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experimental demonstration of 
coherent superpositions in an 
ultrasonic pseudospin
Lazaro calderin, M. Arif Hasan  , neil G. Jenkins, trevor Lata, pierre Lucas, Keith Runge & 
pierre A. Deymier

We experimentally demonstrate the existence and control of coherent superpositions of elastic states 
in the direction of propagation of an ultrasonic pseudospin i.e., a ϕ-bit. the experimental realization 
of this mechanical pseudospin consists of an elastic aluminum rod serving as a waveguide sandwiched 
between two heavy steel plates. the Hertzian contact between the rod and the plates leads to restoring 
forces which couple the directions of propagation (forward and backward). this coupling generates 
the coherence of the superposition of elastic states. We also demonstrate ϕ-bit gate operations on 
the coherent superposition analogous to those used in quantum computing. in the case of a ϕ-bit, the 
coherent superposition of states in the direction of propagation are immune to wave function collapse 
upon measurement as they result from classical waves.

The quantum bit (qubit) is the critical component of future quantum information processing platforms1. A qubit 
is simply a physical system that supports a two-level quantum state, 0 1ψ α β= +  that can be formed as the 
coherent superposition of two pure states 0  and 1 . For instance, a photon can be visualized as a qubit in polari-
zation space. In this case, 0  and 1  represent the horizontal and vertical polarization, respectively. An electron 
spin is another physical realization of a qubit2, whereby 0  and 1  represent the up and down spin orientations. In 
the different forms of superconducting qubits, the states 0  and 1  are mapped onto discretized quantities char-
acteristic of the relevant quantum Hamiltonian3. In addition to supporting coherent superpositions, what makes 
qubits so powerful for information processing is the ability by coupling multiple qubits of creating entangled i.e., 
non-separable states. This property confers exponential complexity to a N-qubit system which can then encode 
and ultimately process 2N bits of information simultaneously.

The current quantum qubits, however, are based on quantum particles or quantum systems that easily lose 
their superposition of states in a noisy environment, or in large arrays, by decoherence. To increase coherence 
time, one then has to resort to operating the qubits at cumbersome cryogenic temperatures. Furthermore, meas-
urement on quantum systems in superposition of states leads to collapse of the wave function onto pure states, 
requiring the use of statistical approaches to determining the original superposition. To overcome these critical 
drawbacks, one may call upon the notion of pseudospin which is a classical system that may exhibit properties 
isomorphic to true quantum spin systems. Pseudospin is playing a key role in understanding many fundamental 
quantum-like phenomena such as the anomalous quantum Hall effect. Unlike the electron spin, the pseudospin 
was traditionally considered as an unmeasurable quantity. Recently, however, it has been suggested that pseudos-
pin is a real angular momentum that might manifest itself as an observable quantity. The concept of pseudospin, 
associated with Kramers degeneracy4, has recently been introduced in various topological systems. Besides the 
photonic5,6 and plasmonic systems7, pseudospin-dependent edge states in phononic systems (both acoustic8,9 
and elastic10–14) have also been explored. Topological states for elastic waves have been predicted mostly in theo-
retical works10–12, and have only recently been experimentally demonstrated13. In ref.13, the authors experimen-
tally demonstrated an elastic analog of the quantum spin Hall effects in a monolithically scalable configuration. 
Building on similar principles, we proposed theoretically, the concept of a one-dimensional elastic pseudospin, 
which we called a ϕ-bit. This elastic pseudospin is an elastic mechanical system in which the displacement field is 
describable by a wave function isomorphic to that of a quantum spin in that it possesses a spinorial character15–18. 
The ϕ-bit wave equation takes the form of a one-dimensional elastic wave equation with an additional term which 
then makes it isomorphic to the Klein-Gordon equation:
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where β and α depend on the mass density of the elastic medium and elastic constants characteristic of the system 
being studied (vide infra).

It was previously shown4 that the modes of a ϕ-bit can be projected onto directions of propagation using a 
Dirac-like factorization:
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where σx and σy are the 2 × 2 Pauli matrices and I is the 2 × 2 identity matrix. These modes, ψ, are expressible in 
terms of spinor amplitudes and orbital components. Furthermore, because of the ± sign, the complete set of states 
of the ϕ-bit includes non-dual solutions (“particle” and “antiparticle”). The non-dual solutions are plane waves: 
ψ ξ= ω± ±c e ek k

i t ikx
0

( ) ( )k  and ψ ξ= ω± ±c e ek k
i t ikx
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( ) ( )k  where ξk and ξk are two by one spinors. The spinor amplitudes 
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 with s1 and s2 taking on the values +1 or −1 depending on the sign of k and ωk. Note 

that this spinor is solution of the continuous Dirac equation (Eq. 2(a,b)) and in a discrete representation of that 
equation, the spinor components have been shown to be complex19. The spinor solution corresponds to 
quasi-standing elastic waves with the components of the spinor representing the amplitude of the wave in the 
forward and backward directions of propagation, respectively. We can therefore define spin-like states in the 
direction of propagation of elastic states (forward = ( )F 1

0
 or 0  and backward = ( )B 0

1
 or 1 ) and crucially, 

coherent superposition of states: 
ω β ω β± +s k s k( ) 0 ( ) 1k k1 2 . The superposition of states is tunable by 

frequency ω and/or wavenumber k. Because s1 and s2 can take values +1 and −1 we can realize the complete range 
of possible superpositions in the forward and backward space. These elastic waves with Dirac spinor characteris-
tics have a half-integer spin analogue, i.e., a pseudospin. The superposition of states is coherent as the forward and 
backward components of the spinor are not independent of each other. It is not a classical mixed state or classical 
probabilistic mixture of forward and backward propagating elastic waves.

The elastic pseudospin superposition of states formed by a ϕ-bit can be stable at room temperature and 
decoherence free. It is measurable without wave function collapse as it represents an actual amplitude and not a 
probability amplitude. With these properties, the experimental realization of a ϕ-bit offers a transformative new 
solution to reach some of the goals of quantum information science using materials-based quantum analogues. In 
the present study, we physically realize an elastic system that exhibits pseudospin characteristics and we demon-
strate coherent superposition of states in the directions of propagation. We also illustrate how one can manipulate 
the coherent states by tuning the wave frequency and wave number. This is equivalent to applying gate operations. 
Experimentally, the approach to realize a ϕ-bit is based on a piezo-actuated rod-like one-dimensional elastic 
waveguide subjected to nearly rigid boundary conditions on its external surface along its length. Elastic waves 
in the one-dimensional waveguide with free boundary conditions are described by the first two terms of Eq. (1). 
The rigidity condition introduces the third term of Eq. (1) and therefore the correlation between the directions 
of propagation. Here we introduce an experimental system which allows us to impose nearly rigid boundary 
conditions on the waveguide, and describe a simple theoretical model to characterize the expected general behav-
ior of the system. We also report the results of the experimental measurements of the elastic states supported 
by an elastic rod waveguide with free boundary conditions and contrast it with those of the system with nearly 
rigid boundary conditions. Experimental observations with numerical calculations of elastic modes of relevant 
model systems using COMSOL simulations are discussed. Finally, we discuss how physical parameters such as 
frequency can be tuned to operate on the coherent elastic superposition of states. Conclusions are then drawn 
with respect to future development including the extension of the present work to multiple ϕ-bits and the creation 
of non-separable superpositions of states.

Results
physical platform. The experimental realization of a ϕ-bit requires a mechanical system which elastic wave 
behavior is effectively described by Eq. (1). The full experimental system is modeled as two mass and spring 
chains that are elastically coupled (Fig. 1a). The discrete elastic equations of motion are given by:
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In Eq. (3), un is the nth displacement of mass m1, vn is the nth displacement of mass m2, k1 (k2) is the stiffness 
of the springs coupling masses, m1(m2), k3 is the stiffness of the springs that couples masses m1 with m2 For the 
system considered here, the mass of the rod, m1, is much less than the mass of the remainder of the system, m2, so 
that we approach the equations of motion in Eq. (1). In the limit of long wavelength compared to the inter-mass 
spacing a, Eq. (3a,b) become:
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where k a m/i i i
2 2β =  and k m/i i

2
3α = . Considering plane wave solutions = ωu v A B e e( , ) ( , ) i t ikxk , the eigen prob-

lem takes the form:
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The two dispersion relations of the system are found to be:
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Figure 1. (a) Schematic illustration of the mass and spring model for a ϕ-bit system where two chains are 
coupled elastically. In the limit of masses m2 ≫ m1 the equation of motion for the chain composed of the 
lighter masses approaches that given by Eq. (1). The ki with i = 1, 2, 3 are the stiffness of the springs. (b) 
Schematic illustration of the predicted ϕ-bit dispersion relation for the mass and spring system supporting 
coherent superposition of states as quasi-standing waves. (c) Side and front views of the physical platform 
for experimental realization of a ϕ-bit composed of an aluminum rod sandwiched between two steel plates. 
Pressure applied along the rod/steel plate sandwich establish elastic coupling through Hertzian contact. The 
large mass difference between the rod and the steel substrate provides the limiting condition for the rod 
waveguide to achieve the behavior of a ϕ-bit.
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Inserting Eq. (6) in Eq. (5a) gives a relation between the amplitudes of the eigen vectors:
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(this approximation is justifiable because the current study involves metallic alloys with comparable moduli of 
elasticity), Eq. (7) reduces to:
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2ω β α= + , the dispersion relation of a ϕ-bit. In that limit, the ratio of amplitudes B/A → 0 for the upper 

band and B/A → a2k2 + 1 for the lower band. The chain with the light mass (m1) supports modes in the lower band 
with very low amplitude compared to the heavier one. In the upper band, the lighter chain support modes with 
highest amplitude. In that limit, the set of equations (4) reduces to the single Klein-Gordon equation: 
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A schematic of the resulting ϕ-bit dispersion relation is depicted in Fig. 1b. The true standing wave is com-

posed of 50% forward/50% backward components while the propagative wave is 100% forward. Coherent super-
position of states is then possible in the ϕ-bit band as quasi-standing wave composed of tunable fraction of 
forward and backward components.

This simple analytical model suggests that we can realize a ϕ-bit by elastically coupling two subsystems. The 
first subsystem is a light one-dimensional elastic waveguide and the second subsystem is composed of a massive 
elastic substrate. In practice, we use aluminum alloy rods sandwiched along their length between heavy steel 
plates (Fig. 1c). The Hertzian contact between the rod and the plates generate the side springs coupling k3 present 
in the discrete mass spring model. The k2 spring constant is given essentially by the rod Young’s modulus. An 
explicit connection between the properties of the experimental system and the discrete model is found as follows. 
The plates immobilize the lines of Hertzian contact so the system is effectively a rod with two fixed boundary 
lines. In the one-dimensional limit and considering only the longitudinal motion we get an elastic line coupled to 
a fixed line. Notice that independently of the number of Hertzian contact longitudinal lines and how they are dis-
tributed we get very similar equations in the limit of the infinite mass of the side chains; the only difference being 
in the α2. In the case of the three chains, for example, α2 is twice that of the two chains. The next step is to divide 
into equal longitudinal sections of length a, each with mass m = ρAsa, where ρ is the density of the rod and As the 
area of its cross-section. Finally, the sections are reduced to points of mass m separated by the distance a and the 
spring constants are given by k1 = β2m/a2 and k3 = α2/m, where the α and β are determined experimentally, and 
then k1 and k3 could be estimated.

Details of the experimental system are outline in the Materials and Methods section.

experimental measurements. We investigate the behavior of an aluminum rod of length L = 0.6096 m 
with a density of 2,660 kg/m3. This density is significantly smaller than that of the steel substrate. Figure 2 reports 
the transmission spectra for the free standing aluminum rod and the rod sandwiched between the steel plates. We 
use different types of attachments of the transducers to the rod and ultrasonic couplants to illustrate the different 
types of behaviors that can be observed. However, we will show that the ϕ-bit modes are invariant and the cou-
plant and attachment method only impact the number of modes that can be resolved.

Figure 2(a) shows the transmission spectrum of the free standing rod using two types of attachment (rubber 
band for the main spectrum and lens mounts for the inset). The rubber band appears to impact the quality of the 
spectrum in the low frequency regime. The spectrum shows well defined resonances corresponding to the stand-
ing wave modes supported by this finite length rod. The wavelength corresponding to these standing waves can 
be easily determined from L

n
2λ =  where n is an integer. Here it is straightforward to assign a value of n to each 

mode as they span the complete range of frequencies and their frequency separation is almost uniform. A wave 
number can subsequently be calculated as =

λ
k 1 . It is therefore possible to plot the dispersion relation for the free 

standing rod by combining data from spectra of Fig. 2a (see Fig. 3). Note that this wave number is not an angular 
wave number which would be multiplied by 2π. The speed of sound of the nearly one-dimensional rod is 
extracted by fitting the low frequency resonant modes to a linear relation passing through the origin, that is a 
dispersion relation ν = βk. Here, we do not use angular frequencies but only frequencies which are related by a 
factor of 2π. We find that β = 4,900 m/sec. In Fig. 3, we see that as frequency increases beyond 60 kHz, the reso-
nant modes of the free standing rod begin to deviate from the linear dispersion relation indicating that for short 
wavelengths the rod with finite cross section does not behave exactly like a one-dimensional elastic waveguide.

The rod sandwiched between the steel plates exhibits a transmission spectrum that is very different from the 
free standing rod (Fig. 2(b,c)). Both transmission spectra in Fig. 2(b,c) show a very large depression in the trans-
mission amplitude below 50 kHz. The rubber band attachment appears to introduce some low frequency modes 
in Fig. 2(c). Beyond 20 kHz, the transmission amplitude along the rod is back to very small values. The very low 
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transmission amplitude in the low frequency region of both transmission spectra is reminiscent of and consistent 
with the very low ratio of amplitudes, B

A
, for elastic waves in the lower band propagating in the two chain model 

in the limit of a small ratio of masses, =r m
m

1

2
. Above 50 kHz, the transmission spectrum shows well defined reso-

nances with non-uniform frequency spacing. The resonances appear to be spaced more closely at low frequency. 
Therefore, the spectra show a passing band with well-defined resonances that are assigned to the ϕ-bit band 
(upper band of the two chain system).

To calculate a dispersion relation that would approach that of a ϕ-bit, we need to determine the wave number 
associated with the high frequency resonances observed in the spectra. This is done by selecting clear resonances 
of the rod below 80 kHz to avoid the loss of one-dimensionality above that frequency. The wave number of these 
resonances ought to be a multiple of 2 L since the finite length rod can only support standing waves. We label each 
resonance with the lowest frequency as being n = 1. We then calculate for each resonance “n” a cut-off frequency

Figure 2. Transmission spectrum of the (a) free standing aluminum rod with rubber band attachment of the 
transducers and honey couplant (the inset is for transducers attached to the ends of the rod using lens mounts), 
(b) aluminum rod sandwiched between steel plates with gel couplant and lens mount attachments, and (c) same 
as (b) with kukui oil couplant with rubber band attachment. The transmission amplitude is in arbitrary units.
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2 2 2

0
2α ν β= − Δ +

where υn is the frequency of the resonance n, Δk = 1/2L and β = 4,900 m/sec. We seek the integer value n0 which 
results in αn with the least variance in “n”. We then determine the cutoff frequency α as the average over the n’s of 
all the αn. We use 10 resonances from Fig. 2(b) between 60 and 84 kHz and 13 resonances between 55 and 84 kHz 
from Fig. 2(c) to reconstruct the ϕ-bit band and determine the cutoff frequency. In the first case, we find n0 = 6 
and a cutoff frequency, α = 53.960 kHz (standard deviation of 0.358 kHz). With the second set of data, we find 
n0 = 3 and a cutoff frequency, α = 54.320 kHz (standard deviation of 0.6532 kHz). The cutoff frequencies appear 
to be consistent with the measured transmission spectra where we observe a very low transmission. The cutoff 
frequencies are in excellent agreement with each other.

Figure 3 reports the different dispersion relations extracted from the transmission spectra. Analysis of the 
two transmission spectra of Fig. 2(b,c) give ϕ-bit dispersion relations in excellent agreement with each other. 
The experimental conditions of Fig. 2(c) enable us to resolve resonances with frequencies very close to the cutoff 
frequency giving exquisite control on the spinor states of the elastic waves.

We have used COMSOL to model the behavior of a free standing aluminum rod and an aluminum rod with 
two rigid line boundary conditions along its length at opposite sides around the perimeter of its cross section. The 
finite element grid and fixed boundary lines, used to model the ϕ-bit, are detailed in the Supplemental Text. The 
length of the rod is again L = 0.6096 m. The eigen problem for the elastic wave field equation is solved in real 3D 
and frequency space, the longitudinal modes are identified by the mode shapes and their wave number estimated 
by the formula k = (N − 1)/(2L), with N being the number of nodes. Some of the longitudinal modes hybridize 
with other types of modes making their identification from mode shapes impossible and therefore they are omit-
ted. Other than the length and diameter of the rod, three physical parameters are needed in the calculation: the 
density, Poisson ratio and Young’s modulus. We use the experimentally determined density and we fix the value of 
Poisson ratio to 0.33. The Young’s modulus is obtained ensuring that the frequency spacing between subsequent 
predicted longitudinal eigen modes of the free standing rod matches, within 100 Hz, the experimental value in the 
low frequency regime, namely 3,950 Hz. The optimized Young’s modulus E = 60 GPa. The same physical param-
eters are used for the ϕ-bit model.

The ϕ-bit eigen values calculated with the COMSOL model are reported in Fig. 4 and compared with the 
experimental ϕ-bit resonances and fitted dispersion relation of the aluminum rod. The agreement between the 
numerical, theoretical and experimental eigen dispersion bands is remarkable. The numerical and experimental 
data show only a very modest difference of at most a few hundred Hz. This minor discrepancy might be due to the 
rigid nature of the boundary conditions along the rod in the numerical model which differs from (a) the elastic 
coupling associated with the Hertzian contact between the aluminum rod and the steel plates and (b) the finite 
ratio of the mass of the rod to that of the steel substrate. The rigid boundary condition likely overestimates the 
cutoff frequency. The agreement between experimental and numerical data strongly supports the ϕ-bit nature of 
the aluminum rod/steel plate assembly.

Discussion
As noted in the introduction, plane wave solutions: ψ ξ= ω+ +c e ek k

i t ikx
0

k  of the Dirac-factored elastic wave equa-
tion of a solid ϕ-bit possesses a normalized two by one spinor amplitude:

Figure 3. Dispersion relations for the aluminum rod and ϕ-bit determined and calculated from Fig. 2. The 
open circles are obtained from the resonances of the free standing aluminum rod. The solid line associated with 
the open circles is a fit to the low frequency resonances. The closed circles correspond to 10 resonant modes 
associated with the ϕ-bit modes of Fig. 2(b). The solid ϕ-bit band is a fit to these 10 modes using the ϕ-bit 
dispersion relation. The open squares represent 13 ϕ-bit modes identified in Fig. 2(c). The dashed line is a fit to 
these 13 modes using the ϕ-bit dispersion relation.
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The second relation uses frequency instead of angular frequency, and wave number in m−1 instead of rad.m−1. 
This spinor corresponds to quasi-standing elastic waves with the components of the spinor representing the 
amplitude of the wave in the forward and backward directions of propagation, respectively. The spinor represents 
coherent superposition of states of the elastic waves as the amplitudes of the forward and backward components 
of the wave are not independent of each other. It is not possible to change the amplitude of the forward compo-
nent without changing the backward component. This is quite different from a statistical superposition of states 
where there are no constraints on the choice of the amplitude of the superposed waves. Using the notation intro-
duced earlier for pure states: forward ( )F 1

0=  or 0  and backward ( )B 0
1=  or 1 , the coherent superposition 

of states in the ϕ-bit band can be written as:

ξ
ν

ν β
ν

ν β ξ ν ξ ν= + + − = +k k k k1
2

( ) 0 1
2

( ) 1 ( , ) 0 ( , ) 1
(11)k

k
k

k
k F k B k

The superposition of states in the direction of propagation is tunable by frequency νk and/or wavenumber k. 
Changing frequency is therefore equivalent to applying a unitary transformation onto the spinor state. This point 
is illustrated by considering Table 1. In Table 1, we list the 13 experimental ϕ-bit modes of the aluminum rod and 
the corresponding normalized spinor amplitudes ξF and ξB. We recall that we experimentally determined 
β = 4,900 m/sec. The experimental data reported in Table 1 span a reasonable interval of possible values of ξF and 
ξB which can range from .

.( )0 7071
0 7071

 at the cutoff frequency to ( )1
0

 in the limit of large frequencies. The coherent 
superpositions of states are quasi-standing waves and the percentages of the amplitude in the forward and back-
ward directions are listed in the fifth column of the table. While the complete range of coherent states goes from 
50% forward/50% backward to 100% forward, the experimental ϕ-bit allows us to manipulate a smaller but sig-
nificant range of states between 64.5%/35.5% to 88.3%/11.7%. The first state is the closest to a true standing wave 
and the latter one is approaching a purely propagative wave.

Adjusting the frequency of the driving transducer can therefore be used to operate on the spinor state of the 
ϕ-bit as there is a one-to-one correspondence between resonant frequency and the value of the spinor. The action 
of changing the driving frequency is equivalent to a transformation of the spinor state. For instance, the transfor-
mation that takes the forward propagating state ( )1

0
 and transforms it into the standing wave state .

.( )0 7071
0 7071

 takes 
the form:

.

.
=

−( ) ( )( )0 7071
0 7071

1
2

1 1
1 1

1
0 (12)

The transformation matrix ( )H 1 1
1 1

1
2

=
−

 is the usual Hadamard transformation20 but is only one specific 
case of a general unitary transformation:

Figure 4. Experimental ϕ-bit dispersion relations for the aluminum/steel system determined and calculated 
from Fig. 2(c) and reported in Fig. 3 (solid line and open squares). Eigen modes calculated with COMSOL 
(open diamonds).
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The Hadamard gate is obtained for γ = 1
2

. We can now consider, for instance, the transformation realized 
physically by detuning the frequency of the driving transducer from 83.85 kHz to 55.50 kHz. This transformation 

is represented as: γ γ

γ γ
.
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 with γ ′ = 0.304. This is but one example of a single 

ϕ-bit gate operation. This type of gate operation is similar to the single qubit gate operation in quantum comput-
ing. In the case of spin-based qubits, one can transform a coherent superposition of up-spin and down-spin states 
by applying a laser pulse21. The challenge in quantum systems is that measurement on a quantum superposition 
of states leads to wave function collapse, that is, the state of the quantum system transforms from the superposi-
tion to a pure state. In the case of a ϕ-bit, the coherent superpositions of states in the direction of propagation are 
immune to wave function collapse as they result from classical waves.

We can use the COMSOL simulations to illustrate the displacement field associated with the coherent super-
position of states. Figure 5(a) represents the ϕ-bit mode with the lowest resolvable frequency. One clearly sees in 
the figure the line along the length of the rod with rigid boundary conditions. This is a state very near the bottom 
of the ϕ-bit band. This mode is a quasi-standing wave with spinor ( )0 7326

0 6806
.
.

, which approaches the state of a 

standing wave which spinor amplitude is .
.( )0 7071

0 7071
. However, due to the fact that it may be visualized as the super-

position of two waves traveling in opposite direction with slightly differing amplitudes (53.7% F/46.3% B), the 
displacement field will not be symmetrical about the middle of the rod as seen in the figure. As frequency 
increases this becomes less and less apparent. Figure 5(c) is characteristic of a nearly traveling wave with spinor 

( )0 9249
0 3802
.
.

 and 85.5% forward character (14.5% backward). This quasi-standing wave appears as a standing wave 
in the figure because of the finite length of the rod. Figure 5(b) represents an intermediate superposition of states 
with spinor ( )0 8192

0 5735
.
.

 and 67.1% forward character.

ν (kHz) k(m−1) ξF ξB %F/%B

55.50 3.2808 0.8030 0.5960 64.5/35.5

57.00 4.1010 0.8224 0.5690 67.6/32.4

58.80 4.9213 0.8397 0.5431 70.5/29.5

60.75 5.7415 0.8553 0.5181 73.2/26.8

63 6.5617 0.8690 0.4948 75.5/24.5

65.25 7.3819 0.8816 0.4720 77.7/22.3

67.80 8.2021 0.8924 0.4512 79.6/20.4

70.20 9.0223 0.9027 0.4303 81.5/18.5

72.80 9.8425 0.9117 0.4108 83.1/16.9

75.60 10.6627 0.9195 0.3930 84.6/15.4

79.10 11.4829 0.9250 0.3799 85.6/14.4

81.25 12.3031 0.9333 0.3592 87.1/12.9

83.85 13.1234 0.9399 0.3414 88.3/11.7

Table 1. The first two columns are the experimental frequency and wave number of 13 ϕ-bit modes on the 
aluminum/steel assembly. The third and fourth columns report the normalized forward and backward spinor 
amplitudes of the coherent superposition of states corresponding to the experimental modes, namely ξF and ξB 
(see Eq. (11) for details). Column 5 includes the squares of ξF and ξB which indicate the % of the quasi-standing 
waves which propagate in the forward direction and the backward direction, respectively.

Figure 5. Square of the displacement field along the aluminum ϕ-bit model calculated using COMSOL. The 
figures correspond to coherent superposition of states (a) near the bottom of the ϕ-bit band, (b) in the region 
of large curvature of the band and (c) in the region of the band associated with nearly propagative modes. Red 
indicates large displacement and blue indicates small displacement.
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conclusions
We have demonstrated experimentally the existence and control of coherent superpositions of elastic states in the 
direction of propagation of an ultrasonic pseudospin i.e., a ϕ-bit. The pseudospin states are supported by an elas-
tic rod serving as a waveguide sandwiched along its length between massive plates. The Hertzian contact between 
the plates and the rod establishes restoring forces which result in quasi-standing wave elastic longitudinal modes 
that can be represented as spinors in the space of the direction of propagation along the waveguide. The experi-
mental results are validated with theoretical and computational models. We show that by tuning the frequency 
of the resonances of the rod associated with the superpositions of states, one operates on the spinor state of the 
elastic waves. These operations are analogous to unitary operations commonly used to transform superposi-
tion of states in a true quantum spin qubit. Our work is one step toward implementing classical elastic systems 
which are analogous to quantum systems. These quantum analogues may exhibit the properties of quantum 
systems without some of the drawbacks associated with true quantum systems, such as wave function collapse 
and decoherence. While this paper focuses on a single ϕ-bit system analogous to single qubit, coupling ϕ-bits or 
coupling qubits is essential for implementing information processing platforms that can take on the exponential 
complexity associated with the non-separability of states in these coupled systems. We have addressed in other 
publications19,22 the theory of non-separability of elastic waves in coupled pseudospin systems. These theoreti-
cal studies revealed a rich variety of phenomena. For instance, in ref.22 we have demonstrated the possibility of 
achieving non-separability between different spinor and other degree of freedom in a system of elastically coupled 
waveguides. Moreover, in ref.19 we have shown the possibility of realizing non-separable spinor states in multiple 
coupled ϕ-bit systems.

Materials and Methods
The experimental platform for realization of a ϕ-bit is composed of aluminum rods ½ inch in diameter and length 
on the order of two feet as elastic waveguides (6061 aluminum with certification: McMaster-Carr 1615T172). 
The waveguide is sandwiched along its length between heavy steel plates. The plates are 0.9525 cm thick by 
5.08 cm wide and are forming a massive substrate. Four vises (with a clamping strength of 300 lbs, Home Depot: 
BV-HD60) are employed to apply a significant amount of pressure on the sandwich to establish a static friction 
force between the aluminum waveguide and the steel, high enough to ensure no slip conditions at their interface. 
The vises then contribute their mass to the substrate. The Hertzian contact between the rod and the steel substrate 
serves as elastic coupling between the two subsystems. The large mass difference between the rod and the sub-
strate provides the limiting condition for the rod waveguide to achieve the behavior of a ϕ-bit.

We use two contact transducers ((Fingertip case style with 0.25 inch element diameter: Olympus V133-RM) 
attached to each end of the rod. One transducer is used to horizontally excite the rod and the other transducer 
is placed at the other end of the rod to measure the output response. The transducer driving the rod at one end 
is connected to a BK Precision 4055B arbitrary function generator (APG) and also to a Tektronix MDO3024 
oscilloscope to register the driving signal generated by the APG. The other transducer reads the response signal 
transmitted to the other end of the rod. That response signal is registered in the same oscilloscope. To drive the 
rods we use a sinc pulse with a scan in frequency between 1 kHz and 100 kHz in steps of 50 Hz. The driving and 
response signals, averaged over 512 time series, are collected in the oscilloscope and the Fast Fourier Transform 
(FFT) calculated to get the frequency spectra. The ratio between the FFT of the response and driving signal is then 
calculated. Averages for each frequency are taken after the data collection is finished. The APG and oscilloscope 
are connected to a computer, which controls the experiment and performs data processing by using an in-house 
developed and implemented algorithm in MatLab R2018b.

As a reference, the transmission spectra of free standing aluminum rods are measured by suspending them 
with two thin strings. Given that the force transducer are not glued to the sample (i.e., depending on the fre-
quency and amplitude of the excitation it could lose contact with the rod) and that the measured response might 
be affected by the rod-transducer dynamic interaction during the measurement, different couplants and ways of 
attaching the transducers to the rod are used. For ultrasonic couplants we use Gel (Olympus D12 ultrasonic cou-
plant), kukui oil, and honey. The transducers are placed in contact with the end of the rods either by using rubber 
bands wrapping around the rods and transducers (supersize bands from Walmart, 564755837) or by placing the 
transducers on either side of the rod using fixed cylindrical lens mounts (Thorlabs, CH1A). In the experiment, we 
have also minimized the static pre-compression in the rod.
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