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Abstract: We experimentally and numerically investigated elastic waves in parallel arrays of 
elastically coupled one-dimensional acoustic waveguides composed of aluminum rods coupled 
along their length with epoxy. The elastic waves in each waveguide take the form of superpositions 
of states in the space of direction of propagation. The direction of propagation degrees of freedom 
is analogous to the polarization of a quantum spin; hence, these elastic waves behave as 
pseudospins. The amplitude in the different rods of a coupled array of waveguides (i.e., the spatial 
mode of the waveguide array) refer to the spatial degrees of freedom. The elastic waves in a parallel 
array of coupled waveguides are subsequently represented as tensor products of the elastic 
pseudospin and spatial degrees of freedom. We demonstrate the existence of elastic waves that are 
nonseparable linear combinations of tensor products states of pseudospin/ spatial degrees of 
freedom. These elastic waves are analogous to the so-called Bell states of quantum mechanics. The 
amplitude coefficients of the nonseparable linear combination of states are complex due to the 
Lorentzian character of the elastic resonances associated with these waves. By tuning through the 
amplitudes, we are able to navigate both experimentally and numerically a portion of the Bell state 
Hilbert space. 

Keywords: elastic pseudospin; nonseparability; superpositions of states; elastic waves; acoustic 
waveguides 

 

1. Introduction 

The phenomenon of quantum entanglement [1] has generated great scientific interest and value 
right from the beginning of quantum mechanics. The paradox suggested by Einstein, Podolsky, and 
Rosen was codified into a verifiable experimental inequality by Bell [2]. Quantum entanglement can 
be considered as combining two characteristics of quantum system, namely nonlocality and 
nonseparability. The realization of nonlocality is uniquely the province of quantum phenomena; 
however, recently, classical systems able to capture the characteristic of nonseparability [3–7] 
between different degrees of freedom of the same physical manifestation. In particular, in the field of 
optics, degrees of freedom of photon states that span different Hilbert spaces can be made to interact 
in a way that leads to local correlations [5,7–17]. In contrast, little attention has been paid to the 
nonseparability of sound waves; yet, remarkable new behaviors of sound, analogous to quantum 
physics, such as the notions of elastic pseudospin [18–27] and Zak/Berry phase [28–36], are emerging.  

The concept of pseudospin, when one exists, is useful for understanding many fundamental 
quantum-like phenomena, such as the anomalous quantum Hall effect [21]. In 1932, Heisenberg 
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originally introduced the concept of pseudospin when he described the structure of the atomic 
nucleus as composed of neutrons and protons and modeled as two states of the same particle [37]; 
hence, a pseudospin is a coherent superposition of states. The pseudospin was traditionally 
considered as an unmeasurable quantity. Recently, however, it has been suggested that pseudospin 
is a real angular momentum that might manifest itself as an observable quantity. Unlike the quantum 
spin, which is an intrinsic property of a particle, an elastic pseudospin is a property induced by the 
material that supports the elastic wave; hence, the state of superposition of the pseudospin is 
observable and measurable without wave function collapse. The concept of pseudospin has recently 
been introduced in various topological systems [38]. Building on the similar principles of photonic 
[39,40] and plasmonic [41] systems, we proposed theoretically the concept of a one-dimensional (1D) 
elastic pseudospin. We have shown an analogy between the propagation of elastic waves on an elastic 
pseudospin (composed of elastically coupled 1D waveguides) and quantum phenomena [18,23–26]. 
More specifically, the projection on the direction of propagation of elastic waves in this pseudospin 
is isomorphic to the spin of a quantum particle. The pseudospin states of elastic waves in these 
systems can be described via a Dirac-like equation and possess spinor amplitudes. In addition, for an 
elastic pseudospin that is constituted of parallel arrays of elastically coupled 1D waveguides, the 
amplitude also spans an 𝑁𝑁 dimensional Hilbert subspace, where 𝑁𝑁 is the number of waveguides, and 
represents spatial mode degrees of freedom across the array of waveguides [42–45]. These two 
degrees of freedom can be used to create classical nonseparability, i.e., the nonseparable 
superposition of elastic states in the form of linear combinations of tensor products of spatial modes 
and spinor amplitudes, so-called elastic Bell states. Ref. [44] reported the experimental preparation, 
measurement and tunability of elastic Bell states in a single system composed of three coupled 
waveguides. The current study expands significantly that report by analyzing elastic waves in N = 1, 
2 and 3 waveguide systems. Particular attention is paid to the pseudospin character of elastic waves 
(via their dispersion character) in the two and three coupled waveguides systems. Furthermore, we 
report here an extensive theoretical and numerical analysis of pseudospin and nonseparable states in 
coupled waveguides to shed light on the experimental findings. For this, we have developed a 
numerical model of externally driven elastically coupled waveguides including dissipation. This 
model is fitted to some of our experimental data which it reproduces with good fidelity. This model 
is then used to explore the different ways of manipulating the Bell states complex amplitudes. This 
model shows that the driving frequency, the relative driving amplitudes and phases applied to the 
waveguides, are essential parameters for controlling the elastic Bell states. Finally, the model 
highlights the importance of the resonant frequencies of the bands associated with spatial modes and 
the damping coefficient of the elastic system in achieving Bell states with complex amplitudes. 

Let us consider an elastic system composed of 𝑁𝑁 identical 1D waveguides coupled elastically 
along their length and arranged in parallel array fashion (cf. Figure 1). In the continuum limit, the 
propagation of longitudinal modes is characterized by [43]: 

{𝐻𝐻. 𝐼𝐼𝑁𝑁×𝑁𝑁 + 𝛼𝛼2𝑀𝑀𝑁𝑁×𝑁𝑁}𝑢𝑢𝑁𝑁×1 = 0 (1) 

where the dynamical differential operator, 

𝐻𝐻 =
𝜕𝜕2

𝜕𝜕𝑡𝑡2
− 𝛽𝛽2

𝜕𝜕2

𝜕𝜕𝑥𝑥2
 (2) 

models the propagation of elastic waves in the direction 𝑥𝑥 along the waveguides. The parameter 
𝛽𝛽 is proportional to the speed of sound in the waveguides. The parameter 𝛼𝛼 measures the strength of 
the elastic coupling between the waveguides and we assume that 𝛼𝛼 is the same for all coupled 
waveguides. 𝑢𝑢𝑁𝑁×1 is a vector whose components, 𝑢𝑢𝑖𝑖 , 𝑖𝑖 = 1,2, … ,𝑁𝑁, represent the displacement of the 
ith waveguide? 𝐼𝐼𝑁𝑁×𝑁𝑁 is the 𝑁𝑁 × 𝑁𝑁 identity matrix and the coupling matrix operator 𝑀𝑀𝑁𝑁×𝑁𝑁 describes 
the elastic coupling between waveguides? 

Dirac factorizing the Klein-Gordon (KG) Equation (1) leads to: 
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�𝑈𝑈𝑁𝑁×𝑁𝑁 ⊗ 𝜎𝜎1
𝜕𝜕
𝜕𝜕𝑡𝑡

+ 𝛽𝛽𝑈𝑈𝑁𝑁×𝑁𝑁 ⊗ (−𝑖𝑖𝜎𝜎2)
𝜕𝜕
𝜕𝜕𝑥𝑥

± 𝑖𝑖𝛼𝛼𝑈𝑈2𝑁𝑁×2𝑁𝑁�𝑀𝑀𝑁𝑁×𝑁𝑁 ⊗ 𝜎𝜎1�Ψ2𝑁𝑁×1 = 0 (3) 

The KG equation is used to describe relativistic particles in quantum mechanics. Dirac factorized 
the KG equation and established the theoretical foundation for the positron. The mathematical 
formulation of the Dirac equation naturally reveals the spin of relativistic particles. The factorization 
of the KG Equation (1) into a Dirac-like Equation (3) leads to non-trivial eigen modes that have spinor 
character and therefore non-conventional topology in wave number space [18,25]. Moreover, from 
Equation (3) we see that the equation does not satisfy time-reversal symmetry (𝑡𝑡 → −𝑡𝑡), T-symmetry, 
nor parity symmetry (𝑥𝑥 → −𝑥𝑥), P-symmetry, separately. That is, one does not recover Equation (3) 
when the sign of time and position are changed individually, though, they obey time and parity (PT) 
symmetry when applied simultaneously. 

In Equation (3), 𝑈𝑈𝑁𝑁×𝑁𝑁 and 𝑈𝑈2𝑁𝑁×2𝑁𝑁 are antidiagonal matrices with unit elements, and 

𝜎𝜎1 = �0 1
1 0�  and 𝜎𝜎2 = � 0 𝑖𝑖

−𝑖𝑖 0� (4) 

are two of the Pauli matrices. Ψ2𝑁𝑁×1 is a 2𝑁𝑁-dimensional vector which represents the modes of 
vibration of the 𝑁𝑁 waveguides projected in the two possible directions of propagation (forward and 
backward). �𝑀𝑀𝑁𝑁×𝑁𝑁 is the square root of the coupling matrix. The square root of a matrix is not unique 
since the eigen vectors of �𝑀𝑀𝑁𝑁×𝑁𝑁 are also the eigen vectors of the coupling matrix 𝑀𝑀𝑁𝑁×𝑁𝑁 itself; the 
non-uniqueness of �𝑀𝑀𝑁𝑁×𝑁𝑁 does not introduce difficulties in determining the elastic modes of the 
coupled system in the Dirac representation. We choose the components of the Ψ2𝑁𝑁×1 vector in the 
form of plane waves: 

𝜓𝜓𝐼𝐼 = 𝑎𝑎𝐼𝐼𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 (5) 

with 𝐼𝐼 = 1, … ,2𝑁𝑁; 𝑘𝑘 and 𝜔𝜔 being a wave number and an angular frequency, respectively. The 
amplitude vector (𝑎𝑎2𝑁𝑁×1) can be written as: 

𝑎𝑎2𝑁𝑁×1 = 𝑒𝑒𝑛𝑛,𝑁𝑁×1 ⊗ 𝑠𝑠2×1, (6) 

where 𝑒𝑒𝑛𝑛,𝑁𝑁×1 is the eigen vector of the matrix �𝑀𝑀𝑁𝑁×𝑁𝑁 (i.e., 𝑀𝑀𝑁𝑁×𝑁𝑁) with eigen value 𝜆𝜆𝑛𝑛. The 
operator 𝑀𝑀𝑁𝑁×𝑁𝑁, its eigen values and eigen vectors are representative of the spatial modes across the 
planar array of the waveguides. Inserting this tensor product solution into Equation (3) yields: 

𝑒𝑒𝑛𝑛 ⊗ {([𝜔𝜔𝐼𝐼2×2 − 𝛽𝛽𝑘𝑘𝜎𝜎𝑧𝑧] ± 𝛼𝛼𝜆𝜆𝑛𝑛𝜎𝜎𝑖𝑖)𝑠𝑠2×1} = 0 (7) 

For non-trivial eigen vectors 𝑒𝑒𝑛𝑛, the problem in the space of the directions of propagation reduces 
to finding solutions of 

([𝜔𝜔𝐼𝐼2×2 − 𝛽𝛽𝑘𝑘𝜎𝜎𝑧𝑧] ± 𝛼𝛼𝜆𝜆𝑛𝑛𝜎𝜎𝑖𝑖)𝑠𝑠2×1 = 0 (8) 

In obtaining Equation (7), we have also used the fact that 𝑒𝑒𝑛𝑛 is an eigen vector of 𝐼𝐼𝑁𝑁×𝑁𝑁 with eigen 
value 1 and we note that Equation (8) is the 1D Dirac equation for an elastic system which solutions, 

𝑠𝑠2×1 = �
𝑠𝑠1
𝑠𝑠2� (9) 

have the properties of Dirac spinors [18]. This eigen equation gives the dispersion relation  
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𝜔𝜔𝑛𝑛2 = (𝛽𝛽𝑘𝑘)2 + (𝛼𝛼𝜆𝜆𝑛𝑛)2 (10) 

and the following spinor eigen vectors projected into the space of directions of propagation:  

𝑠𝑠2×1
(𝑛𝑛) (±) = 𝑠𝑠0 �

�𝜔𝜔𝑛𝑛 + 𝛽𝛽𝑘𝑘
±�𝜔𝜔𝑛𝑛 − 𝛽𝛽𝑘𝑘

� (11) 

The upper script in 𝑠𝑠2×1
(𝑛𝑛)  refers to the spinor associated with band “n”. The spinors components 

represent elastic wave amplitude propagating in the forward and backward directions of 
propagation [18]; hence,  

Ψ2𝑁𝑁×1(𝑘𝑘) = �
𝑠𝑠2×1

(𝑛𝑛) (+𝑘𝑘)𝑢𝑢𝑁𝑁×1

𝑠𝑠2×1
(𝑛𝑛) (–𝑘𝑘)𝑢𝑢𝑁𝑁×1

� (12) 

However, due to the finite length of the experimental setup (i.e. the acoustic waveguides) that 
only supports standing wave modes, the components of the spinors has to be converted which 
includes equi-amplitudes superposition of forward and backward components. Nonetheless, the 
wave vector, 𝑘𝑘, is still a good number to characterize the standing wave state in the system. By means 
of laser vibrometry, one can experimentally map the elastic standing waves states and their 
corresponding pseudospin states (as is done in [26,46]). 

Since Equation (3) is linear, any superposition of modes is also a solution. Thus, it is possible to 
create a nonseparable superposition of elastic states in an array of coupled waveguides [42–44]. It is 
true that at steady states, the displacement field, 𝑢𝑢𝑁𝑁×1, takes the form of a linear combination of 
frequency modes (see Supplementary Materials and [45]). However, it is possible to choose a 
particular isofrequency driver, which will minimize the amplitude of the 𝑒𝑒1,𝑁𝑁×1 spatial mode 
compared to that of 𝑒𝑒2,𝑁𝑁×1 and 𝑒𝑒3,𝑁𝑁×1 (𝑒𝑒2,𝑁𝑁×1 and 𝑒𝑒3,𝑁𝑁×1 correspond to two pseudospin bands with 
non-zero spatial eigen values [42–44]). For instance, exploiting the orthogonality of 𝑒𝑒1,𝑁𝑁×1, 𝑒𝑒2,𝑁𝑁×1 and 
𝑒𝑒3,𝑁𝑁×1, one may employ a driving force such that it will be a linear combination of 𝑒𝑒2,𝑁𝑁×1 and 𝑒𝑒3,𝑁𝑁×1. 
Finally, at a particular isofrequency state, it is also possible to limit the excitation to a single plane 
wave state in each band, i.e., 𝑘𝑘2 for 𝑒𝑒2,𝑁𝑁×1 spatial mode band and 𝑘𝑘3 for 𝑒𝑒3,𝑁𝑁×1 spatial mode band (as 
will be shown later) [42–44]. Nonetheless, we could choose to excite two plane wave states in each 
spatial band (as is done in [45]), and the total dimensionality of Hilbert space can be, in principle, 
increased by considering multi-level systems [46]. Hence, by exciting an isofrequency state 𝜔𝜔 = 𝜔𝜔𝑛𝑛 =
𝜔𝜔𝑛𝑛′  and by limiting a single plane wave state in each band (𝑘𝑘𝑛𝑛 and 𝑘𝑘𝑛𝑛′; 𝑘𝑘𝑛𝑛 ≠  𝑘𝑘𝑛𝑛′), we create acoustic 
nonseparable states as: 

𝑢𝑢𝑁𝑁×1 = �𝐴𝐴𝑒𝑒𝑛𝑛,𝑁𝑁×1𝑒𝑒𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖 + 𝐵𝐵𝑒𝑒𝑛𝑛′,𝑁𝑁×1𝑒𝑒
𝑖𝑖𝑖𝑖𝑛𝑛′𝑖𝑖�𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 (13) 

The quantities 𝐴𝐴 and 𝐵𝐵 will be shown later to be controllable complex amplitudes. Therefore, the 
objective of this paper is to demonstrate experimentally and numerically the realization of 
nonseparable superposition of isofrequency states in an array of elastically coupled waveguides. We 
need to have at least three coupled rods so that there are two non-zero spatial mode eigen values [42–
44]. Hence, in the current study, we fabricated acoustic waveguides composed of up to three rods, 
i.e., 𝑁𝑁 = 1, 2, and 3, and carried out physical and numerical experiment demonstrating the existence 
of (a) elastic modes taking the form of tensor products of spatial modes and spinor degrees of 
freedom, as well as (b) nonseparable linear combinations of these elastic modes with controllable 
amplitudes. 

2. Materials and Methods 

2.1. Fabrication of the Samples 
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The acoustic waveguides consist of aluminum rods (McMaster-Carr 1615T172: diameter 𝐷𝐷 =
1/2, length 𝐿𝐿 = 0.6096 m, and density 𝜌𝜌 = 2,660 kg/m3). The rods are coupled along their length with 
epoxy with a lateral gap of 2mm and filling length  𝐿𝐿𝑒𝑒 = 0.5786 m (50176 KwikWeld Syringe). We 
consider two- and three-rod arrays (see Figure 1). 

 
Figure 1. Schematic of the two- and three-rods experimental systems. The rods are composed of 
aluminum and are elastically coupled with epoxy. 

2.2. Experimental Fixtures and Procedures 

The experimental fixture is shown in Figure 2. The coupled rod arrays are suspended using thin 
threads to two supporting stands. Transducers (Olympus V133-RM Fingertip case style with ¼ inch 
element diameter) are used to drive rods in the coupled arrays at one end and to detect at the other 
end. The driving transducers are connected to arbitrary function generators (APG) (BK Precision 
4055B) thorough amplifiers (PD200 60W Voltage Amplifier). The detecting transducers are connected 
to oscilloscopes (Tektronix MDO3024) to register signals transmitted to the other end of the rods. To 
drive the rods, we use sine waves with a scan in frequency between 1 kHz and 100 kHz in steps of 50 
Hz. The driving and response signals, averaged over 256 time series, are collected in the oscilloscope. 
The APG and oscilloscope are connected to a computer, which controls the experiment and performs 
data processing by using an in-house developed and implemented algorithm in MATLAB R2019a. In 
the experiment, optimal resolution of the elastic wave modes is achieved by wrapping the 
transducer/rod assembly with bands (Alliance Rubber 08997 SuperSize Bands). Honey is used as 
coupling between the rods and the transducers. Rubber bands also ensures a constant pressure on 
the transducers. The phase of the driving transducers can be controlled to excite specific spatial eigen 
modes. 

  

Rod 1 

Rod 2 

Rod 3 

Epoxy coupling medium 
  

Rod 1 

Rod 2 
Epoxy coupling medium 

Lateral 
gap 
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Figure 2. Experimental setup for the nearly free-standing array of coupled waveguides is suspended 
by threads to two supporting stands. To drive the coupled waveguides three transducers are used at 
one end, and to detect at the other end three more transducers are used. A constant pressure is 
maintained on the transducers with the use of rubber bands. Honey is used as coupling between the 
rods and the transducers. 

3. Experimental Results 

3.1. Single Rod Acoustic Waveguide, 𝑁𝑁 = 1 

Prior to investigating arrays of elastically coupled rods, we establish the characteristics of a 
single (𝑁𝑁 = 1) free standing aluminum rod. Figure 3 reports the measured experimental transmission 
spectrum. Figure 3 depicts resonances of the standing wave modes of the finite length waveguide. 
The peak positions of Figure 3 define the resonance frequencies (i.e., the modes) of the system. The 
wavelength of the standing waves can be calculated by 𝜆𝜆 = 2𝐿𝐿/𝑛𝑛; 𝑛𝑛 is an integer corresponding to the 
number of nodes of the standing waves (this is discussed in the numerical study of section 3). A value 
of 𝑛𝑛 is assigned to each standing wave mode and hence the wave number becomes 𝑘𝑘 = 1/𝜆𝜆. Figure 
3b shows the resultant dispersion relation. The speed of sound (𝛽𝛽) of the nearly 1D acoustic 
waveguide is obtained as 4571 m/sec (by fitting, see Figure 3b). In Figure 3, we also observe that for 
frequencies above 60 kHz the resonant modes begin to deviate from the linear dispersion relation 
indicating that for short wavelengths the rod with finite cross section does not behave like a 1D elastic 
waveguide. 

Driving 
transducers 

Recording 
transducers 

Aluminum 
rods 

Rubber bands 

Epoxy coupling medium 

Oscilloscope Amplifiers 
Function 
generator 
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Figure 3. (a) Transmission spectrum of the single rod waveguide (𝑁𝑁 = 1). The inset in (a) identifies 
the first two resonances at frequency <10 kHz. The transmission amplitude is in arbitrary units. (b) 
Band structure determined and calculated from (a). The asterisks in (b) are obtained from the 
resonances of (a) and the solid line associated with the asterisks is a fit to resonances with frequency 
less than 60 kHz. 

3.2. Coupled Two-Rod Waveguides, 𝑁𝑁 = 2 

In the case of two coupled rod waveguides, the coupling matrix (𝑀𝑀2×2) of Equation (1),(3) takes 
the form: 𝑀𝑀2×2 = (1,−1;−1,1). Therefore, the two spatial mode eigen vectors corresponding to the 
eigen values 𝜆𝜆1 = 0, and 𝜆𝜆2 = 2, are: 𝑒𝑒1 = 1

√2
�1

1� , 𝑒𝑒2 = 1
√2
� 1
−1�, and the associated dispersion relations 

are 𝜔𝜔𝑖𝑖
2 = (𝛽𝛽𝑘𝑘)2 and 𝜔𝜔𝑖𝑖

2 = (𝛽𝛽𝑘𝑘)2 + 2(𝛼𝛼)2. Here, we drive the coupled waveguides with amplitudes 
corresponding to the symmetric eigen vector 𝑒𝑒1 and anti-symmetric eigen vector 𝑒𝑒2. The transmission 
spectra of the two spatial eigen modes are shown in Figure 4a. It is clear from the figure that the 
transmission spectra depends on the stimulation types. The 𝑒𝑒2 anti-symmetric mode shows negligible 
transmission below around 20 kHz. Above 20 kHz, the transmission spectrum shows well defined 
resonances with non-uniform frequency spacing. The resonances appear to be spaced more closely 
at low frequency. Therefore, the spectra show a passing band with well-defined resonances. In 
addition, in this band the experimental conditions enable us to resolve resonances with frequencies 
very close to the cutoff frequency, which helps us to calculate the dispersion relation. Figure 4b shows 
the resultant dispersion relation for both bands. For the symmetric band, we use the technique 
discussed above and use 𝑘𝑘 = 1/𝜆𝜆 = 𝑛𝑛/2𝐿𝐿𝑒𝑒. We find the speed of sound 𝛽𝛽 = 4502 m/sec. To calculate 
the dispersion relation of the 𝑒𝑒2 band, i.e., 𝜔𝜔𝑖𝑖

2 = (𝛽𝛽𝑘𝑘)2 + 2(𝛼𝛼)2, we need (𝑘𝑘,𝜔𝜔𝑖𝑖) i.e. the wave number 
and the associated resonant frequency. Similarly, to the case of the symmetric band, the wave 
numbers for the anti-symmetric band are multiples of 2𝐿𝐿𝑒𝑒 (since finite length waveguides only 
support standing waves). Therefore, we label each resonance with the lowest resolvable frequency as 
being 𝑚𝑚 = 1 and rewrite the dispersion relation as 𝜔𝜔𝑖𝑖,𝑚𝑚

2 = 𝛽𝛽2∆𝑘𝑘2(𝑚𝑚0 + 𝑚𝑚)2 + 2(𝛼𝛼)2. The lsqcurvefit 
function of MATLAB is used to determine 𝛼𝛼 and 𝑚𝑚0 from the frequency resonances of Figure 4a, and 
we obtain 𝛼𝛼 = 14.31 kHz and 𝑚𝑚0 = 1. The cutoff frequency of �√2𝛼𝛼 =� 20.24 kHz is consistent with 
the measured transmission spectra of Figure 4a. 
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Figure 4. (a) Transmission spectrum of the two coupled rod system (𝑁𝑁 = 2) for the two spatial eigen 
modes, namely the symmetric (1 1) mode and anti-symmetric (1 −1) mode. The inset in (a) identifies 
the first two resonances of the symmetric mode and negligible transmission of the anti-symmetric 
mode at frequency <10 kHz, identifying the first two resonances. The transmission amplitude is in 
arbitrary units. (b) Band structure determined and calculated from (a). The asterisks in (b) are 
obtained from the resonances of mode: 1 1 of (a) and the solid line associated with the asterisks is a fit 
to the low frequency resonances. The open circles in (b) correspond to resonant modes associated 
with the anti-symmetric spatial eigen mode and the solid line is a fit to these identifiable resonances 
using the dispersion relation with a cutoff frequency of 20.24 kHz. 

3.3. Coupled Three-Rod Waveguides, 𝑁𝑁 = 3 

For 𝑁𝑁 = 3, 𝑀𝑀3×3 = �
1 −1 0
−1 2 −1
0 −1 1

� and the three spatial eigen vectors corresponding to the 

eigen values 𝜆𝜆1 = 0, 𝜆𝜆1 = 1, and 𝜆𝜆3 = 3, are: 𝑒𝑒1 = 1
√3
�

1
1
1
� , 𝑒𝑒2 = 1

√2
�

1
0
−1

� , 𝑒𝑒3 = 1
√6
�

1
−2
1
�. The associated 

dispersion relations are 𝜔𝜔𝑖𝑖
2 = (𝛽𝛽𝑘𝑘)2, 𝜔𝜔𝑖𝑖

2 = (𝛽𝛽𝑘𝑘)2 + (𝛼𝛼)2 and 𝜔𝜔𝑖𝑖
2 = (𝛽𝛽𝑘𝑘)2 + 3(𝛼𝛼)2. The frequency 

spectrum of the three spatial eigen modes are shown in Figure 5a. The spectra shows well-defined 
resonances of the standing waves . The second (𝑒𝑒2) and third (𝑒𝑒3) spatial eigen modes (Mode 1 0 −1: 
blue and Mode 1−–2 1: green of Figure 5a) transmission spectra differ from 𝑒𝑒1 (first) eigen mode 
(Mode 1 1 1: red). 𝑒𝑒2 and 𝑒𝑒3 eigen modes show a significant depression in the transmission amplitude 
below a cutoff frequency and the resonances are spaced more closely near the cutoff. Figure 5b shows 
the resultant dispersion relation determined and calculated from spectra of Figure 5a. The speed of 
sound, 𝛽𝛽 = 4467 m/sec, is extracted from the first eigen vector. By comparing the speed of sound of 
the coupled waveguides to the single waveguide, we see that the speed of sound decreases from 4571 
m/s to 4467 m/s as the number of rods in the waveguides increases from 𝑁𝑁 = 1 to 𝑁𝑁 = 3. This can be 
attributed to the added mass in the coupled waveguides coming from the epoxy coupling medium, 
as well as an effect of the different cross-sectional geometry of the coupled rods compared to the 
single rod. Finally, the lsqcurvefit function of MATLAB is used again to obtain the dispersion relation 
of the second and third bands with cutoff frequencies 14.23 kHz for 𝑒𝑒2 and 24.27 kHz for 𝑒𝑒3. 

The resonances shown in Figure 5 correspond to separable states, i.e., states expressible as tensor 
products of spatial and spinor degrees of freedom. To realize a nonfactorizable superposition of 
elastic states, i.e., an acoustic Bell state that is not separable, we construct the superposition of 
isofrequency states of the three coupled rods system corresponding to the two non-zero spatial eigen 
values: Ψ6×1 = 𝐴𝐴𝑒𝑒2 ⊗ 𝑠𝑠2×1(𝑘𝑘2) 𝑒𝑒𝑖𝑖𝑖𝑖2𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 + 𝐵𝐵𝑒𝑒3 ⊗ 𝑠𝑠2×1(𝑘𝑘3) 𝑒𝑒𝑖𝑖𝑖𝑖3𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 . Here, 𝐴𝐴 and 𝐵𝐵 are the Bell state 
coefficients, which maybe complex, and we have chosen 𝜔𝜔2 = 𝜔𝜔3 = 𝜔𝜔. The wave numbers 𝑘𝑘2 and 𝑘𝑘3 
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are in the 𝑒𝑒2 and 𝑒𝑒3 bands with isofrequency 𝜔𝜔. In this superposition, both the eigen vectors of the 
spatial mode and the spinors are different. This superposition of states cannot be written in the form 
of a tensor product of one spatial eigen vector and one spinor. 

 
Figure 5. (a) Transmission spectrum of the coupled three-rod waveguides (𝑁𝑁 = 3) for the three spatial 
eigen modes of (1 1 1), (1 0 −1), and (1 −2 1). The transmission amplitude is in arbitrary units. (b) Band 
structure determined and calculated from (a). The asterisks in (b) are obtained from the resonances 
of (a), and the solid line associated with the asterisks is a fit to the low frequency resonances. The open 
and solid circles in (b) correspond to resonant modes associated with the 𝑒𝑒2 and 𝑒𝑒3 spatial eigen 
modes. The solid lines are a fit to the identifiable resonances using the dispersion relations with cutoff 
frequencies 14.23 kHz for 𝑒𝑒2 and 24.27 kHz for 𝑒𝑒3. The inset on (a) and the dashed line in the inset of 
(b) focus on a frequency interval showing nearly overlapping (1 0 −1) and (1 −2 1) resonances and a 
trough between two resonances in the (1 1 1) transmission around 33.25 kHz. 

To create such a nonseparable elastic state experimentally, we identify a isofrequency state of 
33.25 kHz (see insets of Figure 5a,b). At this frequency, there is substantial transmission of 𝑒𝑒2 and 𝑒𝑒3 
eigen modes with negligible transmission of 𝑒𝑒1. We drive the system at 33.25 kHz by  

�
𝐹𝐹1sin (𝜔𝜔𝑡𝑡)

𝐹𝐹2sin(𝜔𝜔𝑡𝑡 + 𝜋𝜋)
0

�, (14) 

where 𝐹𝐹1,𝐹𝐹2 are the excitation amplitudes of rod 1 and 2, respectively. We also define 𝑟𝑟 = |𝐹𝐹1/𝐹𝐹2|, 
the excitation amplitude ratio. Figure 6a shows the transmission amplitudes of each rod, and Figure 
6b shows the phase difference, 𝜙𝜙𝑖𝑖𝑖𝑖 ; 𝑖𝑖, 𝑗𝑗 = 1,2,3 and 𝑖𝑖 ≠ 𝑗𝑗, between the transmission of rods as a 
function of  𝑟𝑟. From Figure 6b, we see that by manipulating only one parameter 𝑟𝑟, the excitation 
amplitude ratio, the eigen modes superposition can be experimentally tuned. From Figure 6, we also 
see that, for a particular excitation amplitude ratio 𝑟𝑟 = 0.4356 (dashed line in Figure 6), the 
transmitted amplitudes of rod 1 and 2 are almost equal and for rod 3 is small (close to zero). In 
addition, phase difference between rods 2 and 3 (𝜙𝜙23), as well as 1 and 3 (𝜙𝜙13), are 𝜋𝜋/2 and between 
1 and 2 (𝜙𝜙12) is close to 𝜋𝜋. This relation signifies that though the driving amplitude of rods 1, 2, and 
3 are 𝐹𝐹0(0.4356,−1,0), the transmitted amplitudes are 𝐴𝐴0(1,−1, 𝜖𝜖), where 𝜖𝜖 ≪ 1 and 𝐹𝐹0 and 𝐴𝐴0 are 
constants. To accommodate these conditions using Equation (8), the Bell state coefficients, 𝐴𝐴 and 𝐵𝐵, 
must be complex.  

0 2 4 6 8 10 12

Wave number (m
- 1

)

0

50

Fr
eq

ue
nc

y 
(k

H
z)

0 5 10 15 20 25 30 35 40 45 50 55
Frequency (kHz)

1

2

3

A
m

pl
itu

de
 (a

.u
.)

32 33 34 35
0.2

0.6

Mode: 1 1 1 Mode: 1 0 -1 Mode: 1 -2 1

4 6 8

32

34

36

× 10
3

× 10
- 3(a) 

(b) 



Appl. Sci. 2020, 10, 3202 10 of 19 

We now determine 𝐴𝐴 and 𝐵𝐵, the Bell state (complex) coefficients, for the excitation amplitude 
ratio 𝑟𝑟 = 0.4356. The Bell state is constructed as a superposition of elastic waves, each a product of a 
plane wave part and a spatial mode part: 

𝑢𝑢3×1 = (𝐴𝐴𝑒𝑒2𝑒𝑒𝑖𝑖𝑖𝑖2𝑖𝑖 + 𝐵𝐵𝑒𝑒3𝑒𝑒𝑖𝑖𝑖𝑖3𝑖𝑖)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 . (15) 

For the case of isofrequency state at 𝜔𝜔 = 33.25 kHz, from Figure 5b, we have 𝑘𝑘2 = 2𝜋𝜋
2𝐿𝐿

8 and 𝑘𝑘3 =
2𝜋𝜋
2𝐿𝐿

6 (in the finite waveguide, the wave numbers  are integer multiples of 𝜋𝜋/𝐿𝐿). At that frequency and 
at 𝑥𝑥 = 𝐿𝐿, Equation (15) reduces to: 

𝐴𝐴
√2

�
1
0
−1

� +
𝐵𝐵
√6

�
1
−2
1
� = �

𝐶𝐶1𝑒𝑒𝑖𝑖𝜙𝜙1
𝐶𝐶2𝑒𝑒𝑖𝑖𝜙𝜙2
𝐶𝐶3𝑒𝑒𝑖𝑖𝜙𝜙3

�. (16) 

In Equation (16), 𝐶𝐶𝑖𝑖;  𝑖𝑖 = 1, 2, 3 are the maximum displacement amplitudes of each rod recorded 
at the detecting end of the waveguide, and 𝜙𝜙𝑖𝑖;  𝑖𝑖 = 1, 2, 3 are the corresponding phases. Equation (16) 
can be simplified in terms of the phase differences, 𝜙𝜙𝑖𝑖𝑖𝑖; 𝑖𝑖, 𝑗𝑗 = 1,2,3 and 𝑖𝑖 ≠ 𝑗𝑗, between the transmission 
of each rods as: 

�
𝐶𝐶1𝑒𝑒𝑖𝑖𝜙𝜙12
𝐶𝐶2

𝐶𝐶3𝑒𝑒−𝑖𝑖𝜙𝜙23
�, (17) 

where 𝜙𝜙12 = 𝜙𝜙1 − 𝜙𝜙2, 𝜙𝜙23 = 𝜙𝜙2 − 𝜙𝜙3, and for the sake of simplicity we assume 𝜙𝜙2 = 0. From 
Equation (16), (17) it is clear that if 𝐵𝐵 is a real number (which could be normalized to one), 𝐴𝐴 has be a 
complex . For the specific excitation amplitude ratio, we find, arg(𝐴𝐴) ≈ 7

8
𝜋𝜋, with an estimated 

experimental uncertainty of 1
12
𝜋𝜋. The complex coefficients arise naturally due to the Lorentzian 

character of the resonance modes as will be shown in the numerical modeling of section 3 and a 
theoretical model (see Supplementary Materials). Therefore, the arg  (𝐴𝐴) and, hence, the Bell state 
coefficients 𝐴𝐴 and 𝐵𝐵 depends on the amplitudes (𝐶𝐶𝑖𝑖 ) and phases (𝜙𝜙𝑖𝑖) of each detecting rods, which 
also depends on the excitation amplitudes of each rods as shown in Figure 6. Therefore, Equation 
(16), (17) shows how to tune the eigen mode superposition, i.e., the Bell state. In summary, by 
manipulating a single input, the relative driving amplitudes of the two rods (rods 1 and 2), the Bell 
state coefficients can be tuned, which allows to navigate a portion of the Hilbert space . Further, we 
anticipate that exploration of the Bell state Hilbert space can be enlarged by choosing other choices 
of input parameters of the drivers. 
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Figure 6. Variations of the: (a) transmission amplitudes of each rod and (b) phase differences, 
𝜙𝜙𝑖𝑖𝑖𝑖; 𝑖𝑖, 𝑗𝑗 = 1,2,3 and 𝑖𝑖 ≠ 𝑗𝑗, between rods of the coupled three waveguides as a function 𝑟𝑟 = |𝐹𝐹1/𝐹𝐹2| 
(𝐹𝐹1,𝐹𝐹2: excitation amplitudes of rod 1 and 2). Driving frequency 𝜔𝜔 = 33.25 kHz. 

4. Numerical Modeling: Mass-Spring Waveguides 

We develop a numerical model based on mass-spring waveguides that can be used to shed light 
on the complex behavior of nonseparable states in coupled rod systems. For this, we assume that each 
rod can be represented by a 1D harmonic crystal composed of connected identical masses and springs 
and that no pre-compression exists in the chain. We further assume that the masses of each chain are 
constrained to move only in the horizontal direction. Therefore, the coupled rod system can be 
represented as a set of 1D harmonic crystals coupled along their length by longitudinal harmonic 
springs. Dissipative effects in the medium are modeled by linear viscous damping elements. 

4.1. Single Chain Mass-Spring Waveguides 

For a single mass-spring chain with a total of 𝑁𝑁𝑚𝑚 identical masses, the discrete elastic equations 
of motion are: 

𝑚𝑚�̈�𝑢𝑛𝑛 − 𝑘𝑘𝑛𝑛𝑛𝑛(𝑢𝑢𝑛𝑛+1 − 2𝑢𝑢𝑛𝑛 + 𝑢𝑢𝑛𝑛−1) + 𝜂𝜂�̇�𝑢𝑛𝑛 = 0 (18) 

In Equation (18), 𝑢𝑢𝑛𝑛 is the displacement of 𝑛𝑛𝑖𝑖ℎ mass of the chain, 𝑚𝑚 is the mass, and the viscous 
damping coefficient 𝜂𝜂 models the dissipation. The term 𝑘𝑘𝑛𝑛𝑛𝑛 describes the coupling constant of the 
nearest-neighbor interaction. To model the excitation applied by the transducer, the prescribed base 
periodic excitation 𝐹𝐹𝑢𝑢(𝑡𝑡) = 𝐹𝐹0𝑢𝑢 ∑ sin(𝜔𝜔𝑖𝑖𝑡𝑡)𝑖𝑖𝑖𝑖  is applied to the first mass of the chain, where 𝐹𝐹0𝑢𝑢 and 𝜔𝜔𝑖𝑖 
are the amplitude and frequency of the applied force. We use free boundary conditions; hence, the 
equations of motion for the first mass and last mass in the chain are: 

𝑚𝑚�̈�𝑢1 − 𝑘𝑘𝑛𝑛𝑛𝑛(𝑢𝑢2 − 𝑢𝑢1) + 𝜂𝜂�̇�𝑢1 = 𝐹𝐹𝑢𝑢(𝑡𝑡), (19) 

𝑚𝑚�̈�𝑢𝑁𝑁 − 𝑘𝑘𝑛𝑛𝑛𝑛(−𝑢𝑢𝑁𝑁 + 𝑢𝑢𝑁𝑁−1) + 𝜂𝜂�̇�𝑢𝑁𝑁 = 0. (20) 

To mimic the physical experiment, in the numerical model we have used 𝑚𝑚 = 𝑚𝑚𝑅𝑅/𝑁𝑁𝑚𝑚 and 𝑘𝑘𝑛𝑛𝑛𝑛 =
𝐸𝐸𝐴𝐴/𝑎𝑎, where 𝑎𝑎(= 𝐿𝐿/𝑁𝑁𝑚𝑚) is the inter-mass spacing, and 𝑚𝑚𝑅𝑅(= 𝜌𝜌𝐴𝐴𝐿𝐿), 𝐸𝐸(= 60 GPa) and 𝐴𝐴(= 𝜋𝜋𝑑𝑑2/4) are 
the mass, Young’s modulus and cross-sectional area of the aluminum rod, respectively. 

Figure 7a shows the normalized power spectral density of the last mass displacement time series. 
Figure 7a shows resonance frequencies of the standing waves of the finite mass-spring waveguides. 
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The peak positions define the eigen frequencies (i.e., the resonance modes) of the system with 
uniform frequency spacing. After calculating the eigen frequencies from Figure 7a, we drive the first 
mass of the chain with a single driving frequency of 3884 kHz (Figure 7b) and 7.767 kHz (Figure 7c) 
that corresponds to the first and second resonance mode of the system. In Figure 7b–c, we present 
snapshots of the displacements of all masses. Figure 7b–c depicts the spatial distributions of the 
displacement components at two different time instants, 𝑡𝑡1 and 𝑡𝑡2. We can clearly note the spatially 
extended response of the chain with only a single node (Figure 7b) or two nodes (Figure 7c). 
Therefore, the wavelength and the wave number are 𝜆𝜆 = 2𝑁𝑁𝑚𝑚𝑎𝑎/𝑛𝑛; 𝑛𝑛 being the number of nodes, and 
𝑘𝑘 = 1/𝜆𝜆. Figure 7d shows the resultant dispersion relation obtained from Figure 7a–c. The speed of 
sound equals 4706 m/sec, which is slightly higher than the experimental value of 4571 m/sec for single 
rod, however, close to the model value of 𝛽𝛽 = �𝑘𝑘𝑛𝑛𝑛𝑛𝑎𝑎2/𝑚𝑚 = �𝐸𝐸/𝜌𝜌 = 4750 m/s. In Figure 7, we limited 
the analysis to frequencies below 60 kHz, since above that value the resonant modes begin to deviate 
from the linear dispersion relation (cf. Figure 7d), i.e., is dispersive, indicating that at high frequency 
regime the discretized mass spring model does not represent the 1D continuous elastic waveguides.  

 
Figure 7. (a) Power spectral density of the of the displacement of the 𝑁𝑁𝑚𝑚 mass showing the eigen 
frequencies of the single chain mass-spring waveguides. (b), (c) Spatial waveforms of the 
displacements of all masses for driving frequency of 3884 kHz and 7767 kHz. Two snapshots of the 
spatial waveforms are shown for time 𝑡𝑡1 and 𝑡𝑡2. (d) Band structure determined and calculated from 
(a)–(c). System parameters: 𝑁𝑁𝑚𝑚 = 48,𝜂𝜂 = 6.08 Ns/m,𝐹𝐹0𝑢𝑢 = 1 N,𝜔𝜔𝑖𝑖 ∈ (0,60 kHz]. 

4.2. Coupled Two-Chain Mass-Spring Waveguides 

The discrete elastic equations of motion of the coupled two-chain mass-spring waveguides are: 

𝑚𝑚�̈�𝑢𝑛𝑛 − 𝑘𝑘𝑛𝑛𝑛𝑛(𝑢𝑢𝑛𝑛+1 − 2𝑢𝑢𝑛𝑛 + 𝑢𝑢𝑛𝑛−1) − 𝑘𝑘𝑐𝑐(𝑣𝑣𝑛𝑛 − 𝑢𝑢𝑛𝑛) + 𝜂𝜂�̇�𝑢𝑛𝑛 = 0, (21) 

𝑚𝑚�̈�𝑣𝑛𝑛 − 𝑘𝑘𝑛𝑛𝑛𝑛(𝑣𝑣𝑛𝑛+1 − 2𝑣𝑣𝑛𝑛 + 𝑣𝑣𝑛𝑛−1) − 𝑘𝑘𝑐𝑐(𝑢𝑢𝑛𝑛 − 𝑣𝑣𝑛𝑛) + 𝜂𝜂�̇�𝑣𝑛𝑛 = 0. (22) 

In Equation (21), (22), 𝑢𝑢𝑛𝑛 and 𝑣𝑣𝑛𝑛 are the displacements of 𝑛𝑛𝑖𝑖ℎ mass of chain 1 and 2, respectively. 
The term 𝑘𝑘𝑐𝑐 describes the stiffness of the springs that couples the chains. To model the excitation 
applied by the transducer, the prescribed base periodic excitation 𝐹𝐹𝑢𝑢(𝑡𝑡) = 𝐹𝐹0𝑢𝑢 ∑ sin(𝜔𝜔𝑖𝑖𝑡𝑡)𝑖𝑖𝑖𝑖  and 
𝐹𝐹𝑣𝑣(𝑡𝑡) = 𝐹𝐹0𝑣𝑣 ∑ sin(𝜔𝜔𝑖𝑖𝑡𝑡 + 𝜙𝜙0𝑣𝑣)𝑖𝑖𝑖𝑖  are applied to the first mass of each chain, where 𝐹𝐹0𝑣𝑣 and 𝜙𝜙0𝑣𝑣 are the 
amplitude and phase of the applied force to chain 2.  

In the numerical experiment, first we excite the coupled chains with the first eigen vector (Mode: 
1 1) to the first mass of each chain. In Figure 8a, we show the normalized power spectral density of 
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the last mass displacement time series of the first chain for this symmetric mode. The resultant 
dispersion relation of the symmetric band is shown in Figure 8b. We then excite the coupled chains 
with the second eigen vector (Mode: 1 –1). To obtain a model which behavior mimics that of the 
experimental system, we vary the stiffness of the springs that couples the chains, i.e., 𝑘𝑘𝑐𝑐 to obtain a 
cutoff frequency close to 20.24 kHz (see Figure 4). In Figure 8a, we show the normalized power 
spectral density of the last mass displacement time series of the first chain for the anti-symmetric 
mode (Mode: 1 1) for 𝑘𝑘𝑐𝑐 = 33.5 × 106 N/m. This second spatial eigen mode (Mode 1 –1: blue of Figure 
8a) exhibits a spectrum that differs from that of the symmetric one. This spectrum shows negligible 
transmission amplitude below the cutoff frequency. Above the cutoff frequency, the transmission 
spectrum possesses clear resonances with non-uniform frequency spacing, though at low frequency 
the resonances are closely spaced. Since the wave numbers for the second band are also multiples 
of 2𝑁𝑁𝑚𝑚𝑎𝑎, the corresponding dispersion relation can be calculated using the expression 𝜔𝜔𝑖𝑖

2 = (𝛽𝛽𝑘𝑘)2 +
2(𝛼𝛼)2. The lsqcurvefit function of MATLAB is used to numerically obtain the cutoff frequency of 
19.91 kHz. 

 
Figure 8. (a) Power spectral density of the displacement of 𝑁𝑁𝑚𝑚 mass in the coupled two-chain mass-
spring waveguides showing the eigen frequency for mode: 1 1 and mode: 1 −1. (b) Band structure 
determined and calculated from (a). The asterisks in (b) are obtained from the resonances of mode: 1 
1 of (a) and the solid line associated with the asterisks is a fit to the low frequency resonances. The 
open circles in (b) correspond to anti-symmetric resonant modes and the solid line is a fit to these 
identifiable resonances using the dispersion relation 𝜔𝜔𝑖𝑖

2 = (𝛽𝛽𝑘𝑘)2 + 2(𝛼𝛼)2 with cutoff frequency √2𝛼𝛼 =
19.91 kHz. System parameters: 𝑁𝑁𝑚𝑚 = 48,𝜂𝜂 = 6.08 Ns/m,𝜔𝜔𝑖𝑖 ∈ (0,60 kHz] and (𝐹𝐹0𝑢𝑢,𝐹𝐹0𝑣𝑣,𝜙𝜙0𝑣𝑣) =
(1 N, 1 N, 0) for mode: 1 1 excitation and (𝐹𝐹0𝑢𝑢,𝐹𝐹0𝑣𝑣,𝜙𝜙0𝑣𝑣) = (1 N, 1 N,𝜋𝜋) for mode: 1 −1 excitation. 

4.3. Coupled Three-chain Mass-Spring Waveguides 

For three coupled mass-spring chains, the discrete elastic equations of motion are given by: 

𝑚𝑚�̈�𝑢𝑛𝑛 − 𝑘𝑘𝑛𝑛𝑛𝑛(𝑢𝑢𝑛𝑛+1 − 2𝑢𝑢𝑛𝑛 + 𝑢𝑢𝑛𝑛−1) − 𝑘𝑘𝑐𝑐(𝑣𝑣𝑛𝑛 − 𝑢𝑢𝑛𝑛) + 𝜂𝜂�̇�𝑢𝑛𝑛 = 0 (23) 

𝑚𝑚�̈�𝑣𝑛𝑛 − 𝑘𝑘𝑛𝑛𝑛𝑛(𝑣𝑣𝑛𝑛+1 − 2𝑣𝑣𝑛𝑛 + 𝑣𝑣𝑛𝑛−1) − 𝑘𝑘𝑐𝑐(𝑢𝑢𝑛𝑛 − 𝑣𝑣𝑛𝑛) − 𝑘𝑘𝑐𝑐(𝑤𝑤𝑛𝑛 − 𝑣𝑣𝑛𝑛) + 𝜂𝜂�̇�𝑣𝑛𝑛 = 0, (24) 

𝑚𝑚�̈�𝑤𝑛𝑛 − 𝑘𝑘𝑛𝑛𝑛𝑛(𝑤𝑤𝑛𝑛+1 − 2𝑤𝑤𝑛𝑛 + 𝑤𝑤𝑛𝑛−1) − 𝑘𝑘𝑐𝑐(𝑣𝑣𝑛𝑛 − 𝑤𝑤𝑛𝑛) + 𝜂𝜂�̇�𝑤𝑛𝑛 = 0. (25) 

In Equations (23)–(25), 𝑢𝑢𝑛𝑛, 𝑣𝑣𝑛𝑛, and 𝑤𝑤𝑛𝑛 are the displacements of 𝑛𝑛𝑖𝑖ℎ mass of chain 1, 2, and 3, 
respectively. Here, we take 𝑘𝑘𝑐𝑐 to be the same for all coupled chains, which is justified since the 
experimental sample ensures uniform epoxy fillings between the rods. To model the excitation 
applied by the transducer, the prescribed base periodic excitation 𝐹𝐹𝑢𝑢(𝑡𝑡) = 𝐹𝐹0𝑢𝑢 ∑ sin(𝜔𝜔𝑖𝑖𝑡𝑡)𝑖𝑖𝑖𝑖 ,𝐹𝐹𝑣𝑣(𝑡𝑡) =
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𝐹𝐹0𝑣𝑣 ∑ sin(𝜔𝜔𝑖𝑖𝑡𝑡 + 𝜙𝜙0𝑣𝑣)𝑖𝑖𝑖𝑖  and 𝐹𝐹𝑤𝑤(𝑡𝑡) = 𝐹𝐹0𝑤𝑤 ∑ sin(𝜔𝜔𝑖𝑖𝑡𝑡 + 𝜙𝜙0𝑤𝑤)𝑖𝑖𝑖𝑖  are applied to the first mass of each chain, 
where 𝐹𝐹0𝑤𝑤 and 𝜙𝜙0𝑤𝑤 are the amplitude and phase of the applied force to chain 3. 

Figure 9a reveals the eigen frequencies of the coupled three-chain mass-spring waveguides for 
the three spatial eigen modes, and Figure 9b shows the resultant dispersion relations. Similarly to the 
experimental result of Figure 5, the second and third spatial eigen modes differ from the first eigen 
mode. Below the cutoff frequencies, the transmissions are negligible. The resonances are clearly 
defined and closely spaced as one approaches the cutoff frequencies. Again, the wave numbers for 
all the bands are multiples of 2𝑁𝑁𝑚𝑚𝑎𝑎. We also use the coupling spring stiffness as 𝑘𝑘𝑐𝑐 = 33.5 × 106 N/m, 
obtained from the model of two coupled chains. With this choice, we obtain the cutoff frequencies of 
14.08 kHz and 24.43 kHz in excellent agreement with experimental values. This model of two and 
three coupled chains can therefore be used to interpret the experimentally observed behaviors. 

 
Figure 9. (a) Power spectral density of the displacement of the 𝑁𝑁𝑚𝑚 mass in the coupled three-chain 
mass-spring waveguides showing the eigen frequency for mode: 1 1 1, mode: 1 0 −1, and mode: 1 −2 
1. (b) Band structure determined and calculated from (a). The asterisks in (b) are obtained from the 
resonances of mode: 1 1 1 of (a), and the solid line associated with the asterisks is a fit to the low 
frequency resonances. The open and closed circles in (b) correspond to resonant modes associated 
with the 𝑒𝑒2 and 𝑒𝑒3 spatial eigen modes and the solid lines are a fit to these identifiable resonances 
using dispersion relations with cutoff frequencies 14.08 kHz and 24.43 kHz. The dashed line in the 
inset of (b) identifies a frequency (equal to 33.78 kHz) at which the (1 0 −1) and (1 −2 1) resonances 
nearly overlap and that lies between two resonances of (1 1 1) eigen mode. System parameters: 𝑁𝑁𝑚𝑚 =
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48,𝜂𝜂 = 6.08 Ns/m,𝜔𝜔𝑖𝑖 ∈ (0,60 kHz], and (𝐹𝐹0𝑢𝑢,𝐹𝐹0𝑣𝑣,𝐹𝐹0𝑤𝑤,𝜙𝜙0𝑣𝑣,𝜙𝜙0𝑤𝑤) = (1 N, 1 N, 1 N, 0,0) for mode: 1 1 1 
excitation, (𝐹𝐹0𝑢𝑢,𝐹𝐹0𝑣𝑣,𝐹𝐹0𝑤𝑤,𝜙𝜙0𝑣𝑣 ,𝜙𝜙0𝑤𝑤) = (1 N, 0,1 N, 0,𝜋𝜋) for mode: 1 0 -1 excitation, and 
(𝐹𝐹0𝑢𝑢,𝐹𝐹0𝑣𝑣,𝐹𝐹0𝑤𝑤,𝜙𝜙0𝑣𝑣 ,𝜙𝜙0𝑤𝑤) = (1 N, 2 N, 1 N,𝜋𝜋, 0) for mode: 1 -2 1 excitation. 

We identified an isofrequency (33.78 kHz) corresponding to nearly overlapping (1 0 −1) and (1 
−2 1) resonances and to a trough between two resonances frequencies in the (1 1 1) eigen mode. We 
can therefore use this frequency to numerically realize a nonseparable superposition of states. In 
accord with the experiment, we excite such a nonseparable state by driving the three-chain mass-
spring waveguides at a frequency of 33.78 kHz. We excite the first masses of chain 1 and 2 at out of 
phase, and we do not apply any force on chain 3 as represented by(𝐹𝐹0𝑢𝑢 ,−𝐹𝐹0𝑣𝑣 , 0) with the excitation 
amplitude ratio 𝑟𝑟 = |𝐹𝐹0𝑢𝑢/𝐹𝐹0𝑣𝑣|. Figure 10a shows the maximum amplitudes of the last mass (𝑁𝑁𝑚𝑚) of 
each chain and the corresponding phase differences (𝜙𝜙) between each pair of chains of mass 𝑁𝑁𝑚𝑚 as a 
function of 𝑟𝑟, where 𝜙𝜙(𝑥𝑥, 𝑦𝑦) = 180

𝜋𝜋
cos−1 � 𝑖𝑖.𝑦𝑦

|𝑖𝑖||𝑦𝑦|
�. 

We do indeed see that manipulation of the excitation amplitude ratio can be used to tune the 
eigen mode superposition. Therefore, by only tuning a single input, the relative excitation amplitudes 
of chains 1 and 2, we can navigate a sizeable portion of the Hilbert space of nonseparable states. 
Similar to the experimental result of Figure 6,10 shows that for a particular excitation amplitude 
ratio 𝑟𝑟 = 1.2 (dashed line in Figure 10), the transmitted amplitudes of chains 1 and 2 are almost equal 
and that of rod 3 is small. In addition, phase difference between chains 2 and 3, 𝜙𝜙 �𝑣𝑣𝑁𝑁𝑚𝑚(𝑡𝑡),𝑤𝑤𝑁𝑁𝑚𝑚(𝑡𝑡)�, 

as well as 1 and 3, 𝜙𝜙 �𝑢𝑢𝑁𝑁𝑚𝑚(𝑡𝑡),𝑤𝑤𝑁𝑁𝑚𝑚(𝑡𝑡)�, are almost 𝜋𝜋/2 and phase difference between chains 1 and 2, 

𝜙𝜙 �𝑢𝑢𝑁𝑁𝑚𝑚(𝑡𝑡), 𝑣𝑣𝑁𝑁𝑚𝑚(𝑡𝑡)�, is approximately 𝜋𝜋. This relation signifies that though the driving amplitude of 
rods 1, 2, and 3 are 𝐹𝐹0(1.2,−1,0), the transmitted amplitudes are 𝐴𝐴0(1,−1, 𝜖𝜖), where 𝜖𝜖 ≪ 1 and 𝐹𝐹0 and 
𝐴𝐴0 are constants. As seen above in the experimental results for the three-rod system, these relations 
require that the Bell state coefficients be complex. 

 
Figure 10. Variations of the (a) maximum amplitudes of the last mass (𝑁𝑁𝑚𝑚) of each chain and (b) the 
corresponding phase differences (𝜙𝜙) between pairs of chains of the coupled mass-spring waveguides 
as a function of 𝑟𝑟 = |𝐹𝐹0𝑢𝑢/𝐹𝐹0𝑣𝑣|; 𝐹𝐹0𝑢𝑢,𝐹𝐹0𝑣𝑣 excitation amplitudes of chain 1 and 2. The third chain is not 
excited. System parameters: 𝑁𝑁𝑚𝑚 = 48,𝜂𝜂 = 18.24 Ns/m, and (𝐹𝐹0𝑢𝑢,𝐹𝐹0𝑣𝑣,𝐹𝐹0𝑤𝑤,𝜙𝜙0𝑣𝑣 ,𝜙𝜙0𝑤𝑤) = (𝑟𝑟 N, 1 N, 0 N,𝜋𝜋, 0). 
The driving frequency is 33.78 kHz. 

5. Discussion and Concluding Remarks 
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In this work, we have shown the theoretical requirements for realizing a pseudospin in a system 
of coupled elastic waveguides and for the creation of states that couple the pseudospin and spatial 
degrees of freedom across the array of waveguides, which might be manipulated to create Bell states. 
We have fabricated a system that supports pseudospin using two aluminum rods coupled along their 
length with epoxy and confirmed with both measurement and modeling that the signature of a cutoff 
frequency in the elastic band structure is observed, at 20.24 kHz in experiment and 19.91 kHz in the 
numerical simulation. A system comprised of three aluminum rods coupled with epoxy along their 
length has been fabricated and shown to support two pseudospins with cutoff frequencies of 14.08 
kHz and 24.43 kHz. By choosing a frequency at which the two pseudospins are resonant 33.25 kHz 
in the experiment, or 33.78 kHz in the simulation, we make combinations of the pseudospin and 
spatial modes that may or may not be separable. Varying the ratio of two input transducers that are 
out of phase, allows us to navigate the Bell state Hilbert space and, indeed, create nonseparable 
superpositions of the spatial modes and pseudospin state. Remarkably, these nonseparable states 
require complex coefficients to account for the phase differences in the outputs from the three rods. 
Through a single input, the relative excitation amplitudes of the coupled waveguides, these complex 
amplitudes are experimentally and numerically tuned, allowing the navigation of a sizeable portion 
of the nonseparable (‘classically entangled’) states of elastic wave states in the tensor product Hilbert 
space of the directional spinor amplitudes and spatial mode subspaces. 

Nonseparable or ‘classically entangled’ states of elastic waves offer the advantage of stability 
over entangled states of true quantum systems. Nonseparable superpositions of elastic waves are 
robust against decoherence and will not require operating at cryogenic temperatures to maintain the 
delicate balance of the superpositions. Nonseparable superpositions of elastic waves do not suffer 
from the phenomenon of wave function collapse upon measurement. A coherent superposition of 
quantum states collapses into a pure state upon measurement. Multiple statistical measurements are, 
therefore, necessary to obtain information on the original superposition. Moreover, the 
demonstration of our “entangled’ states realizes the potential of acoustic waves in capturing 
phenomena previously associated with optics. Recently, the use of classical light with entangled 
degrees of freedom have found applications in quantum information [47] and metrology [5,48]. Our 
works suggests that the same sort of applications can be realized with acoustic systems. In acoustic 
system, coupling can be easily manipulated by choices of materials and fabrication. Moreover, due 
to the flexibility of elastic system, the coupling can easily be tailored to be linear, periodic, and 
nonlinear (with different types or degrees of nonlinearity) [49–51]. Finally, extending this notion of 
classical nonseparability or classical “entanglement” to the field of phononics, opens the door for 
acoustic analogues to true quantum system in quantum information processing. The combination of 
experiment and numerical simulation employed in this manuscript provides the basis for a more 
extensive and predictive design of systems with elastic pseudospins for future information 
processing applications.  

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1. Variations 
of the (a) maximum amplitudes at 𝑥𝑥 = 𝐿𝐿, and (b) the corresponding phase differences between pairs at 𝑥𝑥 = 𝐿𝐿 of 
the three coupled waveguides as a function of the ratio of the excitation amplitude of chain 1 to the excitation 
amplitude of chain 2, 𝑟𝑟 = |𝐹𝐹0𝑢𝑢/𝐹𝐹0𝑣𝑣| and 𝐹𝐹0𝑤𝑤 = 0. System parameters: 𝜔𝜔02(𝑘𝑘2) = 33.86 kHz,𝜔𝜔03(𝑘𝑘3) = 33.7 kHz and 
𝜂𝜂 = 18.24 Ns/m. The driving frequency is 33.78 kHz. 
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