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ABSTRACT

Logical phi-bits are nonlinear acoustic modes analogous to qubits and supported by an externally driven acoustic metastructure. A corre-
spondence is established between the state of three correlated logical phi-bits represented in a low-dimensional linearly scaling physical space
and their state representation as a complex vector in a high-dimensional exponentially scaling Hilbert space. We show the experimental
implementation of a nontrivial three phi-bit unitary operation analogous to a quantum circuit. This three phi-bit gate operates in parallel on
the components of the three phi-bit complex state vector. While this operation would be challenging to perform in one step on a quantum
computer, by comparison, ours requires only a single physical action on the metastructure.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0136733

Quantum computing” harnesses the quantum mechanical phe-
nomena of superposition and entanglement. The first phenomenon
provides the support for encoding massive amounts of information in
coherent superpositions of states of a composite quantum system con-
stituted of subsystems. The second phenomenon provides the correla-
tion between the subsystems and the capability of processing
information in a parallel manner. Quantum circuits model quantum
computations as sequences of quantum gates operating on quantum
bits (qubits). Qubits can be thought of as the subsystems of the com-
puter composite system. A qubit is a two-level subsystem, with a
superposition that is expressed in the two-dimensional basis corre-
sponding to its two available pure states. Quantum gates are unitary
operators described as unitary matrices acting on the state of the quan-
tum system of interest expressed in some basis. For example, a single
qubit gate operates on the qubit superposition expressed in its two-
dimensional basis. Likewise, a two qubit gate operates on the superpo-
sition of states of the two qubits expressed on a 2* = 4-dimensional
basis, a tensor product of the individual qubit bases. Three qubit gates
operate on states expressed on a 2° = 8-dimensional basis. An N-bit

gate operates on states supported by an exponentially scaling basis of
dimension 2™, It is this exponential scaling that potentially gives the
advantage of quantum computing over classical computers. However,
quantum computing faces the challenge of physically operating simul-
taneously on many qubit states while maintaining the quantum corre-
lation between qubits during these operations. Quantum circuits are,
therefore, decomposed into sequences of single or two qubit gates that
can form a universal set of gates.

The phenomenon of coherent superposition of states is not lim-
ited to quantum systems, and classical waves, such as acoustic waves,
can be experimentally prepared in coherent superpositions.” ° In lin-
ear acoustics, these superpositions involve bases that are related to the
degrees of freedom associated with the medium supporting the
waves.”* The dimension of the basis is, therefore, limited to the num-
ber of degrees of freedom of the acoustic physical system. In nonlinear
acoustics, this restriction can be lifted by visualizing the state of the
system as a composite of the states associated with the unrestricted
number of nonlinear acoustic modes.”® Furthermore, while entangle-
ment is necessary for the correlation of quantum systems, nonlinear
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acoustic coupling provides the correlation between nonlinear
acoustic modes necessary for manipulating their superpositions
simultaneously.” Quantum entanglement possesses two attributes:
nonseparability of the wave function of a composite system into
tensor product of wave functions of subsystems, and nonlocality.
Classical entanglement of acoustic waves is achieved when the
acoustic field or the corresponding wave function is not factorizable.
Acoustic wave entanglement increases the number of possible
states, and therefore, the range of information can be encoded and
subsequently processed in those states. A final difference between
acoustic waves and quantum waves is that classical waves represent
amplitudes, and quantum waves are probability amplitudes.
Therefore, classical waves do not suffer from wave function collapse
of a superposition into a pure state upon a measurement. Coherent
superpositions of acoustic waves are directly measurable. In con-
trast, the determination of a quantum superposition of states neces-
sitates several measurements to account for the probabilistic nature
of the quantum wave function.

In Ref. 5, we introduced the notion of logical phi-bit, a classical
analogue of a qubit using nonlinear acoustic waves. Here, we demon-
strate theoretically and experimentally that navigation among the
states of three correlated phi-bits in their space of states, ie., their
Hilbert space, can achieve a nontrivial unitary operation analogous to
a quantum gate. We show a correspondence between a low-
dimensional linearly scaling space of physical parameters that control
the coherent superposition of states of the three phi-bits in their high-
dimensional, exponentially scaling Hilbert space. Furthermore, by
manipulating experimental variables and measuring them in the low-
dimensional space, one operates via a unitary operation on the states
in the high-dimensional Hilbert space. This operation can be per-
formed on a range of initial states (inputs), covering a region of the
three phi-bit Hilbert space. This operation is predictable. Predictability
results from the phi-bit response to parametric changes in the physical
system. This three phi-bit unitary operation does not need to be
decomposed in a sequence of smaller phi-bit gates. The output is
measurable.

A logical phi-bit is a nonlinear acoustic mode supported by a
metastructure composed of three elastically coupled finite length
acoustic waveguides driven externally.” When the waveguides are
subjected to two driving forces with two different frequencies, f
and f>, a nonlinear mode “j” is well characterized by a frequency of
the form fU) = pi)f; 4+ qUf,, where p) and gV are integers. The
corresponding acoustic displacement field at some location within
the waveguide array (e.g., at one end of the guides) is fully defined

by a2 x 1 vector,
io0)
- (YA WG
Oy = 0 ] M
E3ei¢’13

where the angular frequency w) = 2nf). The magnitudes C, and
C; are the magnitudes of the displacement of the second and third
waveguides normalized to the magnitude of the first waveguide’s dis-
placement. (p&’z) = (pgj) — (p?) and (p%) = (pgj) — (pgj) are the two inde-
pendent phases in waveguides 2 and 3 relative to waveguide I,
respectively. The amplitudes and phases at the waveguide ends are
controllable by tuning the driving frequencies and are also measurable
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unambiguously. The basis on which (7(]) is expressed,

{ <é), ((1)) }, refers to the waveguides 2 and 3 of the array. We
redefine the nontemporal part of the field in the subspace of the rela-
tive phases only by the normalized vector,

. 1 i 1 PRONE(]
() )

where i j) is defined in a two-dimensional complex Hilbert space, /).
Employing Dirac’s ket notation to represent the basis vectors of that
space, Eq. (2) reduces to

1
-t (g etn). o

A single phi-bit state, represented in this form, spans the Bloch sphere
and is analogous to a quantum bit (qubit). Equation (3) is effectively a
coherent superposmon of [0) ;) and [1); states with complex ampli-
tudes - 7 ¢ and L 7 ¢

Let us now consider three phi-bits. These three nonlinear modes,
j = 1,2, and 3, result from the nonlinear mixing of the same two driv-
ing frequencies and are, therefore, strongly correlated. The six complex
amplitudes associated with the three phi-bit individual states are
dependent on the same driving frequencies. We can represent the state
of a composite system of the three phi-bits via a tensor product of
three single phi-bit states, namely,

V=il @i @ i) (4)

The state of this composite lives in the 2° = 8 dimensional Hilbert
space H = h(;) ® h(3) ® h3), a tensor product space of individual

phi-bit Hllbert spaces. V is defined on the basis {|O 210)@3)
10)(1)[0) ) [1) 3, -+ 1Dy D2y D) 3}
{|OOO)7 |001>,...7 |111)}. In writing these basis vectors, we have
dropped the tensor product symbols for notation simplicity. The state

commonly wrltten as

vector V can, therefore, be defined as an 8 x 1 vector,
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We apply a transformation to the Hilbert space, H, which

leads to a new basis {e‘ ‘P(é)”’(é))e (30 +40) |000), e (o + o)

il +10)) [001), .. ei(0l) +01)) g3l +101)) |111) }. In this basis,

the three phi-bit state vector takes the following form:
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Suppose that the three phi-bits have relative phases that vary in the
same way upon tuning one of the driving frequencies. In that case,

o = o1 = 0l = f(Av) and o}y = ¢ = o} = g(Av), where
Av is a driving frequency tuning parameter. This parameter enables us
to span some region of the Hilbert space, H, through the variations in
the components of vector V. Let us further suppose that the functions
f and g cross for some value of the tuning parameter Av*. At this tun-

ing frequency, the state vector becomes

‘7/ — eiZf(Al/*)

—_ = e e e e e

which to within a normalizing factor, and a general phase is the vector
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By applying the unitary transformation (i.e., applying a rotation to the
Hilbert space)

1 1 11 1 1 11
-2 2 0 0 0 0 0 0

V2 -v2 V2 V2 o0 0 0 0

. 1 0 0 -2 2 0 0 0 0

U =—1

22 -1 -1 -1 -1 1 1 1 1

0 0 0 0 -2 2 0 0
0 0 0 0 —V2 —V2 V2 V2

0 0 0 0 0 0 -2 2

to the vector V7, one obtains a pure state vector in the space H,
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Applying the unitary transformation, U, to the general form of the
state vector V' (i, for a tuning frequency different from Av*), one
obtains
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W in Eq. (8) is a new representation of the three phi-bit state in H.
This vector is nonseparable (i.e., classically entangled) for most values
of the phase differences. The 8 x 1 vector cannot be factored into the
tensor product of three 2 x 1 vectors. Note that here we do not need
entanglement like in quantum mechanics to achieve correlations
between subsystems in multipartite composite systems. The phi-bits
are naturally nonlinearly correlated. Nonseparability is used to enable
a more complete coverage of the multi phi-bit Hilbert space. The pro-
cedure described above related the six experimentally controllable and
measurable variables (/Jg), (0(1;)) qog), 90523), (p(é), and qog) to the eight
components of Eq. (8). In other words, it relates a space of phase dif-
ferences that scales linearly with the N logical phi-bits to an exponen-
tially scaling complex space of dimension 2V.

By tuning the driving frequencies, ie., manipulating the phase
difference in the linear space, one acts or effectively operates on vectors
in the exponentially complex space. Furthermore, recall that since we
have chosen phi-bits such that the six phase differences relate to only
two tunable functions f and g, we are relating a two-dimensional
physical space to a 2°-dimensional space. The two-dimensional space
can be spanned with a single tuning frequency parameter. This single
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parameter operates by rotating the 8-dimensional complex state vector
of the three phi-bits. Let us illustrate this type of operation.
Expressing W in terms of f and g yields

S1
$2
$3
1 S4
g S5 ’

S6

=
Il

)

$7

S8
with
s1= (& + &) (¥ + ) (¥ + o),
S = 26! (¢ — e’%f),
S3 = V2! (% — ) (e’%f + e’%g),
Sy = Zei(f%g) (¢ — ei%f),
ss = (e — el ) (¥ + &%) (&5 + %),
S¢ = 2616+ (g — ),
57 = V268 (e — o) (e + e’%g),
3 = 26 (e58 — o).
Let us now assume that the functions f and g take the form illustrated
in Fig. 1. Although the figure shows linear functions, the functions f
and g do not need to be linear but only need to cross and be symmetric
about the crossing point.
Upon tuning one of the driving frequencies from Av, and Av,,
one swaps the values of f and g in the low-dimension space of phase

difference functions. This physical operation results in a change of the
8-dimensional state vector,

7
7
P 7
f(av) -,
7
P d
7
e
7
e
7
7
7
7
7
e
e
e
P4
7
gw) -
7
7
e
,
Avyq Av Av, Av

FIG. 1. Schematic representation of phase difference functions as the frequency
tuning parameter Av. At Av*, one has f = g. Av4 and Av;, are tuning parameters
corresponding to a swap of the values of f and g.
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where W’ is related to W by a unitary transformation, T , such that
W' =T W with

1 0 0 0 0 0
0 0 0 0 0 0 -1
0 0 0 0 0 -1 0
7o 0 0 0 0 0o -1 0 0 (1n)
0 0 0 0 -1 0 0 0
0 0 0 -1 0 0 0 0
0o 0 -1 0 0 0 0 0
0 -1 0 0 0 0 0 0

This nontrivial three phi-bit operation in the exponentially complex 8-
dimensional Hilbert space reorders the last seven components of the
state vector and adds a 7w phase to the permuted components. Note
that this operation is independent of the specific value of f and g. One
can choose different values for Av; corresponding to a range of possi-
ble 8 x 1 input vectors and apply the transformation 7' by tuning the
frequency parameter to Av, = Av* + Av; to obtain the correspond-
ing 8 x 1 output vector. This operation can be achieved by simply
monitoring the value of the phase differences f and g. Since phi-bits
are classical entities, one can operate on them while continuously mea-
suring their phase characteristics. The T' operation is completely input
independent as long as the input belongs to the accessible region of
the Hilbert space, H.

To contrast phi-bit-based computing with quantum comput-

ing,"* we show in Fig. 2 a quantum circuit that operates in the same
way as the three phi-bit unitary matrix, T . A quantum circuit is a
sequence of quantum gates that operates on qubits to enable a quan-
tum computation. This circuit operates on three qubit states.
Simultaneous operations are tensor products of single qubit gates,
such as the Pauli X, Z, and Hadamard (H) gates. Also, this circuit
involves three qubit Toffoli gates that are often only realizable as cir-
cuits of single and two qubit operations.” The first block of the circuit
applies the 7 phase change to the appropriate components of the 8 x
1 input vector. The second circuit block swaps components of the vec-
tor. Note that the circuit in Fig. 2 is not unique, and there are multiple
such circuits that produce the operation of T .
_ The three phi-bit unitary transformation (i.e., three phi-bit gate),
T , does not need to be decomposed into a sequence of smaller gates
to be physically realized. It is an example of a full muti phi-bit opera-
tion that can be conducted in a single manipulation of the experimen-
tal system.

The experimental setup consists of a metastructure composed of
elastically coupled aluminum rod-like acoustic waveguides.” The rods
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FIG. 2. Example of a three qubit quantum circuit that leads to the same unitary operation as the transformation T . The horizontal lines correspond to qubits. X, Z, and H are
the one qubit Pauli X, Pauli Z, and Hadamard gates. This circuit also employs six Toffoli gates. Note that these 3-qubit gates are often decomposed into smaller gates.

Absence of gates on a qubit line corresponds to the identity operation.

are arranged in a linear array coupled along their length with epoxy
resin. Three separate signal generators and amplifiers are used to drive
piezoelectric transducers. Driving and detecting transducers are
attached to the opposite ends of the rods with ultrasonic coupling
agent. The signals generated by the detecting transducers enter an
oscilloscope via independent input channels for the measurement of
phases. The array of waveguides is suspended by thin threads for isola-
tion. When driven externally at two primary frequencies, this meta-
structure supports a displacement field, which, when partitioned into
the frequency domain, leads to modes with secondary frequencies
associated with logical phi-bits. Rod 1 is driven at a frequency
fi = 62kHz + Av, and rod 2 at a frequency f, = 70 kHz. Av is varied
by increments of 50 Hz in the interval [0, 8 kHz|. We focus our atten-
tion on three phi-bit modes, j=1,2, and3, with frequencies
fU =4f, — 3f,, f® =4fi —2f, and fO) = 4f; — f,, respectively.
These three phi-bits are chosen to have the same coefficients, p¥). The
six measured phases, (pgj2 and q013> , exhibit several remarkable features
in the form of upward or downward jumps superposed onto monoto-
nous background variations. The jumps amount to phase changes on
the order of 7 (180°). In Fig. 3, the measured phases @?2)(3) of phi-bits
j=1, 2, and 3 have been corrected by a translation of +q) x Ca3)>
where the Cy,(3) are constants to overlap the background variations.
The origin of the phase jumps and background variations in
terms of nonlinear interactions of driven acoustic waves in the meta-
structure was discussed in detail previously.” For all logical phi-bits,
the background phases show variations as a function of frequency of
several thousand Hz. This background was shown theoretically in
Refs. 8 and 9 to possibly originate from extrinsic nonlinear effects
associated with the amplifiers and/or transducers and/or coupling
agent that enable the driving and characterization of the physical
system. We proposed a model of the array of waveguides coupled
to extrinsic nonlinear damped oscillators at the rod ends that may
be representative of the nonlinearity of the electronics/transducer/
ultrasonic-couplant assembly. The order of nonlinearity was chosen to
be an integer Q = p + ¢, a sum of two other integers, p and g. Since
the nonlinear oscillators are physically in contact with the ends of the
rods, we showed that they contribute to the detected signals at the
ends of the waveguides in the form of a background to the phases of a
logical phi-bit “7” with frequency fU) = pUf; + qUf, that can be
expressed as a linear combinations p,, (i) + q@1, (f2) and p@,5 (fi)
+q@; (f2) of the phase differences associated with the linear displace-
ment of the array of waveguides at the frequencies f; and f,. These

0
—O— phi-bit 1
—&— phi-bit 2
e
50 4 —&A— phi-bit 3
o
S 100
T’
()
—
(@]
9 -150 A
fam
S
-200 A
-250 T T T T T T T
0 1 2 3 4 5 6 7 8
—O— phi-bit 1
400 —=— phi-bit2
—A— phi-bit 3
=
S
T 200
O
o
O
()
o
fam
(@)
O o
-200

Av

FIG. 3. Corrected measured phases of three phi-bits as functions of the driving fre-
quency tuning parameter Av. The phases exhibit phase jumps overlapping with
common background monotonous variations.
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variations will, therefore, be controlled by the characteristic frequencies
of the linear modes of vibration of the array of waveguides. Since these
characteristic frequencies are known experimentally to be spaced by sev-
eral kilohertz,” the background phase differences exhibit variations with
the same frequency scale as that of the linear modes as shown in Fig. 3.

We also proposed a model of the array of waveguides with intrin-
sic cubic nonlinearity and damping arising from the epoxy resin cou-
pling the rods along their length. Multiple timescale perturbation
theory was used to show that the amplitude-frequency response of a
super-harmonic nonlinear resonant mode {p = 2,q = —1} behaved
like that of a Duffing nonlinear oscillator.'’ The amplitude-response
presented an overhang that can lead to a sharp phase jump that
approaches 7. This type of jump exhibits hysteretic behavior, which
was also observed experimentally.” Similar behavior may occur for
orders of nonlinearity going beyond cubic nonlinearity.

By subtracting easily identifiable contributions of the phase
jumps to the overall experimental data, we can extract the background
contribution to the phases common to the three phi-bits. Figure 4

reports the common background variations q)’l(zl) = qo/l(zz ) = (,0’1(23 )

= f(Av) and 90,1(31) = ‘011(32 ) = go’l(;) = g(Av). Since phases are always
relative, in Fig. 4, the background phase, g, has been obtained by sub-
tracting a general phase of 71° to achieve overlap with f. Note that
these corrections, subtractions, and translations are well-defined and
controllable algebraic manipulations in the low-dimensional physical
space of the system. They do not affect the generality of the mapping
between the three phi-bit physical space and the associated exponen-
tially complex Hilbert space.

Figure 4 shows that we can experimentally achieve conditions
similar to those described in Fig. 1 in the vicinity of the tuning fre-
quency Av* ~ 3.33kHz. Note that here one does not need the func-
tions f and g to be linear as was illustrated in the theoretical case
of Fig. 1. The approximate symmetry of the experimentally derived
functions f and g about Av* in the range of tuning frequencies
Av € [2.8, 3.9kHz] enables us to use the three phi-bits, 1, 2, and 3, to
realize experimentally the theoretically predicted unitary operation T .
Note also that the range of Av to the left of Av* of approximately
3 kHz produces different values of f and g, i.e,, initial states, on which
one can operate. These different values of f and g inserted into Eq. (9)
correspond to the accessible region of the Hilbegt space, H, ie., the
state vectors, W) on which the transformation T can operate. This
operation is completely independent of the specific value _qf/ the input
within this accessible region of H. By symmetry, outputs W will span
another region of the Hilbert space corresponding to the exchanged
values of f and g on the right side of Av*.

These experimental data demonstrate the existence of logical
phi-bits supported by an externally driven acoustic waveguide meta-
structure that can be used to realize a nontrivial three phi-bit unitary
operation that would be challenging to realize in a quantum computer.

This result establishes a correspondence between the state of
correlated logical phi-bits represented in a low-dimensional linearly
scaling physical space and their state representation in a high-
dimensional, exponentially scaling Hilbert space. The logical phi-bits
are nonlinear acoustic waves, classical analogues of qubits, which can
be supported by a metastructure constituted of an externally driven
array of acoustic waveguides. By manipulating the physical variables
and measuring them in the physical space of three phi-bits with at
most 2 x 3 =6 dimensions, one can operate on the coherent
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sponding to ¢/, @/, and ¢’ (black solid line) and ¢, ¢}, and 15
(gray solid line) extracted from the data of Fig. 3. (b) Magnification of the experi-
mental data near Av* ~ 3.33kHz. The black and gray solid lines correspond to the
functions f(Av) and g(Av), respectively. The thin black vertical line corresponds to
Av* ~ 3.3kHz, where f = g. The thick gray vertical lines show how tuning fre-
quency from Avy to Av, can experimentally swap the values of f and g (double
arrows) in a way similar to the theoretical behavior of Fig. 1.

superposition of states in the 2*> = 8 dimensional Hilbert space via a
three phi-bit nontrivial unitary operation, i.e., a three phi-bit gate. This
operation can be performed on a range of input states covering a non-
trivial region of the three phi-bit Hilbert spaces. This three phi-bit gate
can be represented by a 8 x 8 unitary matrix that swaps seven compo-
nents of the three phi-bits 8 x 1 state vector and adds a 7 phase to the
permuted components. Realizing this unitary operation in a quantum
computer would involve the challenging task of applying a long
sequence of smaller single and two qubit gates to a three qubit system.
We have also shown that the conditions to physically realize the three
phi-bit gate exist in an experimental laboratory scale metastructure
composed of coupled rod-like acoustic waveguides. In contrast to mul-
tipartite quantum systems, the coherent superpositions of states of the
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three logical phi-bits system on which one can operate are stable, do
not decohere, and are directly measurable.

This work serves as proof-of-concept that one can realize, with a
nonlinear acoustic metastructure, quantum-like coherent superposi-
tions of states in an exponentially complex Hilbert space on which one
can effectively operate with a nontrivial unitary operation analogous
to a quantum gate. Future work will consist of extending the domain
of input superpositions of states in the 8-dimensional Hilbert space on
which the transformation T' can operate. Additional work will involve
investigating the scalability of the approach to more than three phi-
bits and operate on any number N > 3 of logical phi-bits in exponen-
tially scaling complex spaces of dimension, 2. Finally, we are evaluat-
ing other purposeful approaches in the design of multi-logical phi-bit
gates with the aim of using them in the development of efficient
algorithms.
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