1(a)). The discrete
cubic lattice is cleaved along the (001) plane (i.e. a plane perpendicular
to the vertical axis) to create the surface of the ground. The masses in
the cubic lattice are all identical and connected via harmonic springs
along the edges of the cubic lattice. The spacing of masses in the cubic
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lattice is also equal to a. The trees are elastically anchored to the surface
of the semi-infinite lattice through another elastic spring. For the sake
of mathematical and numerical ease we assume that the masses and
spring stiffnesses of the trees and tree anchor are identical to those of
the ground. There is therefore no irregular spatial variability in the
ground density or composition.

For the sake of tractability, the dynamic equations of the elastic
system composed of discrete trees distributed on the discrete elastic
ground are limited to displacements of masses in one single direction.
The direction of the displacement is unspecified and could be re-
presenting either transverse/shear or longitudinal/pressure polariza-
tion of the sound wave. The Interface Response Theory (IRT)
(Dobrzynski, 1988, 1987) enables us to calculate the elastic Green’s
function (more specifically the diffusion matrix) of the composite
elastic medium composed of trees anchored on the ground surface. The
diffusion matrix is then used to calculate the phase of the scattered
wave as a function of the frequency. The method of calculation of the
Green’s function/diffusion matrix and the phase is detailed in Ap-
pendix B and in Deymier and Runge (2018). Once the spectral de-
pendency of the geometric phase, ( ), is determined for a given en-
vironment, we aim at evaluating how the phase varies as the spatial
structure of the environment changes. For instance, let us focus on a
forest system composed of Nc mass-spring chain-like trees with a spatial
distribution described by the N2 c dimensional vector M on the discrete
cleaved surface of the cubic lattice (i.e. ground). This vector contains
the 2D coordinates of every tree. This vector spans the subspace R ofM,
the space of the possible locations of tree anchors, for the system de-
fined in the Appendix B as (see Eq. (B13)):

= = = = … =R p p x x p x x p x x{ (0,0, 0), ( , , 0), ( , , 0), , ( , , 0)}Nc
Nc Nc

1 2 1 2 3 1 2 1
( 1)

2
( 1)

where defines a 2D position on the (001) surface of the cubic lattice.
The xI

i( ) are integer multiples of the grid spacing of the cubic lattice, “a.”
Following Appendix B, the phase difference (normalized to ) between
acoustic waves supported by the coupled system (trees elastically
anchored to the ground) and by the uncoupled system (trees
not anchored) is then obtained from the relation:

=R M Im det MM( , ) [ln( ( ))]1 where MM( ) is the diffusion ma-
trix. The diffusion matrix relates the Green’s function of the coupled
system, g MM( ), to that of the uncoupled system, G MM( ), via

=g MM MM G MM( ) ( ) ( ) in the space M. It is then clear that since
= +det MM detg MM detG MMln( ( )) ln( ( )) ln( ( )), R M( , ) stands

for the phase difference between the coupled and uncoupled system.
We can now consider two possible spatial patterns of trees, namely R
and R . The quantity = R R( , ) ( , ) represents the difference
between the geometric phase of pattern R and R’. The phase associated
with the uncoupled system is independent of the spatial arrangement of
the uncoupled mass-spring chains and therefore cancels out in the

expression of . One can consequently calculate the change in geo-
metric phase along chosen paths in the space of all tree spatial patterns.

Here, we consider a path that takes the forest landscape from a
random—but uniform— distribution of trees (Fig. 1(b)) to a clustered
spatial distribution of trees (Fig. 1(c)). The forest spatial pattern evolves
from individuals to a single clump. We fix the total number of trees to

=N 30c , located on a 20a× 20a area of the ground surface. A tree was
randomly selected from the starting pattern of individual trees as the
center of the clump. Trees are subsequently removed randomly from
elsewhere in the model among the remaining individuals, forming gaps.
The selected trees are added to the clump to maintain the total number
of trees constant. To limit the space of possible configurations of trees in
a clump, trees were added in an anticlockwise manner, beginning from
the top of the central tree. The final cluster contains 29 trees, therefore
there are 29 steps in the development of the clump. This process is
illustrated in Fig. 2.

3. Results

In Fig. 3 we report the calculated variation in density of states,
n ( ), of the randomly distributed pattern of individual trees as a
function of reduced frequency. The frequency is reduced by the di-
mensional multiplicative factor,

m
, where is the stiffness of the

springs and m is the mass of the elements in our discrete ground/forest

Fig. 1. (a) Model of resonating “trees” (orange) represented as one-dimensional mass-spring chains anchored elastically to the three-dimensional “ground” (blue)
modeled as a simple cubic lattice of masses and springs. (b) Top view of the distribution of =N 30c trees anchored to the ground surface in a 20a by 20a area in a
sparse (individual) configuration used as a reference point in the model. (c) Configuration of trees in a single clump of 29 trees with the central tree (open circle) also
shown in (b) for reference to the random tree configurat ion. The space spanned by the position of the trees, represented as dots, is denoted R in the text (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).

Fig. 2. Order in which trees are added to form the clump of 29 trees, with one
denoting the central tree. We arbitrarily chose to add trees in an anticlockwise
manner.
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model. The reduced frequency spans the interval (0, 2). This figure
shows the four resonances associated with the four mass/spring model
of the trees. Since the trees are separated by distances which prevent
them from interacting through the elastic ground, the resonance fre-
quencies are degenerate.

We calculate the phase numerically as a function of reduced fre-
quency between 0.2 and 0.4—about the first resonance of the trees.
Since the phase can only be determined to within multiple of 2π, the
plot of versus frequency of Fig. 4 has been corrected for these in-
consequential 2π jumps. The numerically calculated values of were
parsed through and multiples of 2π were added manually, resulting in a
continuous function of as a function of reduced frequency. The cor-
rected phase accumulates each time the wave encounters a resonance
(i.e. the wave is scattered by a tree). Since they are 30 degenerate tree
resonances at the reduced frequency of 0.327, the total accumulated
phase approaches the value of 30 π.

A similar calculation of the corrected phase ( ) was done for each
stage of the formation of the clump of 29 trees. The initial distribution
of randomly distributed individuals is used as a reference for each
clump of trees. The corrected for the configuration of individuals is

subtracted from the corrected for each stage of the clump. The re-
sulting function is a difference in corrected phase, ( ), for each
clump size. In Fig. 5, we clearly see the delineation by the resonant
frequency. Away and below resonance, the difference on corrected
phases only weakly increases with the number of trees in the clump.
Away and above resonance, the difference in corrected phase decreases
monotonously as a function of clump size, approaching the value of -30
π as we remove individual trees from the forest to form the clump. The
most remarkable effect resides in the vicinity of the resonant frequency
where significant structure in the phase difference can be observed.

To reveal these effects more clearly, Fig. 6 shows the difference in
corrected phase as a function of the number of trees in the clump at four
frequencies. More specifically, we consider the two frequencies, 0.3 and
0.323 below resonance and the two frequencies, 0.3344 and 0.35 above
resonance. We note the slow but monotonous increase in phase differ-
ence for the lowest frequency. Above resonance, the difference in phase
appears to decrease by steps.

Slightly below resonance, the phase difference shows highly non-
linear behavior. For some ranges of clump size, the difference in phase
decreases monotonously. However, these ranges are separated by dis-
continuities. These discontinuities are not multiples of 2π; they take on
values that are fractions of π. They occur between 7-8-9 trees as well as
14–15, 18–19, and 22–23 trees in the cluster. In Fig. 7 we report the
change in difference in corrected phase between clusters of increasing
size. As discussed before, this difference is effectively the geometric
phase.

To shed more light on the cause of the discontinuities in the dif-
ference in corrected phase (or the change in geometric phase), we focus
on the jump occurring for a clump of 19 trees. The tree distribution for
this clump results from adding trees 14 through 19 to a cluster of 13
trees (see Fig. 2). These trees are located in an octogonal shell a5
away from the center of the cluster. That shell can accommodate up to 8
trees. Therefore, for the clump of 19 trees, there are two gaps (i.e. sites
not occupied by trees) in that shell. We analyse the clump of 19 trees by
fixing one of the gaps (the one that would eventually accommodate tree
20) and rotating the other gap (the site that would accommodate tree
21) counter-clockwise about the center of the clump. This process is
illustrated in Fig. 8.

Fig. 3. Variation in density of states, n, of the forest pattern composed of 30
randomly distributed trees as a function of reduced frequency. The four peaks
correspond to the four resonant frequencies of the mass/spring tree model. See
Section 3.2 and Appendix B for model description and parameters.

Fig. 4. Calculated phase as a function of reduced frequency in the vicinity of
the first tree resonance for the forest pattern composed of 30 randomly dis-
tributed trees. The phase is expressed in units of π. The first tree resonant
frequency is approximately 0.327. Inset: Variation in density of states, n,
corresponding to the same spatial pattern as a function of reduced frequency.
See Section 3.2 and Appendix B for model description and parameters values.

Fig. 5. Difference in corrected phase for all 29 stages of development of the
clumped forest from the individual tree configuration. The axis “Number of
trees” refers to the number of the trees in the clump. The difference in corrected
phase refers to the phase of the forest pattern with a clump relative to that of
the randomly distributed forest. The phase is expressed in units of π. See Section
3.2 and Appendix B for model description and parameter values.
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At the reduced frequency of 0.323, the discontinuity in difference of
corrected phase remains. However, the symmetry of the clump affects
the value in the difference in corrected phase. In Table 1, we classify the

=N 19c clumps into two classes depending on the value of the differ-
ence in corrected phase. The difference in corrected phase takes on
values of approximately 0.6π for configurations 1, 3, 4, 5, 7 and ap-
proximately -0.54π for configurations 2 and 6. The two gaps in con-
figurations 1, 2, 5 and 7 are related by mirror symmetry perpendicular
to faces of the octagonal shell. Hence, they belong to the same class.
The gaps in configurations 2, 4 and 6 are related by mirror symmetry
passing through vertices of the octagonal shell. However, the separation
distance between the gaps in configuration 4 exceeds the cut-off dis-
tance for the Green’s function of a5 . Configurations 2 and 6 have gaps
separated by a distance shorter or equal to the cut-off distance. These
two configurations belong to the same class. These observations in-
dicate that while the relation between phase difference and tree dis-
tribution may be quite complex, the difference in corrected phase (and/
or the corresponding geometric phase) is not only a signature of the
number of trees in a clump but also of the symmetry characteristics of a
specific clump.

Fig. 6. (a) Difference in corrected phase at a frequency of 0.3 (open circles) and
0.323 (closed circles) as a function of the number of trees in the clump. (b)
Same as (a) but for the frequencies 0.334 (open squares) and 0.35 (closed
squares). The phase difference is expressed in units of π. See Section 3.2 and
Appendix B for model description and parameter values.

Fig. 7. Difference in the geometric phase at a frequency of 0.323 between two
subsequent tree patterns as the number of trees in the clump is varied according
to the prescription illustrated in Fig. 2. The geometric phase difference is ex-
pressed in units of π. See Section 3.2 and Appendix B for model description and
parameter values.

Fig. 8. Possible configurations of a clump containing 19 trees. The open circles
indicate the tree sites located on an octagonal shell at a distance of a5 from
the center of the clump. The grey circles mark the position of the 13 fixed trees
in the clump. The open circle represents the fixed gap (site without a tree) in the
clump of 19 trees. The numbered circles show the possible location of the
second gap. See text for details.

Table 1
Calculated values of the difference in corrected phase for the 7 possible con-
figurations of trees in a =N 19c clump. See Fig. 8 for explanation related to the
position of second gap in the clump.

Position of the second gap in the =N 19c
clump

Difference in corrected phase (units of
π)

1 0.598
3 0.605
4 0.614
5 0.584
7 0.612
2 −0.543
6 −0.543
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4. Conclusions

Understanding how environmental conditions shape vegetation
distributions is crucial for predicting ecosystem responses to global
change. Here, we have introduced an acoustic-based sensing method
that may provide unique signatures of tree spatial patterning in forests.
This method relies on the scattering of long-wavelength ground sup-
ported acoustic waves, such as seismic waves, by trees. Using an elastic
model of a ground covered by trees, we demonstrate numerically that
the phase of ground supported acoustic waves resulting from scattering
by trees can provide information about their spatial distribution. We
show that the scattered phase (or equivalently the geometric phase) of
acoustic waves may provide a highly sensitive measure of the global
properties of the tree spatial patterns. For instance, the scattered phase
can be used to quantify the global change in the distribution of trees
from randomly spread individual trees to a forest composed of tree
clumps and gaps. It can provide crucial but lacking rapid assessment.
Further, it can also be used as a quantitative measure of tree density and
abundance. In addition, in the case of a forest composed of clumps, we
have shown that the geometric phase is significantly affected by the
symmetry of tree clumps. The model presented here was limited to trees
with identical geometrical (height) and elastic properties. Trees of
varying height would result in the appearance of resonant frequencies
associated with each height; if these frequencies are sufficiently far
apart from each other, they will not affect the change in geometric
phase associated with one another. We expect that the resonant fre-
quency may be chosen to distinguish spatial patterns in the distribution
of trees of different size, age or species. This is specifically the case
when using advanced methods of data mining and machine learning
that can extract signals from noisy data. Additionally, the model lacks
the variation in mechanical properties of the ground that would arise
from differing mineral, water, and biomass content. Variations in
ground composition and varying tree heights is the subject of future

work. Even though the example presented here focused on a single
scale, we also expect the detection of spatial patterns at different scales
to be possible through the topological acoustic sensing approach.

From a practical point of view, when probing real landscapes, two
approaches may be used for the implementation of a topological
acoustic sensing experiment used to monitor the changes of a forest
overtime. The first approach is “active” and relies on the conventional
direct pulse/echo method. It requires the use of a source of ground
supported waves. A single seismic detector can then be used to relate
changes of the geometric phase of the emitted seismic wave to changes
in the structure of the above-ground environment. A second “passive”
approach relies on retrieving the Green’s function of the ground/forest
scattering medium from cross correlations of the acoustic fields re-
ceived by two passive seismic sensors (Derode et al., 2003; Sanchez-
Sesma and Campillo, 2006; Campillo, 2006). The Green’s function be-
tween two sensors, and more specifically its phase, is reconstructed by
averaging the cross correlation of waves produced by ambient seismic
noise.

The topological acoustic sensing method we introduced here may be
able to serve as a new modality for detecting variations in spatial pat-
terns of trees in forest subjected to global changes over time. By adding
a new dimension and metrics of topological sound, this new and in-
novative tool may be useful in meeting the needs for inventorying and
assessing the state and evolution of remote and vast forestry landscapes
as well as generating the data necessary for modeling and developing
forest management strategies in a cost-effective fashion (Young et al.,
2018; Ohse et al., 2009).
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Appendix A

The function BC E( ) given by Eq. (2), in the main text, can be understood as describing the variation of the geometrical phase of the Green’s
function along a path in the space of eigen values, E , i.e., on the space of frequencies since =E 2. Indeed, consider the two eigen values E and

+E dE . The normalized Green’s function at +E dE can be expanded to first order:

+ +G E dE G E dG E
dE

dEˆ ( ) ˆ ( )
ˆ ( )

(A.1)

Multiplying both sides of equation (A1) by G Eˆ ( )* gives

+ + = +G E G E dE G E G E G E dG E
dE

dE iG E dG E
dE

dEˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( )
ˆ ( ) 1 ˆ ( )

ˆ ( )* * * *

Taking the trace of both sides of the previous relation results in

+ = + + …Tr G E G E dE Tr G E dG E
dE

dE( ˆ ( ) ˆ ( )) 1 ˆ ( )
ˆ ( )* *

(A.2)

Introducing the geometric phase, E( ), the normalized Green’s function can be now written as

+ = =+ +G E dE e e e eˆ ( ) i E dE i E dE i E i dE( ) ( ) ( )
d E

dE
d E

dE
( ) ( )

.
Since G E eˆ ( ) i E* ( ), we can rewrite Eq. (A.2) as

+ = +e i d E
dE

dE iBC E dE1 ( ) 1 ( )i d E
dE dE( )

(A.3)

Using the definition of Eq. (2), comparison of the two imaginary terms in Eq. (A.3) leads to

=d E
dE

BC E( ) ( ) (A.4)

From the definition of E( ), one notes that BC E( ) must be real. It is informative to obtain the relation given by Eq. (A.4) by directly calculating
BC E( ) using Eq. (1) in the main text:

= =BC E iTr G E dG E
dE

iTr G
G G

dG
dE G G

d G G
dE

( ) ˆ ( )
ˆ ( ) 1

2
( )* *

* *

*

(A.5)

T.D. Lata, et al. Ecological Modelling 419 (2020) 108964

6



By ensuring that BC E( ) is real, it is easy to show

= =BC E Im Tr
G

dG
dE

Im Tr dlnG
dE

( ) 1
(A.6)

or

= =BC E Im d
dE

TrlnG Im TrG( ) ( ) ( )
(A.7)

To derive Eqs. (A.6) and (A.7), we have used well-established Green’s functions identities related to the properties of the Green’s function in the
space of its Eigen values (Deymier and Runge, 2017).

Appendix B

The calculation of the Green’s function of a system composed of semi-infinite simple cubic crystal, cleaved along the (001) face (i.e. ground) and a
finite 1-D mass-spring chain coupled to a ground surface site via a spring with constant, I , (tree-ground anchor) begins with the block matrix
describing the Green’s function of the uncoupled system ( = 0):I

=G
g

g
0

0
,S

S

S

1

2 (B.1)

where gS1 is the Green’s function of the semi-infinite discrete lattice and where gS2 is the Green’s function of the mass-spring chain. gS1, therefore,
describes elastic waves with any polarization in the three-dimensional semi-infinite space of the cleaved lattice. For the sake of simplicity, we are
choosing the masses and spring constants of the cubic lattice and chain to be identical,m and . The spacing between masses along the chain is a. The
Green’s function of a finite harmonic chain of length L (for n n L, [1, ]), with coordinates along the chain expressed as integer multiples of that
spacing: =x na, (Deymier, 2013) is given by

= + + + + +
+ + +

+g n n m t t
t

t
t t

t t t t( , )
1 ( 1)(1 )

( )S

n n n n L

L
n n n n n n n n

2

| | 1

2

2 1

2 2
1 1

(B.2)

where

=
>

+ <
+

t
if

if
i if

( 1) 1
( 1) 1

(1 ) 1 1

2 1/2

2 1/2

2 1/2 (B.3)

with

= m1
2

2

(B.4)

The frequency [0, ]0 with = 2
m0 . A tree is modeled as a mass-spring chain with L = 4.

The Green’s function of the semi-infinite cubic lattice possesses translational periodicity in the plane of the (001) surface and is written as a two-
dimensional Fourier transform:

= +g x x x dk dk e g k k x( , , , ) 1
(2 )

( , , , )S

a

a

a

a
i k x k x

S1 1 2 3 2 1 2
( )

1 1 2 31 1 2 2

(B.5)

Here, x x( , )1 2 is a site on the (001) surface of the semi-infinite lattice. The surface is located at =x 03 . The lattice parameter of the simple cubic lattice
is also taken as a. The Fourier transform of the Green’s function gS1 is given by (Akjouj et al., 1993)

= ++ +
g k k x m t t

t
( , , , )

1S

n n n n

1 1 2 3

| | 1 2 ( )

2

3 3 3 3

(B.6)

with =n x
a3

( ) 3
( )
.

We note that =g x x x( , , , 0)S1 1 2 3 is calculated as the two-dimensional Fourier transform (Eq. (B.5) of Eq. (B.6)). Eq. (B.6) requires the calculation
of t using Eq. (B.3). For the Fourier transform, we use the dispersion relation for a simple cubic harmonic lattice:

= k a k a k a(3 cos cos cos )m
2 2

1 2 2 to define

= k a k a m3 cos cos
21 2

2

(B.7)

If we define a position on the surface of the cubic lattice: =p x x( , , 0)i
i i

1
( )

2
( ) , then we only

calculate for every frequency 0: = =g p p g p p x x x x( ) ( ( , , 0))S i j S i j
j i j i

1 1 1
( )

1
( )

2
( )

2
( ) for =x x x x( , , 0)j i j i

1
( )

1
( )

2
( )

2
( )

a a a a a a a a a a{(0,0, 0), (0,1 , 0), (0,2 , 0), (1 , 0,0), (2 , 0,0), (1 , 1 , 0), (1 , 2 , 0), (2 , 1 , 0)}. All other gS1 are neglected in this paper. Hence, we consider a cut
off of =p p a| | 5i j for the Green’s function g p p( )S i j1 . We denote by = =g p p g(| | 0)S i j1 00, = =g p p a g(| | 1 )S i j1 01, = =g p p a g(| | 2 )S i j1 02,

= =g p p a g(| | 2 )S i j1 11, and = =g p p a g(| | 5 )S i j1 12. The numerical functions g p p( , )S i j1 are replaced by fits to functions of frequency, . These
fits are given in Deymier and Runge (2018).

Following the IRT, we define a coupling operator that enables us to couple a site 1 of a mass-spring chain (base of a tree) to a site X (effectively
X= =x x x( , , 0)1 2 3 ) on the surface of the cubic lattice (i.e. ground):
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= =V V X X V X
V X V

m m

m m

( , ) ( , 1)
(1, ) (1,1)

.I
I I

I I

I I

I I

(B.8)

For the sake of simplicity, we will take =I . IRT introduces the surface operator expressed in the space M of coupled interface sites:

= =A MM

A X X
A X
A X
A

V X X g X X
V X g

V X g X
V g

( )

( , )
( , 1)
(1, )
(1,1)

( , ) ( , )
( , 1) (1,1)

(1, ) (1, )
(1,1) (1,1)

.

I S

I S

I S

I S

0

1

2

1

2 (B.9)

The diffusion matrix takes then the form of a 2 × 2 matrix in the space of the interface sites, M:

= +
+

=
+

+
MM A X X A X

A X A
V X X g X X V X g

V X g X V g
( ) 1 ( , ) ( , 1)

(1, ) 1 (1,1)
1 ( , ) ( , ) ( , 1) (1,1)

(1, ) (1, ) 1 (1,1) (1,1)
I S I S

I S I S

1 2

1 2 (B.10)

The phase difference (normalized to ) of elastic modes in the space M between the coupled system (trees elastically anchored to the ground) and
the uncoupled system (trees not anchored) is then obtained from the relation

= Im det MM( ) 1 [ln( ( ))] (B.11)

This is effectively the phase accumulated by the wave scattered by the elastically anchored mass-spring chains. The variation in density of states
due to the coupling is then obtained from the relation

=n d
d

( ) ( )
( )2 (B.12)

n is the variation of the vibrational density of states between the trees anchored to the ground system and the reference system (i.e., cubic lattice
with uncoupled trees).

In the following we generalize the application of the IRT to multiple trees (mass spring chains) anchored on the surface of the ground cubic
lattice. For this we consider Nc identical mass-spring chains anchored at multiple sites on the (001) surface of the simple cubic lattice. The space M
for the system is now defined as

= = = = … =M p p x x p x x p x x{ (0,0, 0), 1, ( , , 0), 1 , ( , , 0), 1 , , ( , , 0), 1 }N
N N N

1 2 1 2 3 1 2 1
( 1)

2
( 1) ( 1)

c
c c c (B.13)

We have located the first finite mass-spring chain at the origin on the lattice surface. In this case, the coupling operator is a ×N N2 2c c matrix of
the form

=

…
…
…
…
…

V
m

1 1 0 0 0 0
1 1 0 0 0 0
0 0 1 1 0 0
0 0 1 1 0 0

0 0 0 0 0 1 1
0 0 0 0 0 1 1

.I
I

(B.14)

To calculate = +MM I MM V MM G MM( ) ( ) ( ) ( )I S , one needs the Green’s function of the unanchored system, G MM( )S , which takes the form

=

…
…
…

…
…
…

…
…

G MM

g p p g p p g p p g p p
g

g p p g p p g p p g p p

g
g p p g p p g p p g p p

g

g p p g p p g p p g p p
g

( )

( ) 0 ( ) 0 ( ) 0 ( ) 0
0 (11) 0 0 0 0 0 0

( ) 0 ( ) 0 ( ) 0 ( ) 0

0 0 0 (1 1 ) 0 0 0 0
( ) 0 ( ) 0 ( ) 0 ( ) 0
0 0 0 0 0 (1 1 ) 0 0

( ) 0 ( ) 0 ( ) 0 ( ) 0
0 0 0 0 0 0 0 (1 1 )

s

S S S S N

S

S S S S N

S

S S S S N

S

S N S N S N S N N

S
N N

1 1 1 1 1 2 1 1 3 1 1

2

1 2 1 1 2 2 1 2 3 1 2

2

1 3 1 1 3 2 1 3 3 1 3

2
(2) (2)

1 1 1 2 1 3 1

2
( 1) ( 1)

c

c

c

c c c c c

c c (B.15)

In this matrix, the odd entries (rows or columns) correspond to locations on the surface of the ground lattice and the even entries correspond to
the position of the first mass the finite mass-spring chains.

The diffusion matrix in the space M is

= + = +MM I A M M I V G MM( ) ( , ) ( ).I s (B.16)

The phase difference is again given by Eq. (B.11).
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