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ABSTRACT
A planar array of three one-dimensional elastic waveguides mutually coupled periodically along their length and driven externally is shown
theoretically and numerically to support nonseparable superpositions of states. These states are the product of Bloch waves describing the
elastic displacement along the waveguides and spatial modes representing the displacement across the array of waveguides. For a system
composed of finite length waveguides, the frequency, relative amplitude, and phase of the external drivers can be employed to selectively
excite specific groups of discrete product modes. The periodicity of the coupling is used to fold bands enabling superpositions of states that
span the complete Hilbert space of product states. We show that we can realize a transformation from one type of nonseparable superposition
to another one that is analogous to a nontrivial quantum gate. This transformation is also interpreted as the complex conjugation operator in
the space of the complex amplitudes of individual waveguides.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0014259., s

I. INTRODUCTION

Superposition of states and entanglement are at the core of
today’s second quantum revolution.1 Entangled superpositions of
states possess two distinct attributes, namely, nonlocality and non-
separability. Nonlocality is a unique feature of quantum mechanics,
but nonseparability is not. The notion of “classical entanglement,”
i.e., local nonseparable superposition of states, has received a signif-
icant amount of attention, theoretically and experimentally, in the
area of optics.2–8 However, to date, much less attention has been
paid to other classical waves such as elastic waves; yet, remarkable
new behaviors of sound, analogous to quantum physics, such as
the notions of elastic pseudospin9–19 and Zak/Berry phase,20–28 are
emerging. Recently, elastic nonseparable states,29 analogous to “clas-
sically entangled” states, were observed in externally driven systems
composed of parallel arrays of one-dimensional elastic waveguides
coupled elastically and uniformly along their length.30–32 In these
theoretical and experimental studies, the classically nonseparable
states are Bell states constructed as a superposition of elastic waves,

each being a product of a plane wave part and a spatial eigen mode.
The plane wave part describes the elastic wave along the length of
the waveguides, and the spatial eigen mode characterizes the ampli-
tude and phase difference between waveguides, i.e., across the array
of waveguides. In the case of a finite number of finite length waveg-
uides, the plane wave and spatial parts are both discrete. It is there-
fore possible to produce elastic Bell states, whose amplitude can be
represented using the usual ket notation of quantum mechanics in
the form A∣S1⟩∣k1⟩ + D∣S2⟩∣k2⟩, where ∣Si⟩ are discrete spatial states
and ∣kj⟩ are discrete plane wave states. This superposition that can-
not be factored as a single product is thus nonseparable. When the
constitutive materials are dissipative, A and D are complex. By tun-
ing A and D through the amplitude, phase, and/or frequency of
the external drivers, one is able to experimentally navigate a por-
tion of that Bell state Hilbert space.30,31 However, in these previous
studies, the system did not allow varying the spatial modes and
plane wave states independently. This system could not be used to
explore the complete Hilbert space of product elastic states because
it does not support the general superposition A∣S1⟩∣k1⟩ + B∣S1⟩∣k2⟩
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+C∣S2⟩∣k1⟩+D∣S2⟩∣k2⟩. Manipulation of such a general state is highly
desirable as it would allow for the creation of Bell states of the form
B∣S1⟩∣k2⟩ + C∣S2⟩∣k1⟩ by tuning the complex coefficients A and D to
zero. This limitation inherent to the previously studied system can be
overcome by considering an externally driven system composed of a
parallel array of one-dimensional elastic waveguides coupled elasti-
cally and nonuniformly along their length. In the case of waveguides
coupled periodically along their length, elastic states are now prod-
ucts of a spatial part and a Bloch wave part. It is the objective of
the present study to show that band folding within a finite Brillouin
zone due to periodic coupling between waveguides offers the possi-
bility of selecting spatial and Bloch wave states independently. Using
periodically coupled one-dimensional waveguides, one can therefore
navigate a more sizeable portion of the Hilbert space of nonseparable
spatial mode/Bloch wave product states. Navigation of the Hilbert
space of product states is achieved by stimulating externally each
waveguide in the array with a driver. The product states can be tuned
by varying the relative amplitude and phase of each driver as well as
the frequency of the drivers.

Sections II–V introduce the theory of externally driven arrays
of one-dimensional waveguides coupled periodically along their
length. We present the mathematical formulation behind achiev-
ing nonseparable superpositions of states, which are the product of
plane waves and spatial modes. We also show how these states can
be manipulated by varying the drivers’ characteristics. We demon-
strate the possibility of achieving transformations between differ-
ent nonseparable superpositions of product states reminiscent of
nontrivial quantum gates. In Sec. VI, we introduce a mass–spring
model of a parallel array of discrete waveguides coupled elastically
and periodically along their length. This model is used to validate
and illustrate the theory. We calculate the band structure of this
model. Periodicity-induced band folding and finite length of the
waveguides lead to modes that can be excited externally to real-
ize superpositions of states that are the product of plane waves
and spatial modes that span the complete available Hilbert space
of product states. A section of that Hilbert space is explored by
tuning the frequency and the relative amplitudes of the external
drivers stimulating the individual waveguides. We show that trans-
formation from one type of nonseparable superposition to another
one in that space can be interpreted as the complex conjugation
operator in the space of the complex amplitudes of individual
waveguides.

II. ARRAY OF PARALLEL WAVEGUIDES COUPLED
PERIODICALLY ALONG THEIR LENGTH

We consider three one-dimensional elastic waveguides coupled
elastically along their length (see Fig. 1). In the long wavelength limit,

the wave equation takes the form

[(
∂2

∂t2 − β
2 ∂2

∂x2 )I3×3 + M3×3]U = 0. (1)

The parameter β is proportional to the speed of sound in the waveg-
uides. x represents the position along the waveguides. I3×3 is the
identity matrix. M3×3 is the matrix describing the elastic coupling
between the three waveguides. The 3 × 1 vector U = (U1,U2,U3)

represents the displacement in waveguides 1, 2, and 3, respectively.
We now assume that the coupling is periodic along the direc-

tion x. For instance, in the case of a planar array of three waveguides,
the coupling matrix takes the form

M3×3 = α(x)N3×3, (2)

where N3×3 =

⎛
⎜
⎜
⎝

1 −1 0
−1 2 −1
0 −1 1

⎞
⎟
⎟
⎠

and α(x) is a periodic function with

the period P. The parameter α is proportional to the stiffness of the
coupling. We write the function α(x) as a Fourier series

α(x) =∑G αGe
iGx, (3)

with the reciprocal lattice number G = m 2π
P , where m is an integer.

We seek solutions in the form of Bloch waves, namely,

U(x, t) =∑k∑g U(k + g)ei(k+g)xeiωt , (4)

where g is also a reciprocal lattice number. Inserting Eqs. (2)–(4) into
(1) yields

∑k∑g{I3×3(−ω2 + β2
(k + g)2

)U(k + g)ei(k+g)x

+∑GN3×3αGU(k + g)ei(G+k+g)x
} = 0. (5)

We multiply Eq. (5) by e−i(k
′+g′)x and integrate over one period

∫
P

0 dx to obtain

I3×3(−ω2 + β2
(k′ + g′)2

)U(k′+g′)+∑GN3×3αGU(k′ + g′ −G) = 0.
(6)

In obtaining Eq. (6), we have used the relation ∫dxei(a−b)x = δa,b,
where δa,b is the usual delta function.

We now define λn and En with n = 1, 2, 3 as the eigen val-
ues and eigen vectors of the matrix N3×3. That is, we can write
N3×3En = λnI3×3En. These eigen vectors are equivalent to spa-
tial states across the parallel array of waveguides. Since En form a
complete orthonormal basis, we can write the displacement vector
as

FIG. 1. Schematic representation of three one-dimensional elastic waveguides coupled periodically along their length with a period P (stiffness of the coupling is represented
schematically by different shades of gray).
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U(k) =∑n un(k)Enn. (7)

Using Eq. (7), Eq. (6) becomes (here, we have dropped the prime for
convenience)

∑n{I3×3En(−ω2 + β2
(k + g)2

)un(k + g)

+∑G λnI3×3EnαGun(k + g −G)} = 0. (8)

By factoring I3×3En, Eq. (8) reduces to

(−ω2 + β2
(k + g)2

)un(k + g) + λn∑G αGun(k + g −G) = 0. (9)

This represents an infinite set of coupled equations. These equations
can be solved by truncating the summation over G to a finite num-
ber of terms. For the sake of simplicity, we will examine the case
when G is limited to G = 0 and − 2π

P . This corresponds to periodic
coupling realized as the sum of a uniform coupling parameter and
one single sinusoidal function. This approximation allows for math-
ematical tractability while still capturing the effect of band folding
due to the periodicity.

If g = 0, Eq. (9) simplifies to

(−ω2 + β2k2
)un(k) + λn(α0un(k) + α−2π/P

un(k +
2π
P
)) = 0 . (10a)

When g = − 2π
P , Eq. (9) becomes

(−ω2 + β2
(k +

2π
P
)

2
)un(k +

2π
P
)

+ λn(α0un(k +
2π
P
) + α2π/P

un(k)) = 0. (10b)

For α
(
−2π/P)

= α∗2π/P
, Eqs. (10a) and (10b) form the system of

equations

⎛
⎜
⎝

−ω2 + β2k2 + λnα0 λnα∗2π/P
λnα2π/P

−ω2 + β2
(k + 2π

P )
2 + λnα0

⎞
⎟
⎠
(

un(k)
un(k + 2π

P )
) = 0.

(11)

The dispersion relation is obtained by setting the determinant of the
matrix in Eq. (11) equal to zero,

(−ω2 + β2k2 + λnα0)(−ω2 + β2
(k +

2π
P
)

2
+ λnα0) − λ2

n∣α2π/P
∣
2
= 0.

(12)
Equation (12) is rewritten as

(k2 + γn)((k +
2π
P
)

2
+ γn) − η2

n = 0 (13)

by defining γn = λnα0−ω2

β2 and η2
n =

λ2
n

RRRRRRRRRRR

α2π/P

RRRRRRRRRRR

2

β2 .
The four solutions of Eq. (13) are given in the compact form as

kn(ω) = −
π
P
±

¿
Á
ÁÀ
(
π
P
)

2
− γn ±

√

η2
n − (

2π
P
)

2
γn. (14)

For a given ω, and n, two wave numbers correspond to the G = 0 dis-
persion curves. The other two wave numbers are associated with the
dispersion curves translated by the reciprocal number G = − 2π

P (see
Fig. 2), i.e., dispersion curves translated into the second Brillouin
zone to the left of the first Brillouin zone. Equivalently, these latter

FIG. 2. Schematic representation of the dispersion curves for the two eigen modes
E2 and E3 (closed and open circles) with g = 0, 2π

P and their corresponding discrete
states. The first Brillouin zone is delimited by vertical lines at − π

P and π
P . The driv-

ing frequencies ωD and ω′D are represented as a horizontal dashed line. The wave
numbers k2 and k3 and corresponding characteristic frequencies ω2, ω3, ω′2, and
ω′3 are labeled. The gaps that may have formed at k = − π

P are not represented
for the sake of simplifying the illustration. The length of the finite waveguides is
L = 5P.

wave numbers correspond to dispersion branches, which fold within
the first Brillouin zone. If more G vectors were kept in the calcula-
tion, the band structure would include dispersion curves translated
not only in the second Brillouin zone but also in third, fourth, and
higher order Brillouin zones. The extension of this translated disper-
sion relation would be equivalent to multiple folding of the bands in
the first Brillouin zone. However, a single band folding is sufficient
here to illustrate the condition for observing a nonseparable super-
position of states spanning the complete Hilbert space of product
states.

It is worth analyzing Eq. (14) in a few simple cases. In the
absence of periodicity in the coupling between the waveguides,
α2π/P

= 0 and η2
n = 0. Equation (12) reduces to the two dispersion

relations ω2
= β2k2 +λnα0 and ω2

= β2
(k + 2π

P )
2 +λnα0. These are the

dispersion relations for waveguides coupled uniformly along their
length in a supercell of length P. Note that in that case at k = 0
and k = − 2π

P , the lowest positive and real frequencies are given by
ω2
= λnα0.

For the system with periodic coupling, if we insert the condition
ω2
= λnα0 (i.e., γn = 0) in Eq. (14), we find four nonzero solutions

for the wave number kn(ω) = − π
P ±

√

( πP )
2
± ηn. This indicates that

in the vicinity of the wave number origin, the bands of the period-
ically coupled systems have been lowered compared to those of the
uniformly coupled system. Finally, at the edge of the Brillouin zone,

k = − π
P , Eq. (14) gives the following condition: (( πP )

2 + γn)
2
= η2

n

or ω2
= λn(α0 ∓ βα2π/P

) + β2
( πP )

2. At the edge of the Brillouin zone,

the degeneracy of the folded bands is lifted by opening a gap. For
instance, the positive frequency at k = − π

P is two valued.
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III. DRIVEN ARRAY OF ELASTIC WAVEGUIDES
COUPLED PERIODICALLY ALONG THEIR LENGTH

Let us now drive the system externally at some position x = 0.
Equation (1) is replaced by

[(
∂2

∂t2 − β
2 ∂2

∂x2 )I3×3 + M3×3]U = Fδx=0eiωDt , (15)

where ωD is the frequency of the driver. The 3 × 1 vector, F, is
expressed in the En basis: F = ∑n FnEn. The Fn’s are therefore defined
as the dot product F ⋅ En between the two 3 × 1 vectors.

Again, we seek solutions in the form of Bloch waves with the
driver’s frequency,

UD(x, t) =∑k∑g∑n uD,n(k + g)Enei(k+g)xeiωDt . (16)

The index D of uD,n indicates that this is the amplitude of the driven
system.

Following the algebraic steps of Sec. II, we obtain the set of
equations

(−ω2
D + β2

(k + g)2
)uD,n(k + g) + λn∑G αGuD,n(k + g −G) = Fn.

(17)

In obtaining the right-hand side of Eq. (17), we have used
F ∫dxe−i(k

′+g′)xδx=0 = F. Similarly to Sec. II, Eq. (17) represents an
infinite set of coupled equations.

Again, limiting the reciprocal lattice numbers to G = 0 and − 2π
P ,

and g = 0 and 2π
P , we obtain the set of two linear equations

⎛
⎜
⎝

−ω2
D + β2k2 + λnα0 λnα∗2π/P

λnα2π/P
−ω2

D + β2
(k + 2π

P )
2 + λnα0

⎞
⎟
⎠

×(
uD,n(k)

uD,n(k + 2π
P )
) = (

Fn
Fn
). (18)

The driven resonant amplitudes are therefore given by

(
uD,n(k)

uD,n(k+ 2π
P )
)=

1
Δn

⎛
⎜
⎝

−ω2
D +β2

(k+ 2π
P )

2 + λnα0 −λnα∗2π/P
−λnα2π/P

−ω2
D +β2k2 + λnα0

⎞
⎟
⎠

×Fn(
1
1
), (19)

where

Δn = (−ω2
D + β2k2 + λnα0)(−ω2

D + β2
(k +

2π
P
)

2
+ λnα0)−λ2

n∣α2π/P
∣
2
.

If we employ Eq. (12), we can express the denominator, Δn, as

Δn = (−ω2
D + β2k2 + λnα0)(−ω2

D + β2
(k +

2π
P
)

2
+ λnα0)

− (−ω2
n + β2k2 + λnα0)(−ω2

n,P + β2
(k +

2π
P
)

2
+ λnα0), (20)

where ωn and ωn,P are the characteristic frequencies corresponding
to the nth eigen mode of the coupling matrix with the wave num-
bers k and k+ 2π

P [see Eq. (14)]. If the system exhibits some damping,
taking the form η ∂

∂t , where η is a damping coefficient, in Eq. (15),

one needs to replace ω2
D by ω2

D − iηωD. Importantly, in that case, the

amplitudes (
uD,n(k)

uD,n(k + 2π
P )
) are complex quantities. Complex ampli-

tudes are important to establish the analogy between nonseparable
elastic states and locally “entangled” quantum states described in
Sec. IV.

IV. NONSEPARABLE ELASTIC STATES SUPPORTED
BY THE PERIODICALLY COUPLED WAVEGUIDES

Here, we demonstrate that the displacement field of the driven
system can be written as nonseparable superposition of states. Solv-
ing Eq. (17) by truncating the sum over the reciprocal lattice number
beyond what was done in Sec. III would result in complex driven
amplitudes uD,n(k + g). These complex amplitudes are proportional
to Fn, so we rewrite them as

uD,n(k + g) = FnũD,n(k + g). (21)

In the case of the three waveguides arranged in a planar array,
the coupling matrix N3×3 admits three eigen vectors and three
eigen values. One of the eigen vectors for which λ1 = 0, namely,
E1 =

1
√

3
(1, 1, 1), does not involve transfer of energy between the

waveguides via the coupling. This trivial case is equivalent to three
independent waveguides. The other two eigen modes of the coupling
matrix with eigen values λ2 = 1 and λ3 = 3 are

E2 =
1
√

2

⎛
⎜
⎜
⎝

1
0
−1

⎞
⎟
⎟
⎠

, E3 =
1
√

6

⎛
⎜
⎜
⎝

1
−2
1

⎞
⎟
⎟
⎠

. (22)

We now suppose that we are driving the system with F1 = 0 (to elimi-
nate the E1 mode) and F2 ≠ F3 ≠ 0. The displacement field of Eq. (16)
becomes

UD(x, t) =∑k∑g [F2ũD,2(k + g)E2 + F3ũD,3(k + g)E3]ei(k+g)xeiωDt .
(23)

We note that in Eq. (23), we use a discrete summation over the wave
number k. This condition can be realized with finite length waveg-
uides obeying periodic boundary conditions. This system supports a
discrete set of standing waves. Furthermore, let us suppose that ωD
is close to two characteristic frequencies ω2 and ω3 corresponding
to the second and third eigen modes of the coupling matrix with the
wave numbers k2 and k3 inside the first Brillouin zone and k2 +g and
k3 + g inside the other Brillouin zones, respectively (see Fig. 2). The
amplitudes ũD,2(k2 + g) and ũD,3(k3 + g) are expected to dominate,
and the sum over k in Eq. (23) can be approximated as

UD(x, t) =∑g[F2ũD,2(k2 + g)E2ei(k2+g)x

+F3ũD,3(k3 + g)E3ei(k3+g)x
]eiωDt . (24)

The choice of the driving frequency ωD determines how many waves
with different k will be composing the superposition of states given
by Eq. (23).

For each g, we define the orthonormal basis ϕ1 = E2ei(k2+g)x,
ϕ2 = E2ei(k3+g)x, ϕ3 = E3ei(k2+g)x, and ϕ4 = E3ei(k3+g)x. Using the
bracket notation, we can define ∣ϕ1⟩ = ∣E2⟩∣k2⟩, ∣ϕ2⟩

= ∣E2⟩∣k3⟩, ∣ϕ3⟩ = ∣E3⟩∣k2⟩, and ∣ϕ4⟩ = ∣E3⟩∣k3⟩. The two vectors ∣E2⟩
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and ∣E3⟩ form an orthonormal basis for a two-dimensional Hilbert
space HE. ∣k2⟩ = ei(k2+g)x and ∣k3⟩ = ei(k3+g)x form another orthonor-
mal basis for a two-dimensional Hilbert space Hk. ∣ϕ1⟩, ∣ϕ2⟩, ∣ϕ3⟩,
and ∣ϕ4⟩ form the basis of a four-dimensional Hilbert product space
HE,k = HE ⊗Hk. In that basis, UD takes the form

UD(x, t) =∑g [F2ũD,2(k2 + g)ϕ1 + F3ũD,3(k3 + g)ϕ4]eiωDt . (25)

The displacement field is a linear combination of nonseparable
states. Indeed, we cannot write F2ũD,2(k2 + g)ϕ1 + F3ũD,3(k3 + g)ϕ4

as a product of the form (aE2 + bE3)(cei(k2+g)x + dei(k3+g)x
), where

the first parenthesis is a linear combination of En’s and the second
parenthesis is a linear combination of Bloch wave components.

If we change the driving frequency from ωd to ω′d such that now
the largest amplitude ũD′ ,2 occurs at the characteristic frequencies ω′2
with the wave number k3 or k3 + g and the largest amplitude ũD′ ,3
occurs at ω′3 and k2 or k2 + g (Fig. 2), then the displacement field
takes the new form

UD′(x, t) =∑g[F2ũD′ ,2(k3 + g)E2ei(k3+g)x

+F3ũD′ ,3(k2 + g)E3ei(k2+g)x
]eiω

′
Dt . (26)

Equation (26) can be expressed in terms of the product basis,

UD′(x, t) =∑g [F2ũD′ ,2(k3 + g)ϕ2 + F3ũD′ ,3(k2 + g)ϕ3]eiω
′
Dt . (27)

We can simplify these expressions further by considering that the
measurements of the displacement fields given by Eqs. (25) and (26)
are performed at a distance x = QP, where Q is an integer, from the
driver. In that case, ϕ1,P = E2eik2QP, ϕ2,P = E2eik3QP, ϕ3,P = E3eik2QP,
and ϕ4,P = E3eik3QP. The product basis becomes independent of the
reciprocal lattice number, g, since eigQP = 1. The displacement fields
are then reduced to

UD(QP, t) = {[∑g F2ũD,2(k2 + g)]ϕ1,P

+ [∑g F3ũD,3(k3 + g)]ϕ4,P}eiωDt , (28a)

UD′(QP, t) = {[∑g F2ũD′ ,2(k3 + g)]ϕ2,P

+ [∑g F3ũD′ ,3(k2 + g)]ϕ3,P}eiω
′
Dt . (28b)

The amplitudes of UD(QP, t) and UD′(QP, t) take the form of non-
separable linear combinations of product states. Equations (28a)
and (28b) are isomorphic to Bell states. By controlling the driv-
ing frequency, one is able to navigate the Hilbert space HE,k by
transforming a state of the form A∣E2⟩∣k2⟩ + D∣E3⟩∣k3⟩ into a state
of the form B∣E2⟩∣k3⟩ + C∣E3⟩∣k2⟩, where A,B,C,D are complex
amplitudes. Without the periodicity of the coupling, that is, with-
out the folding of the bands within the first Brillouin zone (or,
equivalently, the translation of bands within the second Brillouin
zone), the state B∣E2⟩∣k3⟩ + C∣E3⟩∣k2⟩ would not be accessible to
observation.

Navigation of the Hilbert space enables transformation of
states analogous to quantum gates. For instance, we can also
define the basis {ϕ1,P,ϕ2,P,ϕ3,P,ϕ4,P} in terms of the 4 × 1 vectors

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1
0
0
0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

,

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0
1
0
0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

,

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0
0
1
0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

,

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0
0
0
1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

. In that representation, the two displacement

fields become

UD(QP, t) =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

∑g F2ũD,2(k2 + g)
0
0

∑g F3ũD,3(k3 + g)

⎞
⎟
⎟
⎟
⎟
⎟
⎠

eiωDt =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

A2,2

0
0

A3,3

⎞
⎟
⎟
⎟
⎟
⎟
⎠

eiωDt , (29a)

UD′(QP, t) =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0

∑g F2ũD′ ,2(k3 + g)

∑g F3ũD′ ,3(k2 + g)
0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

eiω
′
Dt =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0
A2,3

A3,2

0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

eiω
′
Dt . (29b)

Changing the driving frequency from ωD to ω′D is therefore equiv-
alent to applying the following transformation matrix to the ampli-
tude vectors:

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0
A2,3

A3,2

0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 A2,3/A2,2
0 0

A2,3/A2,2
0 0 0

0 0 0 A3,2/A3,3

0 0 A3,2/A3,3
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎝

A2,2

0
0

A3,3

⎞
⎟
⎟
⎟
⎟
⎟
⎠

. (30)

The most significant aspect of this transformation matrix is that it
contains non-zero off-diagonal terms of the two blocks. The physi-
cal effects of this transformation are directly measurable in terms of
amplitudes and relative phases of the waveguide displacement at the
location x = QP.

For instance, one measures the three components (U1,D(QP, t),
U2,D(QP, t),U3,D(QP, t)) and expresses them as (G1,G2eiϕ12 ,
G3eiϕ13), where ϕ12 and ϕ13 are the phases of the displacement of
waveguides 2 and 3 relative to waveguide 1. If the amplitude of
the first waveguide is normalized to 1, the four quantities G2, G3,
ϕ12, and ϕ13 completely characterize the nonseparable state given
by Eq. (29a). Similarly, we can characterize the nonseparable state
UD′(QP, t) with two other relative amplitudes and two relative
phases G′2, G′3, ϕ′12, and ϕ′13.

We also note that the complex quantities A2,2 and A3,3 can be
tuned via the control of the driver amplitudes F2 and F3 and their
relative phase. The same is true for the quantities A2,3 and A3,2.
Indeed, rewriting F2 = ∣F2∣ and F3 = ∣F3∣eiθ, where θ is the phase
difference between F2 and F3, we can add θ to the phase difference
between ∑g ũD,2(k2 + g) and ∑g ũD,3(k3 + g) when driving at ωD.
A similar phase difference can be added between ∑g ũD′ ,2(k3 + g)
and ∑g ũD′ ,3(k2 + g) when driving at ω′D. Control of the frequency
of the drivers and their relative phase provides significant flexibility
to manipulate the coefficients of the transformation matrix given by
Eq. (30). The significance of the transformation matrix in Eq. (30)
is its nonzero off-diagonal terms. With appropriate tuning of the
complex amplitudes via the external drivers or of the geometry of
an array of waveguides or physical characteristics of the constitutive
materials, one may be able to achieve elastic generalized analogs of
nontrivial quantum gates such as the Pauli X gate.

AIP Advances 10, 095101 (2020); doi: 10.1063/5.0014259 10, 095101-5

© Author(s) 2020

https://scitation.org/journal/adv


AIP Advances ARTICLE scitation.org/journal/adv

V. NAVIGATING THE COMPLETE HILBERT SPACE, HE,k

To navigate the space, HE,k, we need to excite four ampli-
tudes simultaneously with a single driving frequency, to obtain a
displacement field of the form

UD(QP, t) = (B2,2ϕ1,P + B2,3ϕ2,P + B3,2ϕ3,P + B3,3ϕ4,P)eiωdt . (31)

One can excite such a state in the vicinity of a crossing point between
the bands corresponding to the coupling modes, E2 and E3. The
crossing occurs between the E2 band with g = 2π

P and the E3 band
with g = 0. Using Eq. (14), such a crossing occurs at k2(ω) = k3(ω).
The continuous bands in Fig. 2 exhibit such a crossing point. In
the case of finite length waveguides with periodic boundary con-
ditions, and driving the system with a frequency near the crossing
point frequency, Eq. (23) can be simplified into the following form:

UD(x, t) =∑g[F2ũD,2(k2 + g)E2ei(k2+g)x

+F2ũD,2(−
π
P

+ g)E2ei(−
π
P +g)x

+F3ũD,3(−
π
P

+ g)E3ei(−
π
P +g)x

+F3ũD,3(k2 + g)E3ei(k2+g)x
]eiωDt . (32)

To obtain Eq. (23), we are assuming that only four classes of points in
the vicinity of the crossing point frequency contribute significantly
to the amplitude of the displacement field. The resonant frequency
associated with these points is the closest to the driving frequency.
Again, performing measurements at x = QP, where Q is an inte-
ger, from the driver, using eigQP = 1, and defining the basis ϕ1,P

= E2eik2QP, ϕ2,P = E2ei(−
π
P )QP, ϕ3,P = E3ei(−

π
P )QP, and ϕ4,P = E3eik2QP,

Eq. (32) becomes

UD(QP, t) = {[∑g F2ũD,2(k2 + g)]ϕ1,P + [∑g F2ũD,2(−
π
P

+ g)]ϕ2,P

+ [∑g F3ũD,3(−
π
P

+ g)]ϕ3,P

+ [∑g F3ũD,3(k2 + g)]ϕ4,P}eiωDt . (33)

This equation can be rewritten in the desirable form of Eq. (31) by
defining B2,2 = [∑g F2ũD,2(k2 + g)], B2,3 = [∑g F2ũD,2(−

π
P + g)],

B3,2 = [∑g F3ũD,3(−
π
P + g)], and B3,3 = [∑g F3ũD,3(k2 + g)]. In

the bracket notation, this state takes the general form A∣E2⟩∣k2⟩

+ B∣E2⟩∣k3⟩ + C∣E3⟩∣k2⟩ + D∣E3⟩∣k3⟩. Such a state would not be acces-
sible without the folding of the bands resulting from the periodicity
of the coupling.

The product Hilbert space can be explored by changing the
frequency to values above or below the frequency of the crossing
point. This effectively changes the complex coefficients A,B,C,D.
The magnitude and relative phase of F2 and F3 offer additional
degrees of freedom to manipulate the complex amplitudes of the
superposition of states.

By tuning the magnitude of the coupling stiffness as well as the
length of the finite waveguides (with periodic boundary conditions),
one can create more general states. For instance, in Fig. 3, we are
schematically representing g = 0 and 2π

P for two E2 and E3 bands in
the case of finite length waveguides L = 9P. In this particular case,
we have four classes of modes a, b, c, and d flanking a crossing point

FIG. 3. Schematic representation of the dispersion curves for the two eigen modes
E2 and E3 (closed and open circles) with g = 0, 2π

P and their corresponding discrete
states. Here, the length of the finite waveguides is L = 9P. The first Brillouin zone is
delimited by vertical lines at − π

P and π
P . The driving frequency ωD is represented

as a horizontal dashed line. The wave numbers k2 and k3 correspond to the E3
(a) and E2 (c) modes and E2 (b) and E3 (d) modes, respectively. The gaps that
may have formed at k = − π

P are not represented for the sake of simplifying the
illustration.

within the first Brillouin zone. Driving the system at the frequency
ωD shown in the figure, the measured displacement field at QP will
take the form

UD(QP, t) = {[∑g F2ũD,2(k2 + g)]ϕ1,P + [∑g F2ũD,2(k3 + g)]ϕ2,P

+ [∑g F3ũD,3(k2 + g)]ϕ3,P

+ [∑g F3ũD,3(k3 + g)]ϕ4,P}eiωDt , (34)

with the product basis ϕ1,P = E2eik2QP, ϕ2,P = E2eik3QP, ϕ3,P = E3eik2QP,
and ϕ4,P = E3eik3QP.

By driving the system at a frequency, ω(a,b)
D in the vicinity of

the frequencies of the two modes a and b, the primary contribu-
tions to the resonant displacement field are limited to U(a,b)

D (QP, t)

= {[∑g F2ũD,2(k3 + g)]ϕ2,P + [∑g F3ũD,3(k2 + g)]ϕ3,P}eiω
(a,b)
d t . This

state is not separable. If we then tune the driving frequency to a
value, ω(c,d)D in the vicinity of those of the modes c and d, the primary
contributions to the displacement field are reduced to U(c,d)D (QP, t)

= {[∑g F2ũD,2(k2 + g)]ϕ1,P + [∑g F3ũD,3(k3 + g)]ϕ4,P}eiω
(c,d)
d t . This

is also a nonseparable state. The transition from one of these non-
separable states to the other one is solely allowed by the band folding
due to the periodicity of the coupling.

We note that Eq. (34) becomes separable if we can find a driving
frequency such that

∑
g
ũD,2(k2 + g) =∑

g
ũD,3(k2 + g) = D2,

∑
g
ũD,2(k3 + g) =∑

g
ũD,3(k3 + g) = D3.
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Then, Eq. (34) can be written in the product form

UD(QP, t) = {(F2E2 + F3E3)(D2eik2QP + D3eik3QP)}eiωDt . (35)

The relative amplitudes and phase of the three components
(U1,D(QP, t),U2,D(QP, t),U3,D(QP, t)) expressed as (G1,G2eiϕ12 ,
G3eiϕ13) are simply dependent on the factor F2E2 + F3E3. The factor
(D2eik2QP + D3eik3QP) only adds a global phase to each waveguide.
The phases of the displacement of waveguides 2 and 3 relative to
waveguide 1 parallel the relative phase of the external drivers. This
is a signature of separability of the elastic states. Nonseparable states
will exhibit relative phases between waveguides, which differ from
the relative phase of the drivers. It is therefore possible with this
simple measurement to differentiate nonseparable from separable
superpositions of elastic states.

Finally, we also recall that in the model system composed
of three coupled waveguides, there are only two non-trivial dis-
crete eigen vectors describing the spatial states, namely, E2 and E3.
This represents, effectively, a two-level system. Furthermore, due to
the finite length of the waveguides, the plane wave states are dis-
crete. We have chosen driving frequencies such that only two plane
wave states may contribute the most to the displacement field. The
system behaves like a two-level system in plane wave states. The
Hilbert space of this restricted system is therefore a 2 × 2 dimen-
sional space. The periodicity of the coupling between waveguides,
leading to band folding, enables the complete exploration of this
Hilbert space. Increasing the number of coupled waveguides will
increase the number of non-trivial spatial eigen modes. For instance,
in the case of four coupled waveguides, the spatial states repre-
sent a three-level system. The spatial states of N coupled waveg-
uides would span an N − 1 dimensional space. By increasing the
length of the waveguides, one increases the number of discrete plane
wave states within a given range of frequencies. It is therefore pos-
sible to extend the space of dominant plane wave states beyond
the two investigated here. For instance, one can consider a driv-
ing frequency that would excite three plane wave states with sig-
nificant amplitudes. In that case, the plane wave states would span
a three-dimensional space corresponding to a three-level system.
Generalizing to n plane wave states corresponding to an n-level
system, an elastic system of N waveguides could support super-
positions of states in an (N − 1) × n Hilbert space of product
states.

VI. COMPUTER MODEL AND SIMULATION
To validate the theory in Sec. V, we develop a numerical model

based on coupled mass–spring waveguides that can be used to shed
light on the complex behavior of nonseparable states and hence on
the complex Hilbert space, HE,k. For this, we consider a set of 1D
discrete elastic waveguides composed of chains of identical masses
connected to each other via harmonic springs. We further assume
that the masses of each chain are constrained to move only in the
horizontal direction. This limits the model to displacements with a
single polarization as was the case in Sec. V. Dissipative effects in the
medium are modeled by linear viscous damping elements.

For a set of three coupled mass–spring chains with a total of
Nm identical masses in each chain, the discrete elastic equations of

motion are given by

mün − knn(un+1 − 2un + un−1) − kc(vn − un) + ηu̇n = 0, (36a)

mv̈n − knn(vn+1 − 2vn + vn−1) − kc(un − vn) − kc(wn − vn) + ηv̇n = 0,
(36b)

mẅn − knn(wn+1 − 2wn + wn−1) − kc(vn − wn) + ηẇn = 0, (36c)

where un, vn, and wn are the displacements of the nth mass of waveg-
uides 1, 2, and 3, respectively. These quantities form the spatially dis-
crete components of the 3 × 1 vector U used in Secs. II–V for a con-
tinuous system. m is the mass, and the viscous damping coefficient
η models the dissipation. The term knn describes the coupling con-
stant of the nearest-neighbor interaction along a waveguide, and kc
describes the stiffness of the springs that couple the masses between
the waveguides organized in a planar array. The spring constant kc
has a sinusoidal modulation so that

kc = kc,0(1 + Δkc sin(
2π
P
xn)), (37)

where kc,0 is the unmodulated spring constant and Δkckc,0 is the
modulation amplitude. Here, we take kc to be the same for all
coupled chains. The superposition of a constant coupling stiff-
ness and a simple sinusoidal variation parallels our choice of
reciprocal numbers limited to the two values G = 0 and − 2π

P in
Secs. II–V.

We use Born–von Karman periodic boundary conditions for
which eikNcP = 1; Nc is the total number of unit cells along the
waveguides. As mentioned above, in the first Brillouin zone, kP is
limited to the interval −π to π with a spacing of 2π/Nc. The set
of Eqs. (36a)–(36c) is the discrete equivalent of Eq. (1). A vector-
ized fourth order Runge–Kutta time integration scheme is used to
numerically calculate the dynamics of the system. To computation-
ally generate the band structure, the spectral analysis of amplitudes
and phases method24 is employed, which we have recently devel-
oped and entails the use of molecular dynamics simulation. The
band structure in the absence of damping is reported in Fig. 4.
The specific values of the model physical constants are presented
in the figure caption. From Fig. 4, it is clear that the E1 mode does
not involve transfer of energy between the waveguides via the cou-
pling and hence does not fold in the Brillouin zone. On the other
hand, near the edges of the first Brillouin zone, the bands corre-
sponding to the E2 and E3 spatial eigen modes fold and hence inter-
sect. Because of the finite length of the waveguides, four discrete
modes (two closed and two open circle modes) near these inter-
sections form two pairs of modes with the same wave numbers.
This configuration is isomorphic to that schematically presented
in Fig. 3.

Each mode represented by a single closed or open circle in
the band structure of Fig. 4 corresponds to a separable state in
the Hilbert space HE,k, i.e., states expressible as products of eigen
modes spatially varying across the array of waveguides and Bloch
wave degrees of freedom along the waveguides. From Fig. 4, we
identify different isofrequency values that correspond to nearly
overlapping E2 and E3 modes. For instance, the inset of Fig. 4
shows that driving the model at a frequency of 0.622 or 0.6 will
lead to non-separable superpositions of states with characteris-
tics similar to those of the theoretical superpositions U(a,b)

D or
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FIG. 4. Elastic wave band structure of three-discrete mass–spring waveguides
coupled along their length via a periodic sinusoidal modulation of coupling stiff-
ness. The closed circles correspond to resonant modes associated with the E2
spatial eigen mode, and the open circles correspond to resonant modes associ-
ated with the E3 spatial eigen mode. The E1 eigen mode corresponds to closed
squares in the plot. The dashed line in the inset identifies a frequency (ωD) at
which the E2 and E3 resonances nearly overlap with two pairs of identical wave
number: ωa = 0.6193,ωb = 0.6246,ωc = 0.5987,ωd = 0.6030. The first Bril-
louin zone is represented by vertical lines at − π

P and π
P . Dimensionless system

parameters are m = 1,Nc = 204,P = 6, kc,0 = 0.056,Δkc = 0.50, η = 0.

U(c,d)D with either two or four frequency values: ωa = 0.6193,
ωb = 0.6246,ωc = 0.5987,ωd = 0.6030, and two wave num-
ber values: ka,c = −16(2π/Nc), kb,d = −15(2π/Nc). We can
therefore use these frequencies to numerically realize nonsepara-
ble superposition of states in HE,k. Driving the model at a fre-
quency between 0.622 and 0.6 will lead to linear superpositions
of states U(a,b)

D and U(c,d)D . To excite such separable or nonsepa-
rable superpositions of states numerically, the coupled elastic sys-
tem is driven with the external force F⃗eiωdt ; F⃗ = (1 − μ)E2 + μE3.
Moreover, by tuning the parameter μ, the contribution of the
two eigen modes (E2,E3) is numerically manipulated. Finally, to
drive the system, the prescribed base periodic excitation Fu

(t)
= Fu

0 sin(ωdt + ϕu0),F
v
(t) = Fv

0 sin(ωdt + ϕv0), and Fw
(t)

= Fw
0 sin(ωdt + ϕw0 ) is applied to the first mass of each chain, where

(Fu
0 ,Fv

0 ,Fw
0 ) and (ϕu0 ,ϕv0,ϕw0 ) are the amplitudes and phases of the

applied force to the chain (1, 2, 3).
Figure 5 shows the variations of the maximum amplitudes

of the last mass of each waveguide Ci;C1 = max(uNm(t)),C2
= max(vNm(t)),C3 = max(wNm(t)) and the phase difference
(ϕij) between the transmissions for each pair of waveguides

as a function of μ, where ϕ12 = 180
π cos−1

(
uNm (t) ⋅ vNm (t)
∣uNm (t)∣∣vNm (t)∣

), ϕ23

= 180
π cos−1

(
vNm (t) ⋅wNm (t)
∣vNm (t)∣∣wNm (t)∣

), ϕ13 = 180
π cos−1

(
uNm (t) ⋅wNm (t)
∣uNm (t)∣∣wNm (t)∣

). For a

pure eigen mode, the phase difference between the transmissions
for each pair of chains is ϕE2

12 = ϕE2
23 = π/2 and ϕE2

13 = π for E2 and
ϕE3

12 = ϕE3
23 = π and ϕE3

13 = 0 for E3. From Fig. 5, we indeed see that
manipulation of the parameter μ can be used to tune the eigen mode
superposition, since for μ ≠ 0 and μ ≠ 1, the output mode is a lin-
ear combination of spatial eigen modes E2,E3 with corresponding
k-labeled Bloch waves. In Fig. 5, we drive the system at different fre-
quencies, between ω(c,d)D = 0.6 that is in the vicinity of the two modes

c and d and ω(a,b)
D = 0.622 that is in the vicinity of the two modes a

and b. In particular, for ωD = 0.618, we note that at μ = 0, the spatial
character across the planar array of waveguides that is measured is a
pure E2 state. For 0 < μ < 0.2, the measured spatial state is a superpo-
sition of modes E2,E3. At μ = 0.2, the output mode is the well-defined
superposition (1 −1 0). For μ > 0.2, the measured spatial output sug-
gests a state very close to E3 until μ = 1, where the measured spatial
character is purely E3.

Figure 6 shows the variations of the phase difference as a func-
tion of the driving frequency ωd and for different values of μ. We
observe that some of the phase differences between pairs of waveg-
uides change sign between the frequencies 0.6165 and 0.618. To shed
light on these numerical results, we write an approximation to the
amplitude of the displacement field, UD, by considering only the
contribution of the modes a, b, c,d within the first Brillouin zone,

UD ∼
F2

−ω2
D + ω2

c + iηωD
E2eik2QP +

F2

−ω2
D + ω2

b + iηωD
E2eik3QP

+
F3

−ω2
D + ω2

a + iηωD
E3eik2QP +

F3

−ω2
D + ω2

d + iηωD
E3eik3QP, (38)

where the complex amplitudes resulting from the four modes are
written as simple resonances with damping. k2(= ka,c) is the wave
number of modes a and c. The wave number k3(= kb,d) corresponds
to modes b and d.

We now consider a special case by choosing ωD between ωc
and ωd such that −ω2

D +ω2
c = −δ and −ω2

D +ω2
d = δ. Note that δ

is small. In that case, only two terms dominate. The approximate
displacement field has now the components

UD,1 = C1eiϕ1 =
F2

−δ + iηωD

1
√

2
eik2QP +

F3

δ + iηωD

1
√

6
eik3QP, (39a)

UD,2 = C2eiϕ2 = −
F2

δ + iηωD

2
√

6
eik3QP, (39b)

UD,3 = C3eiϕ3 =
F2

−δ + iηωD

−1
√

2
eik2QP +

F3

δ + iηωD

1
√

6
eik3QP. (39c)

When choosing another special case by driving the system at a fre-
quency ω′D that lies between ωa and ωb such that −ω′2D +ω2

a = −δ and
−ω′2D + ω2

b = δ, the components of the approximate field amplitude
become

UD′ ,1 = C′1e
iϕ′1 =

F2

δ + iηω′D

1
√

2
eik3QP +

F3

−δ + iηω′D

1
√

6
eik2QP, (40a)

UD′ ,2 = C′2e
iϕ′2 =

F3

−δ + iηω′D

−2
√

6
eik2QP, (40b)

UD′ ,3 = C′3e
iϕ′3 =

F2

δ + iηω′D

−1
√

2
eik3QP +

F3

−δ + iηω′D

1
√

6
eik2QP. (40c)

The ratio of the amplitude measured at x = QP along the first waveg-
uide relative to that measured along the second waveguide is given
by

UD,1

UD,2
= G1eiϕ12 =

C1

C2
eiϕ12 =

−
√

3
2

F2

F3

δ + iηωD

−δ + iηωD
ei(k2−k3)QP −

1
2

, (41)
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FIG. 5. Creation of nonseparable states by the external driving force F⃗eiωd t ; F⃗ = (1 − μ)E2 + μE3, and driving frequency ωD and variations of the maximum amplitudes of
the last mass of each waveguide Ci;C1 = max(uNm(t)),C2 = max(vNm(t)),C3 = max(wNm(t)) (asterisks correspond to C1, open circles correspond to C2, and closed
circles correspond to C3) and phase differences (ϕij) between pairs of chains (asterisks correspond to ϕ12, open circles correspond to ϕ23, and closed circles correspond to
ϕ13) of the coupled mass–spring waveguides as a function of μ. The phases are in degree. System parameters: Nc = 204, η = 0.0114, (Fu

0 ,Fv
0 ,Fw

0 ) = (1,−2μ,−1 + 2μ),
and (ϕu0 ,ϕv

0,ϕw
0 ) = (0, 180 ∗ {−2μ < 0}, 180 ∗ {(−1 + 2μ) < 0}).

FIG. 6. Variations of the phase differences (ϕij) between pairs of chains (asterisks correspond to ϕ12, open circles correspond to ϕ23, and closed circles correspond
to ϕ13) of the coupled mass–spring waveguides as a function of the driving frequency ωd and for different values of μ. The phases are in degree. System parameters:
Nc = 204, η = 0.0114, (Fu

0 ,Fv
0 ,Fw

0 ) = (1,−2μ,−1 + 2μ), and (ϕu0 ,ϕv
0,ϕw

0 ) = (0, 180 ∗ {−2μ < 0}, 180 ∗ {(−1 + 2μ) < 0}).
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where the phase difference ϕ12 = ϕ1 − ϕ2.
The ratio of amplitudes between waveguides 1 and 2 for the

driving frequency ω′D is obtained as

UD′ ,1

UD′ ,2
= G′1e

iϕ′12 =
C′1
C′2

eiϕ
′
12 = −

1
2

+
−
√

3
2

F2

F3

−δ + iηω′D
δ + iηω′D

ei(k3−k2)QP,

(42)

with ϕ′12 = ϕ′1 − ϕ′2.
Since the frequencies of the modes a, b, c,d are within a few

percent of each other, the driving frequencies ωD and ω′D necessary
to transform the displacement field from UD to UD′ are also within
a few percent of each other. Therefore, Eq. (42) approximates the
complex conjugate of Eq. (41). Subsequently, one has ϕ′12 ∼ −ϕ12.
This is what is observed in Fig. 6. This observation can also be made
for the ratios UD,3

UD,2
=

C3
C2
eiϕ32 and UD′ ,3

UD′ ,2
=

C′3
C′2
eiϕ
′
32 , that is, ϕ′32 ∼ −ϕ32

that automatically applies to ϕ23. However, with these simple cases,
the approximate complex conjugation may not be true for ϕ13 in
light of Eqs. (40a) and (40c). We recall that for a given set of driv-
ing parameters F2 and F3, i.e., for a given value of μ, raising of
the driving frequency from ωD to ω′D executes the matrix operation
of Eq. (30) on the displacement field amplitudes expressed in the
HE,k basis. Complex conjugation is the signature of this operation
in the space of the complex amplitudes of individual waveguides
(C1eiϕ1 ,C2eiϕ2 ,C3eiϕ3) or of the complex amplitudes relative to the
first waveguide (G1,G2eiϕ12 ,G3eiϕ13).

To quantify the level of control the model allows, on the extent
of the Hilbert space that can be explored, we calculate the coefficients
in the transformation matrix of Eq. (30). For the sake of complete-
ness, we rewrite Eq. (28) by including mode E1, although we antici-
pate its contribution to be negligible in light of the way the system is
stimulated. At the driving frequencies ωD = 0.6 and ωD’ = 0.622, we
get

UD(QP, t) = (A1,1E1eik1x + A2,2E2eik2x + A3,3E3eik3x)eiωDt , (43)

UD′(QP, t) = (A1,1E1eik1x + A2,3E2eik3x + A3,2E3eik2x)eiωD′ t . (44)

In writing Eqs. (43) and (44), we have used the fact that at the end
of each waveguide, i.e., at x = QP = Nc where the measurements are
performed, eigx = 1. Furthermore, in the mass–spring system with
periodic boundary conditions, the wave numbers are integer multi-
ples of 2π/Nc, and hence, eik1x = eik2x = eik3x = 1. Simplifying the
equations above, we obtain

⎛
⎜
⎜
⎝

G1

G2eiϕ12

G3e−iϕ13

⎞
⎟
⎟
⎠

eiωDt =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A1,1
1
√

3

⎛
⎜
⎜
⎝

1
1
1

⎞
⎟
⎟
⎠

+ A2,2
1
√

2

⎛
⎜
⎜
⎝

1
0
−1

⎞
⎟
⎟
⎠

+A3,3
1
√

6

⎛
⎜
⎜
⎝

1
−2
1

⎞
⎟
⎟
⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

eiωDt , (45)

⎛
⎜
⎜
⎝

G′1
G′2e

iϕ12

G′3e
iϕ13

⎞
⎟
⎟
⎠

eiωD′ t =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A1,1
1
√

3

⎛
⎜
⎜
⎝

1
1
1

⎞
⎟
⎟
⎠

+ A2,3
1
√

2

⎛
⎜
⎜
⎝

1
0
−1

⎞
⎟
⎟
⎠

+A3,2
1
√

6

⎛
⎜
⎜
⎝

1
−2
1

⎞
⎟
⎟
⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

eiωD′ t . (46)

The measured amplitudes as a function of the driving parameter μ
on the left of Eqs. (45) and (46) are used to calculate the complex
coefficients A1,1, A2,2, A3,3, A2,3, and A3,2 [as shown in Fig. 7(a)]. We
find, as anticipated, that A1,1 [shown by an asterisk in Fig. 7(a)] is
zero. With the frequency ωD and for μ = 0, A3,3 = 0 and the spatial
state is a pure mode E2. For μ = 1, the spatial state is a pure mode
E3 with A2,2 = 0. Similarly, with the frequency ωD′ and for μ = 0,
A3,2 = 0 and the spatial state is also a pure mode E2. For μ = 1,
the spatial state is a pure mode E3 with A2,3 = 0. Following Ref. 30,

FIG. 7. Dependency on μ of the (a)
complex amplitudes A1,1, A2,2, A2,3,
A3,3, A3,2 (asterisks: A1,1, open circles:
A2,2, closed circles: A2,3, open squares:
A3,3, closed squares: A3,2) reported as
modulus and phase and (b) modulus
and phase of the ratios of non-zero off-
diagonal terms Ai,j/Ai,i; i, j = 2 : 3; i ≠ j
(open circles: A2,3/A2,2, open squares:
A3,2/A3,3) of the transformation matrix
of Eq. (30). The driving frequencies are
ωD = 0.6 and ωD’ = 0.622. The phases
are in degree. System parameters:
Nc = 204, η = 0.0114, (Fu

0 ,Fv
0 ,Fw

0 )
= (1,−2μ,−1 + 2μ), and (ϕu0 ,ϕv

0,

ϕw
0 ) = (0, 180 ∗ {−2μ < 0}, 180 ∗
{(−1 + 2μ) < 0}).
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we can express the entropy of “entanglement” for the two driving
frequencies

S = −
1

∣A2,2∣
2 + ∣A3,3∣

2 (A2,2A∗2,2ln
A2,2A∗2,2

∣A2,2∣
2 + ∣A3,3∣

2

+A3,3A∗3,3ln
A3,3A∗3,3

∣A2,2∣
2 + ∣A3,3∣

2 ), (47)

S′ = −
1

∣A2,3∣
2 + ∣A3,2∣

2 (A2,3A∗2,3ln
A2,3A∗2,3

∣A2,3∣
2 + ∣A3,2∣

2

+A3,2A∗3,2ln
A3,2A∗3,2

∣A2,3∣
2 + ∣A3,2∣

2 ). (48)

We note that when ∣A2,2∣ = ∣A3,3∣, S = ln 2. The superposition of states
is maximally “entangled.” Maximum entanglement is also achieved
for the driving frequency ωD′ when ∣A2,3∣ = ∣A3,2∣, and S′ = ln 2.

We can calculate the ratios of complex amplitude coefficients,
A2,3/A2,2 and A3,2/A3,3, constituting the off-diagonal terms in the
non-trivial transformation matrix (quantum-like gate) of Eq. (30).
The modulus and the corresponding phase of these ratios are
reported in Fig. 7(b). The moduli remain constant for all val-
ues of μ. However, from Fig. 7(b), it is clear that we can nav-
igate the phases between 0 and 3π/10. Therefore, we have lib-
erty to manipulate the drivers such that one can tune the block
transformation matrix between the two nonseparable states of
Eqs. (43) and (44). For instance, when μ → 0, the first block of
the transformation matrix becomes proportional to the Pauli X

matrix: (
0 A2,3/A2,2

A2,3/A2,2 0
) ∝ (

0 1
1 0
), while the second block

is proportional to the nontrivial matrix: (
0 A3,2/A3,3

A3,2/A3,3 0
) ∝

(
0 cos 3π/10 + i sin 3π/10

cos 3π/10 + i sin 3π/10 0
).

Finally, we remark that the case discussed above is only one
possible example of manipulation of states within the Hilbert space
of product states and exploration of that space can be enlarged by
choosing other input parameters for the drivers such as changing
the relative phase of the drivers.

VII. CONCLUSIONS
A planar array of three one-dimensional elastic waveguides

mutually coupled periodically along their length can be driven exter-
nally to support nonseparable superpositions of states. These states
are the product of Bloch waves characterizing the elastic displace-
ment along the waveguides and spatial modes representing the dis-
placement across the array of waveguides. For a system composed
of finite length waveguides, the frequency of external drivers can be
employed to excite specific discrete modes. The periodicity induced
band folding realizes superpositions of states that span the com-
plete available Hilbert space of product states. By tuning the fre-
quency and the relative amplitudes of the external drivers stim-
ulating individual waveguides, we can navigate a broad segment
of the Hilbert space of product states. Transformation from one
type of nonseparable superposition to another one in the product

Hilbert space is analogous to a generalized Pauli gate. This trans-
formation can also be interpreted as the complex conjugation oper-
ator in the space of the complex amplitudes of individual waveg-
uides. Using similar elastic waveguides, although not periodic, we
demonstrated Hadamard gate operations on the coherent super-
position analogous to the single qubit gate operation in quantum
computing.17

Finally, nonseparable or “classically entangled” states of elastic
waves offer the advantage of stability over entangled states of true
quantum systems. Nonseparable superpositions of elastic waves are
robust against decoherence and will not require operating at cryo-
genic temperatures to maintain the delicate balance of the super-
positions. Nonseparable superpositions of elastic waves do not suf-
fer from the phenomenon of wave function collapse upon mea-
surement. A coherent superposition of quantum states collapses
into a pure state upon measurement. Multiple statistical measure-
ments are, therefore, necessary to obtain information on the original
superposition. Moreover, the present demonstration of (a) “classi-
cally entangled” superposition of elastic states that span their com-
plete Hilbert space and (b) a transformation from one type of non-
separable superposition to another one analogous to a nontrivial
quantum gate is a significant step toward realizing the potential of
elastic waves in capturing quantum-like phenomena previously
associated with optics. Recently, the use of classical light with entan-
gled degrees of freedom has found applications in quantum infor-
mation33 and metrology.34,35 The present study suggests that the
same sort of applications can be realized with acoustic systems. The
periodicity of the coupling between elastic waveguides was the deter-
mining factor for widening the Hilbert space accessible to elastic
superposition of states. This coupling can be easily manipulated
by choices of materials and fabrication. Moreover, due to the flex-
ibility of the elastic system, the coupling can easily be tailored to
be linear, periodic, and nonlinear (with different types or degrees
of nonlinearity).36,37
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