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Abstract: We demonstrate theoretically, using multiple-time-scale perturbation theory, the 
existence of nonseparable superpositions of elastic waves in an externally driven elastic system 
composed of three one-dimensional elastic wave guides coupled via nonlinear forces. The 
nonseparable states span a Hilbert space with exponential complexity. The amplitudes appearing 
in the nonseparable superposition of elastic states are complex quantities dependent on the 
frequency of the external driver. By tuning these complex amplitudes, we can navigate the state’s 
Hilbert space. This nonlinear elastic system is analogous to a two-partite two-level quantum system. 
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1. Introduction 

The notions of superposition of states and entanglement lay at the core of today’s second 
quantum revolution [1]. Nonlocality and nonseparability are two distinctive attributes of entangled 
superpositions of states. While nonlocality is a unique feature of the strangeness of quantum 
mechanics, nonseparability is not. The notion of classical “entanglement”, i.e., local nonseparable 
superposition of states has received a lot of attention from the theoretical and experimental point of 
views in the field of optics [2–4]. Recently, remarkable new behaviors of sound, analogous to 
quantum physics, have also been revealed [5]. For instance, elastic waves in one-dimensional (1D) 
waveguides with broken time reversal or parity symmetry have been shown to obey Dirac-like 
equations and possess spin-like topology [6,7]. The amplitude of these pseudospin elastic waves takes 
the form of a spinor in the two-dimensional Hilbert space of the direction of propagation along the 
waveguides. In parallel arrays of elastically coupled one-dimensional waveguides, the amplitude 
also spans an 𝑁 dimensional Hilbert subspace, where 𝑁 is the number of waveguides, and becomes 
analogous to orbital angular momentum (OAM) degrees of freedom [8,9]. We have shown 
theoretically and experimentally that linear combinations of elastic states taking the form of tensor 
products of OAM and spinor amplitudes can form nonseparable states reminiscent of “entangled” 
Bell states [10]. We demonstrated that the amplitude coefficients of the nonseparable superposition 
of states are complex due to dissipation in the constitutive elastic materials. By tuning these complex 
amplitudes, we have shown that we can experimentally navigate a sizeable portion of the Bell state’s 
Hilbert space. These states lie in the tensor product Hilbert space of the subspaces associated with 
the direction of propagation and OAM degrees of freedom. The dimension of this product space 
scales linearly with the number of waveguides as 2 N. In order to achieve the full potential of the 
second quantum revolution, it would be highly desirable to construct classical nonseparable states 
that lie in an exponentially complex Hilbert space. More specifically, one would like to design a 
multipartite elastic system composed of N subsystems, each of which is able to be in at least two 
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states. The dimension of the Hilbert space of such a system can take the value 2ே , which scales 
exponentially with the number N. In this paper, we devise such a system. This system is composed 
of 1D elastic waveguides which are coupled via nonlinear forces. The nonlinear forces are quadratic 
functions of the relative elastic displacements in adjacent waveguides. The elastic medium is also 
assumed to be dissipative. The elastic nonlinearity by enabling wave–wave interaction is necessary 
to achieve wave mixing and, therefore, allowing the formation of waves for which the frequency and 
wave number are the sum of the frequencies and wave numbers of parent linear waves. These 
nonlinear waves are product waves of the parent waves and, therefore, span a Hilbert space, which 
is the product of the spaces supporting the parent waves. It is in that space which exploration is 
enabled by the nonlinearity that one can observe nonseparable superpositions of elastic waves. In 
this paper, the nonlinear coupling is treated as a perturbation. Here, we develop a multiple-time-
scale perturbation theory for a system composed of three nonlinearly coupled waveguides driven by 
an external harmonic force. The driven elastic system can be treated as a multipartite system 
composed of subsystems (each subsystem corresponding to a well-defined OAM elastic band). 
Considering finite waveguides and, therefore, discrete plane wave states, for each OAM band, we 
limit the plane wave solutions to those two states that are in the near vicinity of the frequency of the 
external driver. We show that to first order in perturbation, if we excite two OAM bands and two 
plane wave states in each band, the elastic system can be visualized as a two-partite two-level system 
which can support superpositions of nonlinear modes which span an exponentially complex Hilbert 
space. This space, of dimension 2ଶ , is the tensor product of the Hilbert space of two two-level 
subsystems. These nonlinear modes are shown to be nonseparable. The amplitudes of the 
superposition of nonlinear modes are complex due to dissipation and can be tuned by varying the 
driving frequency. Such behavior is a local analogue of the nonseparable superpositions of states of 
two-particle two-level quantum systems. 

2. Model System and Method 

We consider a system composed of three coupled one-dimensional mass-spring chains (Figure 
1). 

 

Figure 1. Schematic illustration of the system composed of three coupled one-dimensional elastic 
waveguides. The red springs couple the three elastic chains identified with blue springs. See text for 
meaning of symbols. 

The chains and coupling springs obey linear elasticity. The discrete linear elastic equations of 
motion are given by the following: 

𝑚𝜕ଶ𝑢௡𝜕𝑡ଶ − 𝑘௡௡ሺ𝑢௡ାଵ − 2𝑢௡ ൅ 𝑢௡ିଵሻ − 𝑘௖ሺ𝑣௡ − 𝑢௡ሻ ൅ 𝜂 𝜕𝑢௡𝜕𝑡 ൌ 0 (1a) 
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𝑚𝜕ଶ𝑣௡𝜕𝑡ଶ − 𝑘௡௡ሺ𝑣௡ାଵ − 2𝑣௡ + 𝑣௡ିଵሻ − 𝑘௖ሺ𝑢௡ − 𝑣௡ሻ − 𝑘௖ሺ𝑤௡ − 𝑣௡ሻ + 𝜂 𝜕𝑣௡𝜕𝑡 = 0 (1b) 

𝑚𝜕ଶ𝑤௡𝜕𝑡ଶ − 𝑘௡௡ሺ𝑤௡ାଵ − 2𝑤௡ + 𝑤௡ିଵሻ − 𝑘௖ሺ𝑣௡ − 𝑤௡ሻ + 𝜂 𝜕𝑤௡𝜕𝑡 = 0 (1c) 

In Equations (1a)–(1c), 𝑢௡, 𝑣௡ and 𝑤௡ are the displacements of the 𝑛௧௛ mass of chain 1, 2, and 
3, respectively. 𝑚 is the mass, and the viscous damping coefficient 𝜂 models the dissipation. 𝑘௡௡ 
is the stiffness of the springs in the waveguide chains. Here, we take the coupling constant between 
chains 𝑘௖ to be the same for all coupled chains. In the limit of long wavelength compared to the 
inter-mass spacing, 𝑎, the equations of motions (1) of the three coupled linear harmonic chains of 
masses and springs become the following: 𝜕ଶ𝑢𝜕𝑡ଶ − 𝛽ଶ 𝜕ଶ𝑢𝜕𝑥ଶ − 𝛼ଶሺ𝑣 − 𝑢ሻ + 𝜂́ 𝜕𝑢𝜕𝑡 = 0, ሺ2𝑎ሻ (2a) 

𝜕ଶ𝑣𝜕𝑡ଶ − 𝛽ଶ 𝜕ଶ𝑣𝜕𝑥ଶ − 𝛼ଶሺ𝑢 − 𝑣ሻ − 𝛼ଶሺ𝑤 − 𝑣ሻ + 𝜂́ 𝜕𝑣𝜕𝑡 = 0, ሺ2𝑏ሻ (2b) 

𝜕ଶ𝑤𝜕𝑡ଶ − 𝛽ଶ 𝜕ଶ𝑤𝜕𝑥ଶ − 𝛼ଶሺ𝑣 − 𝑤ሻ + 𝜂́ 𝜕𝑤𝜕𝑡 = 0, ሺ2𝑐ሻ (2c) 

where 𝛽ଶ = 𝑘௡௡ 𝑎ଶ 𝑚⁄ , 𝛼ଶ = 𝑘௖ 𝑚⁄  and 𝜂́ = 𝜂 𝑚⁄ . 
The coupling terms in Equations (2a,b,c) can be grouped into 𝛼  coupling matrix form ൭ 1 −1 0−1 2 −10 −1 1 ൱ acting on the vector ቆ𝑢𝑣𝑤ቇ. The eigen vectors of the coupling matrix are isomorphic 

to an orbital angular momentum (OAM). The three normalized OAM eigen vectors corresponding to 

the eigen values 𝜆ଵ = 0, 𝜆ଵ = 1, and 𝜆ଷ = 3, are: 𝑒ଵ = ൭𝑒ଵ௨𝑒ଵ௩𝑒ଵ௪൱ = ଵ√ଷ ൭111൱ , 𝑒ଶ = ൭𝑒ଶ௨𝑒ଶ௩𝑒ଶ௪൱ = ଵ√ଶ ൭ 10−1൱ , 𝑒ଷ =
൭𝑒ଷ௨𝑒ଷ௩𝑒ଷ௪൱ = ଵ√଺ ൭ 1−21 ൱. The associated dispersion relations for plane wave solutions, 𝑒௜௞௫𝑒௜ఠೖ௧, are given 

by 𝜔௞ଶ = ሺ𝛽𝑘ሻଶ, 𝜔௞ଶ = ሺ𝛽𝑘ሻଶ + ሺ𝛼ሻଶ and 𝜔௞ଶ = ሺ𝛽𝑘ሻଶ + 3ሺ𝛼ሻଶ. 

The coupled elastic system is then driven externally with the external force 𝐹⃗଴ = ቌ𝐹଴௨𝐹଴௩𝐹଴௪ቍ 𝑒௜ఠ௧ = 𝐹⃗𝑒௜ఠ௧ 
applied at 𝑥 = 0. 

The equations of motion of the driven coupled system become the following: 𝜕ଶ𝑢𝜕𝑡ଶ − 𝛽ଶ 𝜕ଶ𝑢𝜕𝑥ଶ − 𝛼ଶሺ𝑣 − 𝑢ሻ + 𝜂́ 𝜕𝑢𝜕𝑡 = 𝐹଴௨𝑒௜ఠ௧𝛿௫ୀ଴, (3a) 

𝜕ଶ𝑣𝜕𝑡ଶ − 𝛽ଶ 𝜕ଶ𝑣𝜕𝑥ଶ − 𝛼ଶሺ𝑢 − 𝑣ሻ − 𝛼ଶሺ𝑤 − 𝑣ሻ + 𝜂́ 𝜕𝑣𝜕𝑡 = 𝐹଴௩𝑒௜ఠ௧𝛿௫ୀ଴, (3b) 

𝜕ଶ𝑤𝜕𝑡ଶ − 𝛽ଶ 𝜕ଶ𝑤𝜕𝑥ଶ − 𝛼ଶሺ𝑣 − 𝑤ሻ + 𝜂́ 𝜕𝑤𝜕𝑡 = 𝐹଴௪𝑒௜ఠ௧𝛿௫ୀ଴, (3c) 

At a steady state, the displacement field takes the form of a linear combination of frequency 
modes: 
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ቌ𝑢ሺ𝑥, 𝑡ሻ𝑣ሺ𝑥, 𝑡ሻ𝑤ሺ𝑥, 𝑡ሻቍ = ቎෍𝐴ଵሺ𝑘ଵሻ𝑒ଵ𝑒௜௞భ௫௞భ + ෍𝐴ଶሺ𝑘ଶሻ𝑒ଶ𝑒௜௞మ௫௞మ + ෍𝐴ଷሺ𝑘ଷሻ𝑒ଷ𝑒௜௞య௫௞య ቏ 𝑒௜ఠ௧ (4) 

where, 

𝐴ଵሺ𝑘ሻ = 1√3൭111൱ . 𝐹⃗𝜔଴ଵଶ ሺ𝑘ሻ − 𝜔ଶ − 𝑖𝜂́𝜔 ,𝐴ଶሺ𝑘ሻ = 1√2൭ 10−1൱ . 𝐹⃗𝜔଴ଶଶ ሺ𝑘ሻ − 𝜔ଶ − 𝑖𝜂́𝜔 ,𝐴ଷሺ𝑘ሻ = 1√6൭ 1−21 ൱ . 𝐹⃗𝜔଴ଷଶ ሺ𝑘ሻ − 𝜔ଶ − 𝑖𝜂́𝜔, 
and writing 𝐴ଵሺ𝑘ሻ = |𝐴ଵሺ𝑘ሻ|𝑒௜థభሺ௞ሻ , 𝐴ଶሺ𝑘ሻ = |𝐴ଶሺ𝑘ሻ|𝑒௜థమሺ௞ሻ , and 𝐴ଷሺ𝑘ሻ = |𝐴ଷሺ𝑘ሻ|𝑒௜థయሺ௞ሻ , we find 𝜙ଵሺ𝑘ሻ = 𝑡𝑎𝑛ଵ ቀ ఎ́ఠఠబభమ ሺ௞ሻିఠమቁ , 𝜙ଶሺ𝑘ሻ = 𝑡𝑎𝑛ଵ ቀ ఎ́ఠఠబమమ ሺ௞ሻିఠమቁ  and 𝜙ଷሺ𝑘ሻ = 𝑡𝑎𝑛ଵ ቀ ఎ́ఠఠబయమ ሺ௞ሻିఠమቁ . Here, 𝜔଴ଵ,𝜔଴ଶ 

and 𝜔଴ଷ are the eigen frequencies of the (1 1 1), (1 0 −1) and (1 −2 1) OAM eigen vectors. Equations 
(3a)–(3c) relate to infinite chains, however, in the case of more realistic finite spring-mass chains, one 
expects to deal with a finite set of modes labeled by a discrete set of wavenumbers. In Equation (4), 
we have used discrete summation as a proxy for a finite system. In that case and in light of the 
Lorentzian line shape of the amplitudes, 𝐴ଵ,ଶ,ଷ , it is possible to conceive the use of isofrequency 
drivers which minimize the amplitude of the 𝑒ଵ OAM eigen modes compared to that of 𝑒ଶ and 𝑒ଷ. 
For instance, exploiting the orthogonality of 𝑒ଵ , 𝑒ଶ  and 𝑒ଷ , one may employ a driving force 𝐹⃗ , 
which is a linear combination of 𝑒ଶ and 𝑒ଷ. In that case, the first summation in Equation (4) will have 
only negligible amplitudes. We subsequently limit the second summation to the two states 𝑘ଶ and 𝑘ଶᇱ  with OAM eigen vector 𝑒ଶ  and frequency 𝜔  that contribute the largest amplitudes, namely 𝐴ଶ = 𝐴ଶሺ𝑘ଶሻ and 𝐴ଶᇱ = 𝐴ଶሺ𝑘ଶᇱ ሻ. Similarly, the third sum in Equation (4) is also limited to the two states 𝑘ଷ and 𝑘ଷᇱ  with the largest amplitudes 𝐴ଷ = 𝐴ଷሺ𝑘ଷሻ and 𝐴ଷᇱ = 𝐴ଷሺ𝑘ଷᇱ ሻ. These states are illustrated in 
Figure 2. Note that here, for the sake of simplicity of our demonstration, we use only positive 
wavenumbers but finite mass-spring chains would also support negative wavenumber states. 

Equation (4) reduces then to the following: 

ቌ𝑢ሺ𝑥, 𝑡ሻ𝑣ሺ𝑥, 𝑡ሻ𝑤ሺ𝑥, 𝑡ሻቍ = ൛ൣ𝐴ଶ𝑒௜௞మ௫ + 𝐴ଶᇱ 𝑒௜௞మᇲ௫൧𝑒ଶ + ൣ𝐴ଷ𝑒௜௞య௫ + 𝐴ଷᇱ 𝑒௜௞యᇲ௫൧𝑒ଷൟ𝑒௜ఠ௧ (5) 

Equation (5) represents the superposition of states of a two-partite system (with subsystems 
identified by their OAM index, 2 and 3) possessing two levels (i.e., primed and unprimed wave 
numbers). The amplitudes in this superposition are complex due to their Lorentzian character. This 
means that one can tune the relative phase associated with these amplitudes by controlling the 
frequency 𝜔 . 𝑒௜௞మ௫  and 𝑒௜௞మᇲ௫  form a basis for subsystem 2. 𝑒௜௞య௫  and 𝑒௜௞యᇲ௫  form a basis for 
subsystem 3. 

We now consider the coupled system with nonlinear coupling springs. The equations of motion 
in the long wavelength limit take the form: 𝜕ଶ𝑢𝜕𝑡ଶ − 𝛽ଶ 𝜕ଶ𝑢𝜕𝑥ଶ − 𝛼ଶሺ𝑣 − 𝑢ሻ + 𝜀ሺ𝑣 − 𝑢ሻଶ + 𝜂́ 𝜕𝑢𝜕𝑡 = 𝐹଴௨𝑒௜ఠ௧𝛿௫ୀ଴ (6a) 

𝜕ଶ𝑣𝜕𝑡ଶ − 𝛽ଶ 𝜕ଶ𝑣𝜕𝑥ଶ − 𝛼ଶሺ𝑢 − 𝑣ሻ − 𝛼ଶሺ𝑤 − 𝑣ሻ + 𝜀ሺ𝑢 − 𝑣ሻଶ + 𝜖ሺ𝑤 − 𝑣ሻଶ + 𝜂́ 𝜕𝑣𝜕𝑡 = 𝐹଴௩𝑒௜ఠ௧𝛿௫ୀ଴ (6b) 

𝜕ଶ𝑤𝜕𝑡ଶ − 𝛽ଶ 𝜕ଶ𝑤𝜕𝑥ଶ − 𝛼ଶሺ𝑣 − 𝑤ሻ + 𝜀ሺ𝑣 − 𝑤ሻଶ + 𝜂́ 𝜕𝑤𝜕𝑡 = 𝐹଴௪𝑒௜ఠ௧𝛿௫ୀ଴ (6c) 
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Figure 2. Schematic illustration of the band structure of the three coupled one-dimensional elastic 
waveguides. 𝜔 is the frequency of the external driving force. The wavenumbers of the states with 
the largest amplitudes along the two bands with cut-off frequencies are labelled on the wavenumber 
axis. 

The nonlinear quadratic terms correspond to forces that do not depend on the sign of the relative 
displacements. This type of nonlinearity will occur in heterogeneous materials that contain 
microcracks, for example [11]. This type of nonlinear term will lead to states with doubled frequency. 

We now attempt to solve Equations (6a)–(6c) using multiple-time-scale perturbation theory [12]; 
the nonlinear term being the perturbation. For this, we consider 𝜀  to be a small quantity. The 
advantage of multiple-time-scale perturbation theory is that it can capture nonlinear amplitude–
frequency interaction in systems with time-dependent amplitude and phase [13]. This is the case 
when multiple waves with comparable amplitudes interact with each other, leading to multiple 
secular terms in the dynamical equations. The additional degrees of freedom introduced via the 
multiple time scales are necessary to obtain a perturbation solution. While approaches such as the 
molecular dynamics method can also be utilized [14] to numerically solve nonlinear dynamical 
problems, analytical methods are still useful tools to illuminate the multiple wave scattering 
processes in nonlinear one-dimensional mass-spring chains, such as the one studied here. 

We rewrite the displacements as polynomials in 𝜀 , that is, considering, as an example, the 
displacement 𝑢: 𝑢ሺ𝜏଴, 𝜏ଵ, 𝜏ଶሻ = 𝑢଴ሺ𝜏଴, 𝜏ଵ, 𝜏ଶሻ + 𝜀𝑢ଵሺ𝜏଴, 𝜏ଵ, 𝜏ଶሻ + 𝜀ଶ𝑢ଶሺ𝜏଴, 𝜏ଵ, 𝜏ଶሻ + ⋯ (7) 

with 𝜏଴ = 𝑡, 𝜏ଵ = 𝜀𝑡, 𝜏ଶ = 𝜀ଶ𝑡. 
We also have the following: 𝜕𝑢𝜕𝑡 = 𝜕𝑢଴𝜕𝜏଴ + 𝜀 ൬𝜕𝑢ଵ𝜕𝜏଴ + 𝜕𝑢଴𝜕𝜏ଵ൰ + 𝜀ଶ ൬𝜕𝑢ଶ𝜕𝜏଴ + 𝜕𝑢ଵ𝜕𝜏ଵ + 𝜕𝑢଴𝜕𝜏ଶ൰ + ⋯ (8) 

and 
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𝜕ଶ𝑢𝜕𝑡ଶ = 𝜕ଶ𝑢଴𝜕𝜏଴ଶ + 𝜀 ቆ𝜕ଶ𝑢ଵ𝜕𝜏଴ଶ + 2 𝜕ଶ𝑢଴𝜕𝜏ଵ𝜕𝜏଴ቇ + 𝜀ଶ ቆ𝜕ଶ𝑢ଶ𝜕𝜏଴ଶ + 2 𝜕ଶ𝑢ଵ𝜕𝜏ଵ𝜕𝜏଴ + 2 𝜕ଶ𝑢଴𝜕𝜏ଶ𝜕𝜏଴ + 𝜕ଶ𝑢଴𝜕𝜏ଵଶ ቇ + ⋯ (9) 

Similar expressions can be obtained for the other displacements, 𝑣 and 𝑤. 
We illustrate below the expansion to first order of the nonlinear terms in Equation (6a): ሺ𝑣 − 𝑢ሻଶ=ሺ𝑣଴ − 𝑢଴ሻଶ + 𝜀ሾሺ𝑣଴ − 𝑢଴ሻሺ𝑣ଵ − 𝑢ଵሻ + ሺ𝑣ଵ − 𝑢ଵሻሺ𝑣଴ − 𝑢଴ሻሿ + ⋯ (10) 

Inserting Expressions (7)–(10) and their equivalent forms for the other displacements into 
Equations (6a)–(6c) leads to one equation to zeroth order in the perturbation, 𝜀, one equation to first 
order in 𝜀 and equations for subsequent higher orders. Here, we limit ourselves to the zeroth and 
first-order equations in the perturbation. To zeroth order, we obtain the following: 𝜕ଶ𝑢଴𝜕𝜏଴ଶ − 𝛽ଶ 𝜕ଶ𝑢଴𝜕𝑥ଶ − 𝛼ଶሺ𝑣଴ − 𝑢଴ሻ + 𝜂́ 𝜕𝑢଴𝜕𝜏଴ = 𝐹଴௨𝑒௜ఠఛబ𝛿௫ୀ଴, (11a) 

𝜕ଶ𝑣଴𝜕𝜏଴ଶ − 𝛽ଶ 𝜕ଶ𝑣଴𝜕𝑥ଶ − 𝛼ଶሺ𝑢଴ − 𝑣଴ሻ − 𝛼ଶሺ𝑤଴ − 𝑣଴ሻ + 𝜂́ 𝜕𝑣𝜕𝜏଴ = 𝐹଴௩𝑒௜ఠఛబ𝛿௫ୀ଴, (11b) 

𝜕ଶ𝑤଴𝜕𝜏଴ଶ − 𝛽ଶ 𝜕ଶ𝑤଴𝜕𝑥ଶ − 𝛼ଶሺ𝑣଴ − 𝑤଴ሻ + 𝜂́ 𝜕𝑤଴𝜕𝜏଴ = 𝐹଴௪𝑒௜ఠఛబ𝛿௫ୀ଴, (11c) 

This is essentially, Equations (3a)–(3c) with already known solutions. 
Regrouping all terms multiplied by 𝜀, we obtain the first-order equations: 𝜕ଶ𝑢ଵ𝜕𝜏଴ଶ + 2 𝜕ଶ𝑢଴𝜕𝜏ଵ𝜕𝜏଴ − 𝛽ଶ 𝜕ଶ𝑢ଵ𝜕𝑥ଶ − 𝛼ଶሺ𝑣ଵ − 𝑢ଵሻ + 𝜂́ ൬𝜕𝑢ଵ𝜕𝜏଴ + 𝜕𝑢଴𝜕𝜏ଵ൰ = −ሺ𝑣଴ − 𝑢଴ሻଶ, (12a) 

𝜕ଶ𝑣ଵ𝜕𝜏଴ଶ + 2 𝜕ଶ𝑣଴𝜕𝜏ଵ𝜕𝜏଴ − 𝛽ଶ 𝜕ଶ𝑣ଵ𝜕𝑥ଶ − 𝛼ଶሺ𝑢ଵ − 𝑣ଵሻ − 𝛼ଶሺ𝑤ଵ − 𝑣ଵሻ + 𝜂́ ൬𝜕𝑣ଵ𝜕𝜏଴ + 𝜕𝑣଴𝜕𝜏ଵ൰= −ሺ𝑢଴ − 𝑣଴ሻଶ − ሺ𝑤଴ − 𝑣଴ሻଶ, (12b) 

𝜕ଶ𝑤ଵ𝜕𝜏଴ଶ + 2 𝜕ଶ𝑤଴𝜕𝜏ଵ𝜕𝜏଴ − 𝛽ଶ 𝜕ଶ𝑤ଵ𝜕𝑥ଶ − 𝛼ଶሺ𝑣ଵ − 𝑤ଵሻ + 𝜂́ ൬𝜕𝑤ଵ𝜕𝜏଴ + 𝜕𝑤଴𝜕𝜏ଵ ൰ = −ሺ𝑣଴ − 𝑤଴ሻଶ, (12c) 

We note that while the external force 𝐹⃗ drives the zeroth-order equation, only the zeroth-order 
solutions drive the first-order equations. Note that for the purpose of this investigation, we do not 
need to expand the equations of motion to second order in perturbation. Expansion to that order 
would provide, in addition to obtaining the second-order solutions, corrections to the zeroth-order 
solutions. The solutions of Equations (12a)–(12c) are sums of the solutions of the homogeneous 
equations (i.e., without the terms on the right-hand side of the equals sign) and particular solutions 
(i.e., with the right-hand-side terms). In order to eliminate secular terms in the homogeneous 
solutions, we impose to 𝑢଴, 𝑣଴, 𝑤଴, not to be functions of 𝜏ଵ. In that case, the derivatives డమడఛభడఛబ and డడఛభ in Equations (12a)–(12c) are effectively zero. 

We use Equation (5) to write the solution to the zeroth-order equations: 

ቌ𝑢଴ሺ𝑥, 𝜏଴ሻ𝑣଴ሺ𝑥, 𝜏଴ሻ𝑤଴ሺ𝑥, 𝜏଴ሻቍ = ൛ൣ𝐴ଶ𝑒௜௞మ௫ + 𝐴ଶᇱ 𝑒௜௞మᇲ௫൧𝑒ଶ + ൣ𝐴ଷ𝑒௜௞య௫ + 𝐴ଷᇱ 𝑒௜௞యᇲ௫൧𝑒ଷൟ𝑒௜ఠఛబ (13) 

For the sake of illustration, we derive the zeroth-order driving term in Equation (11a), namely: 
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ሺ𝑣଴ − 𝑢଴ሻଶ = ൣ𝐴ଶ𝑒௜௞మ௫ + 𝐴ଶᇱ 𝑒௜௞మᇲ௫൧ଶሺ𝑒ଶ௩ − 𝑒ଶ௨ሻଶ𝑒௜ଶఠఛబ + ൣ𝐴ଷ𝑒௜௞య௫ + 𝐴ଷᇱ 𝑒௜௞యᇲ௫൧ଶሺ𝑒ଷ௩ − 𝑒ଷ௨ሻଶ𝑒௜ଶఠఛబ+ 2ൣ𝐴ଶ𝐴ଷ𝑒௜௞మ௫𝑒௜௞య௫ + 𝐴ଶ𝐴ଷᇱ 𝑒௜௞మ௫𝑒௜௞యᇲ௫ + 𝐴ଶᇱ 𝐴ଷ𝑒௜௞మᇲ௫𝑒௜௞య௫+ 𝐴ଶᇱ 𝐴ଷᇱ 𝑒௜௞మᇲ௫𝑒௜௞యᇲ௫൧𝑒௜ଶఠఛబሺ𝑒ଶ௩ − 𝑒ଶ௨ሻሺ𝑒ଷ௩ − 𝑒ଷ௨ሻ (14) 

The first term and second term lead to self-interaction between the two states of the same 
subsystems. The third term containing cross-terms between states of different subsystems (i.e., 
different OAM) enables us to explore the tensor product Hilbert space of the Hilbert spaces of the 
subsystems. Let us consider the two-dimensional Hilbert space of the subsystem 2, 𝐻ଶ, with basis 𝑒௜௞మ௫ and 𝑒௜௞మᇲ௫ and the two-dimensional Hilbert space of subsystem 3, 𝐻ଷ, with basis 𝑒௜௞య௫ and 𝑒௜௞యᇲ௫ . The tensor product space, 𝐻ଶଷ = 𝐻ଶ ⊗𝐻ଷ has dimension 2ଶ with the basis 𝜑ଵ = 𝑒௜(௞మା௞య)௫, 𝜑ଶ = 𝑒௜(௞మା௞యᇲ )௫ ,𝜑ଷ = 𝑒௜(௞మᇲା௞య)௫ , 𝜑ସ = 𝑒௜൫௞మᇲା௞యᇲ ൯௫ . It is these cross-terms which enable us to use 
nonlinearity to explore the tensor product space of the bipartite elastic system. We will now focus on 
the cross-terms as driving terms for the first-order equation. After deriving expressions for the other 
zeroth order cross-terms of, (𝑢଴ − 𝑣଴)ଶ , (𝑤଴ − 𝑣଴)ଶ  and (𝑣଴ − 𝑤଴)ଶ  and inserting into Equations 
(12a,b,c), we seek the cross-terms contributions to the particular solutions of the first-order equations 
in the form: 𝑢ଵ = (𝑎௨𝜑ଵ + 𝑏௨𝜑ଶ + 𝑐௨𝜑ଷ + 𝑑௨𝜑ସ)𝑒௜ଶఠఛబ (15a) 

𝑣ଵ = (𝑎௩𝜑ଵ + 𝑏௩𝜑ଶ + 𝑐௩𝜑ଷ + 𝑑௩𝜑ସ)𝑒௜ଶఠఛబ (15b) 

𝑤ଵ = (𝑎௪𝜑ଵ + 𝑏௪𝜑ଶ + 𝑐௪𝜑ଷ + 𝑑௪𝜑ସ)𝑒௜ଶఠఛబ (15c) 

We seek expressions for the 12 coefficients 𝑎௨, 𝑏௨, …,𝑐௪, and 𝑑௪. Using the definition of the 
OAM eigen vectors, after extensive algebraic manipulations, the contribution of zeroth-order cross-
terms to the first-order particular solutions becomes the following: ൭𝑢ଵ𝑣ଵ𝑤ଵ൱ = √3൭ 10−1൱ ቈ𝐴ଶ𝐴ଷ𝐹ଵ 𝜑ଵ + 𝐴ଶ𝐴ଷᇱ𝐹ଶ 𝜑ଶ + 𝐴ଶᇱ 𝐴ଷ𝐹ଷ 𝜑ଷ + 𝐴ଶᇱ 𝐴ଷᇱ𝐹ସ 𝜑ସ቉ 𝑒௜ଶఠఛబ (16) 

where 𝐹ଵ = −4𝜔ଶ + 𝛽ଶ(𝑘2 + 𝑘3)ଶ + 𝛼ଶ + 𝑖2𝜂́𝜔, (17a) 

𝐹ଶ = −4𝜔ଶ + 𝛽ଶ(𝑘2 + 𝑘3′ )ଶ + 𝛼ଶ + 𝑖2𝜂́𝜔, (17b) 

𝐹ଷ = −4𝜔ଶ + 𝛽ଶ(𝑘2′ + 𝑘3)ଶ + 𝛼ଶ + 𝑖2𝜂́𝜔, (17c) 

𝐹ସ = −4𝜔ଶ + 𝛽ଶ(𝑘ଶᇱ + 𝑘ଷᇱ )ଶ + 𝛼ଶ + 𝑖2𝜂̅𝜔.         (17d) 

It is worth noting that the 𝐹ூ, I = 1, 2, 3, 4 are complex quantities due to the dissipation. The 
complex nature of these amplitudes completes the analogy between superpositions of elastic waves 
and superposition of states of a two-partite two-level quantum system. 

Equation (16) represents a state of the nonlinear system in the tensor-product Hilbert space 𝐻ଶଷ. 
This state is said to be separable if it can be written as a tensor product of individual states of the two 
subsystems. This condition is satisfied if we can find four complex numbers 𝜌ଶ, 𝜌ଶᇱ , 𝜌ଷ, 𝜌ଷᇱ  such that  
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ቈ𝐴ଶ𝐴ଷ𝐹ଵ 𝜑ଵ + 𝐴ଶ𝐴ଷᇱ𝐹ଶ 𝜑ଶ + 𝐴ଶᇱ 𝐴ଷ𝐹ଷ 𝜑ଷ + 𝐴ଶᇱ 𝐴ଷᇱ𝐹ସ 𝜑ସ቉ 𝑒௜ଶఠఛబ= ቈ𝐴ଶ𝜌ଶ 𝑒௜௞మ௫ + 𝐴ଶᇱ𝜌ଶᇱ 𝑒௜௞మᇲ௫቉ 𝑒௜ఠఛబ ቈ𝐴ଷ𝜌ଷ 𝑒௜௞య௫ + 𝐴ଷᇱ𝜌ଷᇱ 𝑒௜௞యᇲ௫቉ 𝑒௜ఠఛబ                                           (18) 

This condition reduced to the factorization of the 𝐹ூ’s in the form 𝐹ଵ = 𝜌ଶ𝜌ଷ 𝐹ଶ = 𝜌ଶ𝜌ଷᇱ  𝐹ଷ = 𝜌ଶᇱ 𝜌ଷ 𝐹ସ = 𝜌ଶᇱ 𝜌ଷᇱ  
If we define the complex numbers 𝜌ଶ = 𝑋ଶ + 𝑖𝑌ଶ, 𝜌ଷ = 𝑋ଷ + 𝑖𝑌ଷ and 𝜌ଷᇱ = 𝑋ଷᇱ + 𝑖𝑌ଷᇱ, the first two 

conditions for factorization imply for the imaginary part of 𝐹ଵ and 𝐹ଶ that 2𝜂́𝜔 = 𝑋ଶ𝑌ଷ + 𝑌ଶ𝑋ଷ =𝑋ଶ𝑌ଷᇱ + 𝑌ଶ𝑋ଷᇱ . This first equation can only be satisfied if 𝜌ଷᇱ = 𝜌ଷ. Furthermore, the real parts of 𝐹ଵ and 𝐹ଶ take the form −4𝜔ଶ + 𝛽ଶ(𝑘ଶ + 𝑘ଷ)ଶ + 𝛼ଶ = 𝑋ଶ𝑋ଷ − 𝑌ଶ𝑌ଷ and −4𝜔ଶ + 𝛽ଶ(𝑘ଶ + 𝑘ଷᇱ )ଶ + 𝛼ଶ = 𝑋ଶ𝑋ଷᇱ −𝑌ଶ𝑌ଷᇱ. In that case, the real parts of 𝐹ଵ and 𝐹ଶ need to be the same, that is, one needs to impose the 
impossible condition 𝑘ଷ = 𝑘ଷᇱ . We, therefore, have proven that the particular solutions of the first-
order equation resulting from the nonlinearity (i.e., cross zeroth-order driving terms) given by 
Equation (16) which resides in the tensor-product Hilbert space 𝐻ଶଷ = 𝐻ଶ ⊗𝐻ଷis not separable, i.e., 
it is not factorizable into the product of a solution supported by the Hilbert space 𝐻ଶ and a solution 
supported by 𝐻ଷ. 

These nonseparable states are defined in the two-partite Hilbert space 𝐻ଶଷ , for which the 
dimension 2ଶ is exponentially complex. Accessibility to larger multipartite Hilbert spaces would 
require elastic systems composed of 𝑁  mass-spring chains with nonlinear coupling scaling as a 
power of 𝑁. Provided that each one of the 𝑁 OAM bands can be treated as a two-level subsystem, 
the multipartite nonlinear system would admit elastic states to first order that span the exponentially 
complex Hilbert space of dimension 2ே. This approach can be generalized to subsystems with more 
than two levels. Indeed, the external harmonic driver may excite more than two discrete states along 
a given OAM band. In that case, denoting by B the number of such plane wave states, i.e., the 
dimension of the base for the driven elastic states, and by E the exponent of the nonlinear coupling, 
the first-order nonlinear states will span a product space of dimension 𝐵ா. In the event that 𝐸 < 𝑁, 
one may not achieve complete exponential complexity but superlinear complexity 

3. Conclusions 

We have used multiple-time-scale perturbation theory, to investigate the behavior of an 
externally driven elastic system composed of three coupled mass-spring chains. The chains are 
coupled via nonlinear springs whose force depends quadratically on the relative displacement of 
adjacent chains. The quadratic nonlinear forces in Equations (6a)–(6c) provide a path toward realizing 
nonseparable, or in other words, “classically entangled” elastic states. The possibility of realizing 
physically with elastic waves nonseparable superpositions of states with superlinear complexity if 
not exponential complexity opens new doors in the area of elastic-wave-supported information 
processing. “Classically entangled” elastic states are local. However, nonlocality is not a necessary 
condition for applying the concept of nonseparability to processing information. Nonseparable 
superpositions of elastic waves offer the advantage of stability over entangled states of true quantum 
systems. Nonseparable superpositions of elastic waves are robust against decoherence and will not 
require operating at cryogenic temperatures to maintain the delicate balance of the superpositions. 
Nonseparable superpositions of elastic waves do not suffer from the phenomenon of wave function 
collapse upon measurement. A coherent superposition of quantum states collapses into a pure state 
upon measurement. Multiple statistical measurements are, therefore, necessary to obtain information 
on the original superposition. From a physical point of view, following work reported in [10], the 
realization of the coupled systems described here theoretically could be achieved by using finite-
length cylindrical elastic rods as the waveguides and employ a nonlinear elastic material as the 
coupling agent between the rods. Future research would involve experimental measurement of the 
exponentially complex nonseparable superpositions of elastic waves in these nonlinear arrays of 
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coupled waveguides. The OAM states could be directly excited using transducer technologies while 
the spatial (wave number) characteristics would be subsequently measurable using noncontact 
methods such as scanning laser Doppler vibrometry. This future work would demonstrate the 
scalability of the superpositions introduced in this paper. 
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