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ABSTRACT

We develop a model-based theoretical framework
to shed light on the phenomenon of cross-level
interactions in complex and dynamic multicetlular
structures with a focus on calcium signaling via
calcium waves. In particular, we investigate
computationally the interdependence between
intracellular calcium and inositol-1,4,5-trisphosphate
(IP,) pathway and cell-cell communication via
gap junction intercellular diffusion of Ca** and IP;.
To enable the propagation of calcium waves in 2
one-dimensional chain of cells, we introduce a
calcium concentration-dependent threshold-based
mechanism to trigger calcium oscillations of individual
cells. Owr model shows that the dynamics of cells
embedded in a multicellular network is significantly
different from that of an isolated cell. In particular,
we have demonstrated that the transient and steady
state frequency of calcium oscillations of a cell
stimulated with an agonist depends om ifs
microenvironment, in this case, its cell neighbors.
The neighborhood of the stinmlated cell forms a
“signaling niche” that acts on the stimulated cell
itself and dynamically regulates its oscillation
frequency. This effect is attributed to a crosstalk
between the stimulated cell and its environment
through retrograde diffusion of calcium and IP;.
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INTRODUCTION

Multi-level organization and dynamics is a hallmark
featare of most biological systerms. This is particularly
true in cellular tissues in which single cells are
organized into complex rulti-cellular tissues. Central
to the proper behavior in these biological systems
is cross-level interdependence. To date, stadies of
signaling in multicellular networks have demonstrated
that the architecture of these networks can have a
significant impact on the behavior of individual
cells as well as their emerging collective behavior.
For instance, there is strong evidence that the
branching architecture of the mammary gland and
associated cellular signaling determine epithelial cell
function [1, 2] or dysregulation {3]. Additionally,
faulty cellular organization can facilitate the cell
transformations leading to further neoplasia and
cancer [4, 51. Conversely, normal cellular architecture
can suppress tumor formation and prevent malignant
phenotypes even in grossly abnormal cells [6].
Furtherraore, it has become increasingly clear
that effective tissue engineering strategies require
constructed cefl systems to be appropriately organized
in order to support the proper intercellular behavior
for a desired tissue function {7-9].

A particular aspect of ceilular networks is the
interacting behavior of the cells beyond a simple
summation of individual element activities.
With respect to cellular networks, the passing of
signals between cells of the network is one way in
which new systere behaviors can emerge. For
instance, intercellular calcium waves were observed
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to define communication networks among neural
progenitor celis [10]. Also astrocytes of the cortical
gray matter appear to play an active role in brain
function that takes the form of calciuny waves that
propagate between cells within networks of astrocytes
[11]. Central to understanding these emergent
processes is that cellular networks inherently combine
dynamcal and structural complexity, making it
difficult to isolate single cell versus emergent
network behavior. However, the relationships
between network dynamics and architecture have
been successfully investigated using a variety of
physical and mathematical approaches [12], many
of which have been applied to understand the
complexities of neuronal circuitry. For example,
embryonic stem cell-derived neural progenitors form
networks exhibiting synchronous calcium signaling
activity. This coherent calcium dynamic was shown
to be correlated across so called small-world networks
[13]; networks with the mean shortest distance
between nodes scaled logarithmically with the
number of nodes.

The objective of the present study is to develop a
model-based theoretical framework to shed light
on the phenomenon of cross-level interactions in
complex and dynamic multiceltular structures with
a focus on calcium signaling via calcium waves.
Calcium signaling occurs in nearly all cell types
and calcium waves are a common phenomenon in
multicellular systems. In particular, we are interested
in the interplay between intraceltular calcium activity
and intercellular propagation in networks of cells.
From a theoretical perspective, Othmer and Scriven
[14] developed, following Turing’s pioneering
mathematical treatise of morphogenesis [13], an
analysis technique in which the information about
the underlying network topology, through a
connectivity matrix, is decoupled from that of the
intracellular reaction pathway mechanism, thus
enabling progress in multicellular network research
that includes complexity at both low and high levels.
In a previous series of studies [16, 17}, we reported
the use of Green’s function-based Interface Response
Theory (IRT) [18], a method originally developed
for tackling composite media in condensed matter
physics, to augment Scriven-Othmer’s method to
solve coupled dynamical networks with nontrivial
comnectivity matrices and therefore integrate natural
biological organization from the cellular level to
complex network architectures. Because simple

vascular endothelial cell networks are capable of
both downstream and upstream signal conduction
between interconnected endothelial cells {19], they
can be used as an example of biological context to
calculate the spectrum of propagating linear
compositional waves in models of multiceliular
architectures and study putative signal conduction
dynarvics across networks of endothelial cell models
[20]. We also conducted an experimental and
computational study of calcium wave propagation
in chains of model cells with nonlinear infracellular
calcium dynamics and showed, the importance of
local cell environment on the transmission of a
pulse through junctions in multicellular networks
[21]. For the sake of mathematical tractability, we
assumed in that model an effective nonlinear
intraceltular reaction dynamic involving only Ca®".
For this we utilized a simple piecewise-linear model
of the nonlinear Ca™ intracellular reaction dynamics.
This modeled the Ca®" depletion of the cytoplasm
and repletion separated by a threshold concentration.
Many have used different mathematical models to
better understand propagation dynamics, including
addressing gap junction-dependent processes
[22, 23]. A nonlinear mode! of the gap junctional
mechanisms was developed to demonstrate long-
range propagation of intercellular Ca** waves in
networks of astrocytes [24]. While not gap junction-
specific, others have modeled intra- and extra-cellular
calcium dynamics based on ICC (Intercellular
Calcium Communication) [25, 26] and CICR (Calcium
Induced Calcium Release) models [27-29]. In many
cell types, extracellular stimuli can be converted into
intracelfular signals in the form of Ca’ oscillations.
These intracellular oscillations depend on the dose
of the applied extracellular agonist [30]. Politi ef al.
introduced a model that can simulate the increase
of the frequency of intracellular calcium oscillation
with stepwise increases in the agonist concentration
[31].

In this paper we develop a model of calcium wave
propagation in a chain of cells incorporating both
intracellular calcium dynamics and intercellular
calcium wave propagation. We investigate
computationally the effect of cross-level
interdependence between intraceltular calcium-IP;
pathway and cell-cell communication via intercetlular
diffusion of both Ca** and IP;. In contrast to
Goldberg’s model [24], diffusion in our model is
linear with a diffusion coefficient that is independent
of Ca*'/IP; concentration. However, to achieve
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Jong-distance intercellular calcium wave propagation
a regeneration mechanism of IP, is evoked.
This mechanistm depends on the cytosolic Ca®
conceniration. We investigate the effect of the
chain-like architecture of the multicellular network
on the frequency of calcium oscillations of individual
cells and the wavelength of trains of calcium
waves. Significant cross-level effects are found on
the transient behavior of individual cells ag well
as their steady oscillatory state. We show that the
intracellular oscillation frequency of an individual
cell embedded in the chain-like network and
stimulated with an agomst differs at steady state
from that of an isolated cell. Furthermore, the
transient behavior of that stimulated cell toward
steady oscillations is taking significantly longer in
the multicellular network, In fact, the stimulated
cell generates sequential trains of pulses with
increasing frequency. These trains of pulses are
supported and propagating along the chain of
cells. The mechanism for this long time transient
behavior is attributed to retrograde diffusion
of calcium and IP; originating from a widening
range of cells in the chain wndergoing oscillations
as the trains of pulses propagate. This mechanism
highlights the importance of microenvironment on
the dynamical behavior of cells in muiticellular
networks. In particular, this study demonsirates
that the dynamical behavior of a specific
cell embedded in a multicellular environment
depends on crosstalk between the cell and ifs
environment.

MODELS AND METHODS

Model of intracellular calcium pathway

A schematic of our model for the dynamics of
intracellular calcium oscillations and intercellular

dj
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where v, and Vgeg represent the production and

degradation rate of IP,, respectively. is the

VPLC
maximum production rate of PLC that depends on
the agonist concentration. K src Characterizes the

sensitivity of PLC to Ca™; vy, and Vg, are

calcium diffusion is shown in Fig. 1. The pathway
involves primarily the intraceHular reaction dynarnics
and the mtercelivlar diffusion of cytoplasmic calcium
and inositol-1,4,5-trisphosphate (IP5). The intracellular
chemical reaction process is based on a model
introduced by Politi e @l [31]. For the sake of
clarity, we describe this model 1n some detail.
The intracellular calcium pathway starts with an
extracellular agonist combining with the G-protein-
coupled receptors on the cell’s membrane to activate
phospholipase C (PLC). It is, in turn, able to catalyze
the production of IP; [32]. IPy then can bind to the
1P, receptor, IP4R, to open calcium channels in the
membrane of the Endoplasmic Reticulum (ER).
This process releases stored Ca®" into the cytosol.
Meanwhile, the cytoplasmic Ca”* creates both positive

_and negative feedback conditions 1 the production

of IP;. For the positive feedback condition, the
cytoplasmic Ca®™ is capable of activating the PLC
isoforms to release more IP; [33]. For the negative
feedback condition, the increase of cytoplasmic
Ca”" can activate the IP; degradation via [P5 3-kinase
{IP;K). Different from other signaling molecules,
high levels of intracellular calcium are toxic and
cannot be degraded. Cells control the intracellular
calcium level by buffering, sequestering in specialized
compartments, and expelling to the extracellular
space {34, 35].

The intracellular chemical reaction dynamics is
formmulated into a system of coupled differential
equations involving four dynamical variables: the
calcium concentration in the cyiosol, ¢ the IP,
concentration in the cytosol, p; the calcium
concentration in the ER stores, s; and the fraction
of IPsR that has not been made inactivate by Ca™, r.
The rate equation for the IP; concentration takes
the following form:

2 2
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:the rates of IPs

phosphorylation  and
dephosphorylation, respectively. The phosphorylation

rate k,, is described by a Hill function with the
half-saturation comstant K,, [36]. The rate

equation for the cytoplasmic Ca™ is in the
following form:
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concentration in the cell, C,,, is conserved and is a0t g, K,

represented as ¢, =c+ fis, where gis the ratio
of effective cytoplasmic volume to_effective ER
volume (both accounting for Ca®" buffering).
Therefore, the calcium concentration in the ER
store can be expressed as
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The dynamics of IP;R inactivation by Ca®™ is
shown as follow:

Agonist
{hormuone, e.g.
Vasopressin)

In our numerical simulations of the intracellular
pathway, we use the model parameters reported by
Politi [31]. We limit ourselves to the model
supporting calcium positive feedback, in which
the phosphorylation rate ky;, is set to zero. The

corresponding parameters are summarized in
Table 1. The rumerical solutions of these differential
equations are obtained by using the 4"-order
Runge-Kutta algorithm with step size, Af=0.01s.
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Fig. 1. Reaction/diffusion process of Ca** and 1P, metabolism included in the model. The

solid, dashed, and dotted arrows indicate mo

lecular diffusion, regulatory interactions, and

reaction/transport steps respectively. The bold quantities indicate the following model variables:

IP,, the cytoplasmic IPs; Ca(cyt), the free cytoplasmic Ca?, Ca(ER), the free Ca™" in the ER;

1P,R,, the active conformation of the IPsR. The other abbreviations denote IP4R,, the inactive
copformation of the TP3R; Vi, the active Ca®* transport into the ER; vpy -, the production

rate of IPy; ¥, the tate of Ca™" release throu

gh the TP3R; Vi 208 Vyo, the rates of Ca™'-

induced IP;R inactivation and recovery, respectively; vsp and Wy, the rates of IP;
dephosphorylation and phosphorylation, respectively; D(IP3) and D(Ca), the diffusion

cocfficient of IP; and Ca, respectively; and UC, the threshold of Ca needed to activate PLC.
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Table 1. Values of reaction/diffusion model parametess.

Parameters Description Value
IP; dynamics parameters

Kip Half-activation constant of IP,K 0.4 M

kg IP; phosphorylation rate constant 0

ksp IP; dephosphorylation rate constant 0.66 5!

Kpro Haif-activation constent of PLC 0.2 pM

Fere Maximum production rate of TP, 1.5 pM s
Ca®* transport and structural parameters

B Ratio of effective volumes ER/cytosol 0.185

V erea Maximal SERCA pump rate 0.9 pM s

Keorea Half-activation constant 0.1 uM

Cie Total Ca* concentration 2 pM
IP:R parantieters

& Meaximal rate of Ca** release 11157

k, Ca®" leak 0.0203 5

K, Ca™ binding to activating site (.08 uM

K, Ca** binding to inhibiting site 0.4 uM

K, IP; binding 0.13 uM

7, Characteristic time IP,R inactivation 1253
Reference Diffusion parameters

D, Diffusion coefficient rate of Ca*™* 0.005 s

D;PB Diffusion coefficient rate of IPy 10 D;a

uc Threshold of Ca®* to activate PLC 0.057 uM

We illustrate the oscillatory behavior of the intracellular
calcium concentration of individual cell in Fig. 2.
Following Politi, we can mcrease the frequency of
the intracellular calcium oscillations by increasing
the agonist concentration. For an isolated cell, the
frequency of intracellular calcium oscillation does

not vary so much at constant P, (see Fig. 3).

The IP; activity follows a similar dynamics.

Fig. 3 illustrates the period of ntracellular
calcium oscillation generated in an isolated cell
with initial calcium concentration, {Cal;= 0.05 pM.
Initially, the period between the oscillating peak

#1 and #2 is 1787 time steps. However, the period
between the peak #2 and #3 sharply decreases to
1681 time steps (point #2 in Fig. 3), which is
followed by a steady state with the period equal
to 1672 or 1673 time steps. We have verified
that different initial concentrations result in very
sirpilar period behavior.

Integration of intracellular calcium pathway
into multicellular diffusion model

Politi’s model only considers the inmtracellular
dynamics in an isolated cell. To use Politi’s model
to describe the calcium and IPy dynamics in a




Tuexuan Long et al.

Vpo =0787 Fre w10 Pre =13 Vo =25

0.8

0.6 4

[Ca®], {(ua}

04

0.2 4 ;
'_)//J..JJU

0.0

T T Ll T
0 5000 10000 15000 20600 25000
-+ Time (x0.01 s)

Fig. 2. Politi model: Agonist-induced intracellular calcium oscillation with stepwise increases in
the agonist concentration (arrows) corresponded by an increase in Vpye The Y -axis represents the
cytosolic calcium concentration with unit “uM”. The X-axis represents the tirne with unit “0.01 57.

Vpro =03 pM s for t < 1000 with successive increases to 9,787, 1.0, 1.5, and 2.5 pM s
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Fig. 3. Period of intraceilular caicium oscillation in an isolated cell. The X-axis represents the
subsequent maxima. The Y-axis represents the value of time (in units of 0.0/ §) corresponding to
the occurrence of each maximum,

multicellular system, we need to add the phenomenon periodic boundary conditions (PBC). In such a chain,
of diffusion of both Ca®* and IP; driven by the  in which every cell is connected to two other cells
concentration gradients between neighboring cells. {(diffusion between nearest neighbor cells), one can
The nuulticellular structure considered in this model — write the one-dimensional time-dependent reaction/
is composed of a single linear chain of N cells with  diffusion equation for Ca™ and IP;:
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where “Dg” and “Dgpy” are the diffusion
coefficients of Ca®** and IPs. “x” and “/* are the
position and time variables. In Eq. (5) and {6), we
have discretized the equation in space and time
using finite differences. “z, = nAs " refers to the

discretized time line with a time step of Af .
De, [8x* and Dy /Aax? are defined as the
diffusion coefficient rate of Ca®* and IP; with unit
“per second”, “!» which we denote D:;a, and

D;m, respectively. “ Ax™ refer to the nearest

neighbor intercell-distance. To implement PRC,
we impose the cyclic condition on the index “/:
cell i+1 = cell 1if I = N and cell i-1 = cell N if i=1.
The term on the lefi-hand side is the rate of
change of intraceliular Ca*/IP; concentration
in cell “/". The concentration for the next
time increment, n+1, can be calculated from
concentration values at the previous time
increment, n. We assume that diffusion occurs
only between nearest neighboring cells through
their membrane via gap junctions. We further
assume that the distribution of gap junctions in the
plasma membrane is spatiaily uniform and that the
diffusion coefficients are constants independent
of cell number. Note that the mobility of Ca®
through gap junction is restricted in comparison to
that of IP; because of the higher buffering
capacity of cytoplasm for Ca®* than for IP; [37].
Thus, 1P, diffuses much faster than Ca®™ [38]. For

the sake of simplicity, we set Dypy =100}, in
our model,

In combining intracellular dynamics and
intercellutar diffusion, at a given time, ¢,;, for
each cell “, we effectively solve Eq. (1), (2) and
(4) by using the 4" order Runge-Kutta method to
evolve the ¢ and p concentrations at the time, £,
due to intracellular dynamics. Meanwhile, the
updated plx;,t,) and ¢(x,,¢,) are used in the

diffusion part of Eq. (5) and (6} to impact the
Ca**/IPy concentration in the reighboring cells.
We have verified that this algorithm has fully
converged for the time step Ar = 0.01 s. For this
we have implemented the algorithm for smaller
time steps of Ar/2 and At/4, and verified that

one obtains the same reaction/diffusion dynamics.

-To study the propagation of trains of calcium

waves in a multicellular one-dimensional chain,
we initially stimuiate a singie cell in the center
of the chain with the agonist. This cell will be
subsequently cailed: “stimulated cell”. PLC of the
stimulated cell is activated initially by the
extraceliular agonist fo induce intraceliular
Ca®'/IP; oscillations. All other cells in the chain
that are not initislly stimulated are referred
to as “downstream cells”. One may visualize
the downstream cells as forming a cellular
microenvironment in which the stimulated cell is
embedded.

The reaction dynamics of the stimulated cell
increases its calctum concentration. Diffusion of
Ca® between the stimulated cell and its
neighboring downstream cells elevates the Ca’*

- concentration in downstream cells. To enable the

propagation of a train of calcium waves that is
initiated by the oscillation of the stimulated cell,
we infroduce a threshold based on the calcium
concentration for inducing Ca®/IP; positive
teedback in downstream cells (Fig. 1). When the
cytoplasmic Ca™ concentration reaches a value
exceeding a threshold, UC, the positive feedback
effect of cytoplasmic Ca®" is activated to increase

* the production rate of TP;. If the cytoplasmic Ca®

concentration is below the threshold, PLC
soforms are not activated. This enables the
synchronized development of collective spatio-
temporal response of multicellular architectures.
This extension is based not only on diffusion but
also on an additional amplification mechanism
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through the generation of IP; and the Ca™-
dependent activation of PLC [39].

in the simulation, the multiceilular chain consists
of 301 cells. The central cell (cell 151) is the
stimulated ceil. The size of the chain is chosen
such that the calcium trains of waves never reach
the ends of the chain {cells 1 and 301) during the
time of the simulation. So even though we have
implemented PBC, ihese conditions are never
required during the simulation time reported here.
The initial concentrations of Ca*" and IP; are set
to 0.05 uM. The continuous presence of agonist
is required to evoke the sustained intercelfular
calciom waves [40]. Therefore, the Veo of the
stimulated cell is kept at 1.5 uM s™. Al other cells
have their initial ¥p(e set to 0.01 pM s which
is too low to activate the intracellular calcium
oscillation. When the calcium concentration
exceeds UC for the first time in a downstream
cell, its ¥pye is set to 1.5 uM 5™ for the remaining
time of the simulation. The parameters of the
diffusion model are listed i Table 1 with those
parameterizing the intraceliular reaction dynamics.

RESULTS AND DISCUSSION

A comparison between the calcium oscillation of

the stimulated cell and its first neighboring
downstream cell is shown m Fig. 4. Because the
diffusion process is symmetric, we just show the

temporal evolution of the calcium concentration .

on one side of the chain. The TP, activity shows a
sirilar dynamic.

Initially, only the stimulated cell is triggered to -

generate calcium oscitlation. Meanwhile, cytosolic
calcium diffuses from the stimulated cell to the

downstream cells through gap junctions. Once the
calcium concentration in the downstream cells -
tises to a level exceeding the threshold *UC™, the -
PLC in the downstream cells is activated. That is, -
we set Vile=V%.=1.5 uM ', where the -
superscripts “s¢” and “de” denote “stimulated cell”

and “downstream cells”, respectively. This process

sustains the propagation of a calcium wave. In
Fig. 4, the cytosolic calcimn oscillation frequency
of both the stimulated cell and the 1* neighboring
cell is nearly the same. However, a slight phase shift -

1.2

1.0 A

—— opscillations in the stimuiated ced

oscifations in the st neighbering cell

6.8 1

0.5 -

[Ca”], )

0.4

0.2 4
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0 2000 4000 6000 8000
Time {x0.01 s}

T T ¥ T

10000 12600 14000 10000 18000

Fig. 4. Calcium oscillation based on reference parameters in stimulated cell and its first
neighboring cell. The Y-axis represents the cytosolic calcium concentration with unit
“uM?”. The X-axis represents the time unit “0.01 s”. The red line stands for the intracellutar
calctum oscillation in the stimulated cell, The green line shows the intracellufar calcium

oscitlation in the ' neighboring cell.
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occurs in the 1" neighboring cell because of a time
lag imposed by the Ca™/IP; diffusion process.
This latency is inversely proportional to the value
of the diffusion coefficients. The IP; activity
shows similar dynamics.

We now turn o a description of the propagation
of calcium train of waves resulting from the
coupled reaction/diffusion model (see Fig. 5).

Fig. 5 illustrates the temporal and spatial evolution
of the train of calcium waves produced by the
multicetlular reaction/diffusion model. Initially,
intraceliular calcium oscillation is induced by the
extraceliular agonist in the central cell (cell 151).
At the time step (T) T = 474 (in units of 0.01s),
the first calcium pulse in the central cell, which is
marked by a star, “#*”, reaches its highest value
(Fig. 5 A). As time marches, this pulse splits into
two pulses, propagating in opposite directions from
the stimulated cell. Because pulse propagation is
symmetrical about the center of the chain, we
autnber the pulses from the pulse at the fromt of
the train on the left side of the stimmulated cell,
only. The pulse labeled with a “star” corresponds
to the 1¥ pulse, or say pulse #1 in the train. As time
proceeds, the central cell undergoes subsequent
oscillations. These oscillations emit calcium pulses
that propagate in opposite directions along the chain.
This process leads to the formatior of the two
opposite interceliular caleium wave trains (ECW'Ts).
The wavelength of the ICWTs (separation distance
between adjacent pulses) will be quantified by
the number of cells between two maxima. It takes
& value between 4 and 5 cells. After the 7"
oscillation of the stimulated cell, at T = 9373,
pulse #1 is located on cell 119. The 7® calcium
pulse supported by the cenfral cell reaches s
highest level when the 6" pulse reaches cell 147
(Fig. 5 B). The interval between these two pulses
now cotresponds to a segment containing 3 cells
(involving cells 148, 149, 150). This is the
beginning of the spontaneous heterogenization of
the train of pulses propagating along the chain of
cells, that is a time-dependent decrease in the
wavelength of the train of pulses at T = 14943,
when the calcium concentration in the central cell
reaches its 11" maximum, the train of pulses is
composed of two distinet regions. A train of
pulses with a 4- to 5-cell wavelength (between
pulses 1 and 9) and a central region with three

pulses (#9 to #11) separated by segments confaining
3 cells (Fig. 5 C). At T =21709, the central region
of the chain becomes even more heterogeneous as
a wavelength of 2-cell interval appears between
pulses #15 and #14 (Fig. 5 D) in addition to the
existing 3-cell interval wavelengths already described.
For T = 27043, the central region is composed
of five pulses with 2-cell and 3-cell wavelengths
(Fig. 5 E). Finally, the train of pulse is fully
heterogenized with 4- to 5-cell distances separating
the pulses #1 to #21, and a central region composed
of pulses #21 through #26 separated by 3-, 2- and
1-cell wavelength. The wavelength of the train of
waves decreases as one approaches the stimulated
cell from the front pulse (Fig. 5 F). Although we
only reported calciom concentration in Fig. 5, the
concentration of IP; follows a very similar dynamics.

Fig. 6 illusirates the downward tendency of the

period of intraceliular calchum oscillatior generated
in the stirnulated cell. Similar to Fig. 3, the period
of oscillation shown in Fig. 6 beging with a sharp
decrease followed by a slow reduction before
reaching a constant value. The initial rapid decrease
is similar to that observed for the isolated cell
in Fig. 3. This is representative of the dynamics
of the intracellular pathway. However, the slow
varying region of Fig. 6 contains 21 points (point
#2 to #22, i.e. 21 periods) mnstead of 2 points
{point #2 and #3) as was shown in Fig. 3. Moreover,
the period of oscillation at steady state in Fig. 6 is
smaller than that in Fig. 3. We observe two effects,
these being: (a) a slow rate of evolution towards
steady state in the muilticellular structure compared
to the isclated cell, and (b) a steady state period of
oscillation that depends on the cell environments
indicate that the intracellular dypamics is probably
controlled by the diffusion process.

The calcium diffusion process is bi-directional
and is driven by the calcium concentration gradient
between the neighboring cells. We name the diffusion
from the center of the chain to the edges of the
chain “forward diffusion” and the diffusion from
the edges to the center “retrograde diffusion”. When

" the calcium pulses in the central cell split into two

pulses that subsequently propagate outward, the
calcium concentration of the central cell decreases
to form a trough while the calcium concentration
of the downstream cells remains high. Thus, a
caleium concenfration gradient is established between
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Fig. 5. Snapshots of the propagating train of waves along the chain of cells. The snapshots are reported at different
times expressed in uvamits of “0.01 s”. The Y-axis represents the cytosolic calcium concentration. The X-axis *
represents the location of cells. Ceil 151 is the stimulated cell. (A) Train of pulses at time point T = 474, the front of
the train of pulse is marked by a star, “*”. In subsequent snapshots, the front of the signal train is also marked by a
star. {B) Train of pulses at time point T = 9373; the separation distance between pulses (wavelength of the train}
amounts to a segment of the chain containing 4-to 5 ceils for the first 6 pulses. This wavelength reduces to a segment
containing 3 cells between pulse #7 and #6. (C) Train of pulses at time point T = 14943; the train of pulses keeps
propagating and retains & wavelength of 4 to 5 cell segments between pulses #1 through #9. The wavelength amount
to 2 3 cell segment between pulses #9 and #10, #10 and #11. (D) Train of pulses at time point T = 21709, the central
area with short wavelength expands spatially; the pulse interval between the newest calcium pulse generated by the
central cell and the adjacent pulse decreases to a 2-cell segment. (E) Train of pulses at time point T = 27043; the -
central region with decreasing wavelength keeps expanding. (F) Train of pulses at time point T = 34994; shost
wavelength region expands further and the wavelength shortens to I-celt interval,
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some of the downstream cells with high calcium
concentration and the cells in the vicinity of the
centtal cell with Jow caleium concentration. Retrograde
diffusion will occur, increasing slightly the Ca®*
concentration in the central region of the chain.
The central cell may, therefore, take less time to
reach its highest calcium level. With an increase
in the number of calcium pulses along the cell
chain, the influence of Ca®" accumulation by
retrograde  diffusion around the central cell is
hypothesized to affect the frequency of its
intracellular calcium oscillations.

In order to explain the mechanism of the
retrograde  diffusion effect, we infroduce the
concept of an “effective diffusion coefficient”.
According to Fick’s first law, the flux of Ca®
between two neighboring cells is

7=-p, St 7

where J is the flux of Ca*"; C, is the calcium

concentration of cell n; C ., is the calcium

concentration of cell n+i; D, is the intrinsic
diffusion coefficient which is also called the
diffusion coefficient in the simulation; and Ax is
the intercell spacing. We assume C, > C,,, .

Duriﬁg the propagation process of [ICWTs, retrtograde
diffusion increases C,,; toC,,, . We can write the
Ca?®" flux between cell n and cell ar+] in two ways

Cn - C:H
Ax

cn - Cﬂ+1

J:me Ax

=~Dyr ®)

where D is an effective diffusion coefficient.

Because C,,; is less than C,,, , D,, should be
larger than ;. In the ecarly stages of the

propagation of the train of calcium waves (the
first 5 pulses), we assume that the retrograde
diffusion effect is not large enough to change
the oscillation frequency of the stimulated cell

Therefore, the intrinsic diffusion coefficient, I, ,

can be used as a surrogate for the effective
diffusion coefficient when considering the early
stages of propagation of calcium waves.

. Fig. 7 llustrates the properties of ICWTs at the

early stage of simulations for different effective
(intringic) diffusion coefficient rates. Fig. 7 E
shows the variation of oscillation period of the
stimulated cell for different values of the diffusion

coefficient. When D;,(Ca) is less than 0.0017 57,
there is no intercellular calcium propagation along
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the chain. Focusing on D), (Ca) 2 0.0017 57!, when
D, (Ca) is equal to or farger than 0.0017 s, the

average period of oscillation increases with increasing
diffusion coefficient. Fig. 7 F illustrates the
relationship between the effective diffusion
coefficient and the average wavelength. This
figure shows that the wavelength decreases with a
decreasing diffusion coefficient, at least in the
early stages of the propagation. This observation
can be used to shed light on the decreasing
wavelength we reported during the later stage of
propagation. Over time the retrograde diffusion
process effectively reduces the diffusion flux in
the vicinity of the stimulated cell and therefore
leads to a reduced effective diffusion coefficient.
An effective diffusion coefficient with a value
smaller than that of the intrinsic coefficient would
result in a shortening of the wavelength.

‘

CONCLASION

This modeling and simulation study of calcium
osciliations and traing of calcium waves in 2
chain-lilke cell network shows that the dynamics
of cells ernbedded in a network is significantly
different from that of an isolated cell. In particular
we have demonstrated that the transient and
steady state frequency of calcium oscillations of a
cell stimulated with an agonist depends on its
microenvironment, in this case, cell neighbors.
This effect is attributed to a crosstalk between the
stimulated celi and its environment through
refrograde diffusion of calcium and IP;. As a
growing number of cells in the chain are excited
over titne and undergo oscillations, retrograde
diffusion arising from an expanding train of
pulses affects the calcium and IPy fluxes in the
region that originated the train of waves, that is, in
the vicinity of the original stimulated cell. The
neighborhood of the stimulated cell forms a
“signaling niche” that acts on the stimulated cell

cell function, the niche-dependent changes will
likely influence subsequent functions of that single
cell. Our simulations always involved the activity
of the same, single originating cell and the
subsequent impact on calcium behavior throughout
the network.

In the tissue space, there will be muitiple

“originating cells” (meaning more than one celf in
the interconnected system is receiving an external
activating signal within the same time period), atl
of which comprise the cellular neighborbood. Thus,
the originating cell in one instance is also a
potential modifier cell to a neighborhood cell that
is originating an oscillation. So, any given cell
within a cell neighborhood is both an originating
cell and a modifier cell to signals generated
elsewhere within the neighborhood. Therefore, the

© activity of the cell system is greater than the sum

of its parts because this type of calcium wave
regulation is occurring across the entire system as
multiple different cells originate calcium oscillations.
Key to this conceptual model is a single-cell centric
perspective whereby each cell acts as a signal
originating cell while also populating the cellular
niche of other cells within the network. Even though
we focused on one originating cell in this study, it
should be possible to adapt the computational
model to examine more complex paradigm.

This observation may have striking implications
on the role of caleium signaling on cross-level
interdependence in multicellular architectures in
terms of signal generation and decoding. We have
shown that the env1romncnt—dependent cross-talk
results in Ca® and IP; regulation as well as
control over oscillation frequency. Decoding of
structural information by individual cells would
subsequently need cellular control on frequency
dependent  intracellular pathways such as
frequency»dependent protein phosphorylation by a
Ca™-calmodulin activated kinase which was
shown to be ubiquitous in a wide variety of cell

itself and affects its dynamics. After stimulation  types [41]. Therefore, it seems more likely that
of the single cell, the cellular niche responds to its . our  caicium-based epvironment dependent
Ca®" and IP; oscillations and signals back through  frequency-encoding mechanism is operative in a
gap-junction mediated diffusion thereby influencing  Tange of multicellular architectures and tissues.

the calcium behavior in the originating cell, This ,
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