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ABSTRACT

The creation of multilevel quantum states, qudits, has revolutionized concepts for quantum computing. Classical systems that capture
behavior analogous to quantum systems have been demonstrated. In this spirit, we consider a three-level classical analogue of the qudit com-
posed of coupled acoustic waveguides. Here, we demonstrate both the experimental realization of a three-level classical analogue of the qudit
and the creation and tuning of nonseparable superpositions of two of these analogues, which are classically “entangled.” Measurements of
velocities and transmission inform our assignment of these nonseparable states.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5145097

Quantum information processing paradigms promise a new era
in computational power as illustrated by recent advances.1 The quan-
tum bit (qubit), which is a critical component of all quantum comput-
ing platforms, is currently based on quantum particles or quantum
systems that are extremely sensitive to environmental conditions and
lose their superposition of states by decoherence. Coherence times can
be increased by operating at cryogenic temperature. Furthermore, the
measurement on quantum systems in the superposition of states leads
to collapse of the wave function onto pure states, requiring the use of
statistical approaches should the original superposition needs to be
reconstructed. To overcome these critical drawbacks, we theoretically
proposed2,3 and experimentally realized4 the concept of a one-
dimensional (1D) elastic pseudospin, which we call a phi-bit. The con-
cept of pseudospin has also been explored in various other topological
systems.5–15 An elastic phi-bit exhibits pseudospin characteristics, i.e.,
coherent superposition of states in the directions of propagation. The
elastic pseudospin superposition of states are stable at room temperature
and decoherence free. It is measurable without wave function collapse as
it represents an actual amplitude and not a probability amplitude.

Quantum entanglement is an essential ingredient for applications
of quantum information processing.16 The creation of a large number
of entangled qubits is needed for measurement-based quantum com-
putation,17 quantum simulation,18 and quantum error correction.19,20

One of the experimental challenges in creating and engineering entan-
glement of multiple qubits21–23 is noise control,24 and scaling up is

difficult due to decoherence. Quantum entangled systems exhibit non-
separability, which is important for quantum computing applications
and may be achieved classically.25 Classical “entanglement,” i.e., a local
nonseparable superposition of states,26 has been discussed in great
detail in the field of optics27–36 and, recently, in acoustics37–40 and has
found applications in quantum information science.41–43

A multiple phi-bit system can be constructed as a system of elas-
tically coupled 1D waveguides. The amplitude in the different wave-
guides is analogous to an orbital angular momentum (OAM) degrees
of freedom,37,38 and the amplitude of the pseudospin elastic waves
takes the form of a spinor in the two-dimensional Hilbert space of the
direction of propagation along the waveguides. Recently, we experi-
mentally demonstrated the existence of elastic waves that are nonse-
parable linear combinations of tensor product states of two
pseudospin and two OAM degrees of freedom.39 These states lie in the
tensor product Hilbert space of the two-dimensional subspaces associ-
ated with the direction of propagation and OAM. This elastic system
is, therefore, analogous to a two-partite two-level quantum system.
Nonetheless, the total dimensionality of Hilbert space can, in principle,
be increased by considering multilevel systems of qubits or phi-bits.
The possibility of using multilevel systems has led to growing interest
in the enhancement of entanglement in higher dimensions, i.e., multi-
dimensional Hilbert space.44–56 One such example is a qudit with a d-
level quantum system, and a three-level qutrit is achieved when d ¼ 3.
Such high-dimensional entangled states have been realized with
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biphotons57 or nitrogen-vacancy centers in diamond.58–60 In contrast,
no attention has been paid to the high-dimensional nonseparable
states of elastic waves. In this Letter, we propose and demonstrate the
concept of a phi-trit, which is a 1D elastic system that can support a
superposition of three mutually orthogonal elastic states. Furthermore,
we experimentally demonstrate the preparation and tunability of
acoustic nonseparable states of two phi-trits.

The phi-trit is realized as an elastic system composed of a parallel
array of four identical 1D waveguides coupled elastically along their
length. Let us define u4�1 a vector whose components, ui; i ¼ 1;…; 4,
represent the displacement of the ith waveguide (see the supplementary
material, Note 1). For plane wave displacements, ui ¼ Aieikxeixt ,
where Ai are the amplitudes and k and x are the wave number and
angular frequency; the dispersion relation is x2

j;k ¼ bkð Þ2 þ kjg2;
j ¼ 1; 2;…; 4. The set of amplitudes in the waveguides, Ai, is analo-
gous to OAM degrees of freedom. The parameter b is proportional to
the speed of sound in the waveguides, and g measures the strength of
the elastic coupling between waveguides. kj are the eigenvalues associ-
ated with the given OAM eigenmode jj iOAM . The dispersion relations
with cutoff frequencies represent the states that are coherent superposi-
tions of elastic waves propagating in opposite directions along the
waveguides, analogous to a superposition of spin states (thus, the name
pseudospin).4 At k ¼ 0, the elastic wave is standing and the amplitudes
in the two opposite directions are equal. For large positive or negative
k, a single direction dominates. k is a good number to characterize the
state of the elastic waves in the space of directions of propagation.
These elastic waves are analogous to a two-partite system identified by
the OAM and pseudospin degrees of freedom, and the latter are labeled
by the wave number k. Moreover, in the four waveguide system, the
OAM has three mutually orthogonal elastic states 2j iOAM; 3j iOAM;
and 4j iOAM, thus realizing one phi-trit. The wave number k has, in
principle, an infinite number of orthogonal states. In a finite length
waveguide, the wave number space is discrete, and we can select and
represent three pseudospin states with the labels k2j i; k3j i; and k4j i
associated with the corresponding wave numbers to realize a second
phi-trit. A general state of the system is then written as

u4�1 ¼
X
j;l

Aj;l jj iOAM � klj i eixl t : (1)

By choosing a particular frequency x for exciting the system, we create
a superposition of these mutually orthogonal elastic states (i.e., Bell
states) in the generally nonseparable phi-trit,

u4�1¼ A2;2 2j iOAM� k2j iþA3;3 3iOAM� k3j iþA4;4 4j iOAM� k4j i
�� �

eixt:
�

(2)

The Bell state coefficients A2;2; A3;3; and A4;4 are complex amplitudes,39

which can be controlled in experiment. In Eq. (2), we have constructed a
superposition of isofrequency states ðx2 ¼ x3 ¼ x4 ¼ xÞ, which is
nonseparable except for certain choices of A2;2; A3;3; and A4;4. The
wave numbers k2; k3; and k4 correspond to the modes in the three
OAM bands 2j iOAM; 3j iOAM; and 4j iOAM with the same frequency x.
In this superposition, both the eigenvectors of the OAM degree of free-
dom and the wave numbers are different. For most A2;2; A3;3; and A4;4,
this superposition of states cannot be written in the form of a tensor
product of OAM eigenvectors and pseudospin states.

The experimental realization of nonseparable phi-trits consists of
four elastically coupled aluminum rods (waveguides). We employ
ultrasonic spectroscopy techniques to characterize the states of this
system (the details of the experimental system are outlined in the
supplementary material, Note 2). The experiment is carried out by first
stimulating the coupled waveguides with each of the OAM eigenvec-
tors, jj iOAM; j ¼ 1;…; 4, at one end of the rods, and collecting the
transmission recorded by transducers at the other end of the rods.
Figure 1(a) shows the measured experimental transmission spectra.
The 2j iOAM; 3j iOAM ; and 4j iOAM OAM modes show a significant
depression in the transmission amplitude below a cutoff frequency,
and well-defined resonances are spaced more closely near the cutoff.
These resonances correspond to the standing-wave modes supported
by the finite waveguide and can be associated with pseudospin states.
To calculate the wavelength corresponding to the standing-wave
modes, we use a full-field scanning laser vibrometer (PSV-400). We
measure the velocity field along the length of the first rod in the trans-
verse direction, which maps the elastic field of longitudinal modes.
Figures 1(b) and 1(c) show laser vibrometer measurements showing
the mode shapes of 2j iOAM at 28.8 kHz and 4j iOAM at 56.6 kHz. Two
snapshots of the spatial waveforms are reported for time t1 and t2,
showing seven nodes for 2j iOAM and 12 nodes for 4j iOAM . Hence, the
wavelength corresponding to the standing waves can be easily deter-
mined from the expression k ¼ 2L=n; n is an integer corresponding to
the number of nodes of the standing waves. A wave number can sub-
sequently be calculated as k ¼ 1=k. From the experimentally

FIG. 1. (a) Transmission spectrum of the coupled four-rod waveguides for the four
OAM eigenmodes of 1j iOAM ; 2j iOAM ; 3j iOAM ; and 4j iOAM . The transmission
amplitude is in arbitrary units. (b) and (c) Velocity field along the length of the first
rod in the transverse direction that maps the elastic field of longitudinal modes of
branch 2j iOAM at 28.8 kHz and 4j iOAM at 56.6 kHz. Two snapshots of the spatial
waveforms are reported for times t1 and t2, showing seven nodes for 2j iOAM and
12 nodes for 4j iOAM. (d) Band structure determined and calculated from (a)–(c).
The asterisks in (d) are obtained from the experimentally identifiable resonances of
(a), and the solid lines associated with the asterisks are a fit to these identifiable
resonances using the dispersion relation.
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identifiable resonant frequency xj;kð Þ and the associated wave num-
ber, we obtain the dispersion relation of the second, third, and fourth
bands that possess pseudospin character4 with cutoff frequencies
2j iOAM : 15:53 kHz; 3j iOAM : 23:52 kHz; and 4j iOAM : 30:00 kHz:

The resonances shown in Fig. 1 correspond to separable states,
i.e., states expressible as tensor products of OAM and pseudospin
degrees of freedom. The OAM degree of freedom has three possible
values. By limiting the pseudospin degree of freedom to three possible
wave numbers or linear combinations of wave numbers, we can create
a nonseparable superposition of states of this two-partite three-level
elastic system. Such a superposition of isofrequency elastic states of the
coupled rod system corresponds to the linear combination of products
of the three nonzero OAM eigenstates and the corresponding pseudo-
spin states, as shown in Eq. (1). From Fig. 1(a), we identify the isofre-
quency, xI ¼ 56:6 kHz, at which there is substantial transmissions
of three OAM eigenvectors 2j iOAM; 3j iOAM; and 4j iOAM . To excite
such a nonseparable superposition of states experimentally, the cou-
pled elastic system is driven with the external force ~FeixI t ;~F

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�a2�b2

p� �
4j iOAMþa 3j iOAMþb 2j iOAM;b¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1�a2
p

sin apð Þ.
Moreover, by tuning the parameter a, the contribution of the three lin-
ear combinations of eigenmode vibrations 2j iOAM; 3j iOAM ;

�
and 4j iOAMÞ are experimentally manipulated. Figure 2(a) shows the
phase difference /ij

� �
between the transmissions for each pair of rods

as a function of a, where /ij¼ 180
p cos�1 i:j

ij j jj j

� �
; i; j¼1;…;4. For a pure

eigenmode, the phase difference between the transmissions for each

pair of rods is / 2j iOAM
12 ¼/ 2j iOAM

34 ¼0and/ 2j iOAM
23 ¼180o for 2j iOAM ,

/ 3j iOAM
12 ¼/ 3j iOAM

34 ¼180o and/ 3j iOAM
23 ¼0 for 3j iOAM; and/ 4j iOAM

12

¼/ 4j iOAM
23 ¼/ 4j iOAM

34 ¼180o for 4j iOAM . From Fig. 2(a), we indeed see
that manipulation of the parameter a can be used to tune the superpo-
sition: (i) for a¼0, the output mode of vibration is almost purely

4j iOAM since / 4j iOAM
12 ;/ 4j iOAM

23 ; and/ 4j iOAM
34 are close to 180 degree; (ii)

for a¼1, the vibrational mode is almost purely 3j iOAM ; (iii) for
a¼0:5, the driving force becomes ~F ¼ 3j iOAM=2þ

ffiffiffi
3
p

4j iOAM=2,
which leads to a nonseparable superposition of isofrequency states in
the bands corresponding to the two OAM eigenvectors 2j iOAM and
3j iOAM ;39 and finally, (iv) for any other a value, the output is a linear
combination of the tensor product of OAM eigenmodes of
2j iOAM; 3j iOAM;and 4j iOAM with the corresponding k-labeled pseudo-
spin, i.e., the state of two nonseparable phi-trits [Eq. (2)]. Such a non-
separable state of phi-trits is analogous to a “classically entangled”
two-partite three-level quantum system.

We also show the eigenmode superposition in terms of pseudo-
spin states of the elastic waves, i.e., the wave number k. The experi-
mental conditions of Fig. 1(a) enable us to resolve resonances with
frequencies close to the cutoff frequency, giving exquisite control on
the elastic pseudospins. To experimentally map the pseudospin states
for the isofrequency value of xI ¼ 56:6 kHz, we choose five different
a values ; a ¼ 0; 0:25; 0:50; 0:75; 1:0. As before, by means of laser
vibrometry, we map the longitudinal mode elastic field for each of the
a values. Moreover, to have a better resolution in the spatial waveform,
especially for high frequency value of xI ¼ 56:6 kHz, we choose a
total of 257 laser incident points along the length of the rod. From the
spatial waveform, we then calculate the wave number associated with
each mode of oscillation by using a Fourier transform in space. Due to

their finite length, the rods only support standing waves; we assume
that the wavelengths are multiples of 2L, i.e., k� ¼ k 2Lð Þ is an integer.
Figure 2(b) shows the variations of the wave number that maps vari-
ous pseudospin states as we move from a ¼ 0 to 1. For the nearly pure
eigenmode of oscillation 4j iOAM at a ¼ 0, it is clear that k� ¼ 12 has
the highest amplitude, and for 3j iOAM , at a ¼ 1, the highest amplitude
is at k� ¼ 13. These two states are separable states, namely ; 4j iOAM �
k�4 ¼ 12j i and 3j iOAM � k�3 ¼ 13

�� �
. When a ¼ 0:5, Fig. 2(b) shows

that the amplitude of k� ¼ 12 is small in comparison to the ampli-
tudes of k� ¼ 13; 14, and 15, which are the wavenumbers for 2j iOAM
and 3j iOAM states [cf. Fig. 1(b)]. Therefore, the third term in Eq. (2)
has a negligible amplitude. The wavenumbers of the states with the
largest amplitudes along the two bands with cutoff frequencies
( 2j iOAM and 3j iOAM) are k�2 ¼ 14; k�02 ¼ 15, and k�3 ¼ 13. The first

FIG. 2. Creation of nonseparable states of two phi-trits by the external

driving force ~FeixI t ;~F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2 � b2

q	 

4j iOAM þ a 3j iOAM þ b 2j iOAM ; b

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2
p

sin apð Þ, and driving frequency xI ¼ 56:6 kHz. (a) Variations of the
phase differences /ij

� �
between pairs of rods of the coupled waveguides as a

function of a; to better visualize the plot, the error bars are shown only for
a ¼ 0; 0:25; 0:5; 0:75; 1:0. (b) Spatial Fourier transform, revealing the wave
numbers, and hence the superposition of states associated with different a values:
(i) for a ¼ 0, the output vibrational mode is almost purely 4j iOAM ; (ii) for a ¼ 1, the
vibrational mode is almost purely 3j iOAM ; (iii) for a ¼ 0:5, we have the nonsepar-
able superposition of isofrequency states in the bands corresponding to the two
OAM eigenvectors 2j iOAM and 3j iOAM ; and finally, (iv) for a ¼ 0:25 and 0:75, the
vibrational mode is a linear combinations of OAM eigenmodes of 2j iOAM ; 3j iOAM ,
and 4j iOAM , i.e., two nonseparable phi-trits.

Applied Physics Letters ARTICLE scitation.org/journal/apl

Appl. Phys. Lett. 116, 164104 (2020); doi: 10.1063/1.5145097 116, 164104-3

Published under license by AIP Publishing

https://scitation.org/journal/apl


term of Eq. (2) can be written as the superposition of two states k�2 and
k�02 with OAM eigenvector 2j iOAM and frequency xI that contribute
the largest amplitudes, namely, A2;2 ¼ A2;2 k�2ð Þ and A2;20 ¼ A2;2 k�02

� �
.

Equation (2) reduces to u4�1 ¼ A2;2 2j iOAM � k�2j i þ A2;20 2j iOAM
�

� k�02
�� �

þ A3;3 3iOAM � k3
�j i

�� �
eixI t : Hence, a ¼ 0:5 corresponds to a

nonseparable superposition of isofrequency states in the bands corre-
sponding to the two OAM eigenvectors 2j iOAM and 3j iOAM and pseu-
dospin states.39 Finally, for a ¼ 0:25 and 0:75, we have a nonseparable
superposition of isofrequency states in the bands corresponding to
the three OAM eigenvectors and the corresponding pseudospin states,
i.e., we have realized two nonseparable phi-trits. In particular,
for a ¼ 0:75, we see that the amplitudes corresponding to
k� ¼ 11; 12; 13; and 14 are the highest, a clear signature of two
nonseparable phi-trits. For such a case, Eq. (2) takes the form u4�1
¼ ðA2;2 2j iOAM � k�2j i þ A3;3 3iOAM � k3

�j i þ A4;4 4j iOAM � k�4j i
��

þA4;40 4j iOAM � k�04
�� �
Þ eixI t . Note that the kets of differing waves are

orthogonal.
We now calculate the entropy of classical entanglement, to quan-

tify the level of nonseparability. To do so, first, we determine the Bell
state complex coefficients for different values of a ¼ 0; 0:5; 0:75; 1:0
(see the supplementary material, Note 3). We then calculate the
entropy of entanglement,61 S; for the two nonseparable states corre-
sponding to (i) a ¼ 0:5, and (ii) a ¼ 0:75. Using our experimental
measurements, we find (i) SðiÞ ¼ 0:84ln26 0:01ln2, which is only
about 16% less than ln2, the entropy of two phi-bits maximally
entangled, and (ii) SðiiÞ ¼ 0:95ln36 0:02ln3, which is only about 5%
less than ln3, the entropy of two phi-trits maximally entangled (see the
supplementary material, Note 3).

We have experimentally demonstrated the existence and
manipulation of the nonseparable superposition of states in an elastic
system composed of two subsystems, each supporting three states.
Each subsystem acts as an elastic analogue of a qutrit, called a phi-
trit. The first phi-trit is associated with the OAM degrees of freedom
of a parallel array of four coupled elastic waveguides. The second one
is associated with the direction of propagation degrees of freedom
along the waveguides. The amplitude of the superposition is complex,
i.e., supports a phase. Therefore, this work offers an innovative direc-
tion for realizing and manipulating the coherent nonseparable super-
position of elastic states that are analogous to quantum states
without their drawback. The experimental demonstration of our
entangled states realizes the potential of acoustic waves to capture
phenomena previously associated with optics. Recently, the use of
classical light with entangled degrees of freedom has found applica-
tions in quantum information62 and metrology.42,63 Our works sug-
gest that the same sort of applications can be realized with acoustic
systems. In electromagnetic systems, coupling is typically weak; in
contrast, coupling in acoustic systems can be easily manipulated by
choices of materials and fabrication. Finally, the experimental realiza-
tion of high-dimensional entangled elastic states will be of significant
interest in quantum science as they can increase the available com-
puting bandwidth for efficient quantum information processing.
Therefore, this work lays the groundwork for quantum-like elastic
physics and opens up avenues for information storage and processing
modalities.

See the supplementary material for the details of the experimental
materials and methods.

We acknowledge financial support from the W.M. Keck
Foundation.
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