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a b s t r a c t

We study the topological characteristics of elastic waves in a one-dimensional mass and
spring elastic superlattice that exhibits non-reciprocal elastic wave propagation due to
extrinsic application of a single sinusoidal spatiotemporal modulation of its spring stiff-
ness. We employ a computational procedure to generate the band structure, traveling
modes' amplitudes and phases, and subsequently the geometric phases to characterize the
global vibrational behavior of the system and its topological character. The elastic super-
lattice demonstrates the notion of non-conventional band structure, where hybridization
gaps arise as bands appear and cross for certain wavenumber values. We estimate these
hybridization points using multiple time scale perturbation theory for low modulation
velocity. At the hybridization points, both the theoretical and numerical analyses display a
discontinuity in the traveling modes’ amplitudes. Consequently, we find a multiple of p,
sometimes zero, geometric phase value in the spatiotemporal modulated elastic system, if
the unit cell has inversion symmetry as imposed by the values of the spring constant at the
initial time. The temporal modulation, which creates hybridization gaps, changes the na-
ture of the geometric phase from a closed loop geometric phase when the modulation is
only spatial, to an open loop geometric phase. This open loop geometric phase is invariant
to the temporal modulation.

© 2019 Elsevier Ltd. All rights reserved.
1. Introduction

The emergence of a new science of sound accounts not only for spectral and refractive characteristics of waves but also the
amplitude and phase of thewaves [1], which under symmetry breaking conditions may lead to non-conventional topology. In
phononic crystals, symmetry breaking is linked to constraints on the topological form of acoustic wave functions. For
instance, in the context of topology, for the well-known driven damped oscillator, the amplitude of the wave function has
properties isomorphic to the evolution of a field of parallel vectors tangent to a strip-like manifold and perpendicular to the
length of the strip. The direction along the length of the strip represents frequency space and the strip has to exhibit a torsion
(vectors in the vector field change orientation) at the oscillator resonant frequency as the amplitude changes sign as one
crosses the resonance (i.e., the amplitude accumulates a p-phase shift). Dissipation aside, one of the most central elements to
symmetry breaking and topology of elastic waves, is dispersion. A simple, linear one-dimensional (1D) harmonicmonoatomic
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chain is a dispersive system, but one that obeys time-reversal symmetry and supports elastic waves with conventional to-
pology in wave vector space. Perturbing the 1D harmonic chain through linear or nonlinear coupling may create resonant
phonon modes that are dispersive, but whose amplitude may depend on the frequency and wave vector. In this case, the
interplay between the coupling and dispersion of the system may lead to symmetry breaking conditions and therefore non-
conventional elastic wave topology. Examples for the breaking of symmetries including time-reversal symmetry, chiral
symmetry, and particle-hole symmetry [1]. An alternative realization of intrinsic parity symmetry breaking which is
comprised of a one-dimensional (1D) harmonic crystal with masses attached to a rigid substrate through harmonic springs
has been shown to possess a spin-like topology that can be described by a Dirac-like equation [2,3]. Complementing intrinsic
symmetry breaking are extrinsic topological phononic structures which have been created using a periodic spatial modu-
lation of the stiffness of a 1D elastic medium such that its directed temporal evolution breaks both time-reversal and parity
symmetries [4e10].

The development of acoustic analogues of quantum phenomena offers additional perspectives for applications and
technological developments of the new science of sound. Within a wide range of quantum phenomena, the Berry phase or,
more generally, the geometric phase has considerable observable impact. In fact, it can also appear in classical systems as
discovered by Hannay in 1985 [11]. The concept of geometric phase has implications in several branches of physics and has
found applications in molecular systems [12], in cold atoms [13,14], photonic systems [15,16], and also in acoustic systems
[17e20]. Elastic structures have been shown recently to possess non-conventional topology by breaking time-reversal
symmetry (time-dependent superlattice) through addition of energy from the outside [4,5,21e26].

One can define the geometric phase as the holonomy of phase that is purely of geometrical origin, which became popular
after the discovery of the Berry phase [27]. The Berry phase is defined on the interval between 0 and 2p, i.e., it is reported
modulo 2p, while Berry phases of 0 and p are frequently linked to trivial and non-trivial topologies. While the Berry phase
was originally investigated for periodic, or cyclic, systems that varied slowly, adiabatically, Samuel and Bhandari showed that
neither of these conditions is required for the computation of a geometrical phase [28]. In particular, one can compute an
open path geometric phase for the non-periodic system that is consistent with the Berry phase for a periodic system.

We have carried out the calculation of geometric phases for band structures arising from a one dimensional (1D) mass and
spring elastic superlattice with a spatial modulation of stiffness [29]. It is observed that the symmetry of the modulation of
stiffness with respect to inversion dictates whether the bands’ Berry phases were 0, p, or some other value. In the current
manuscript, we investigate the effect on geometric phases that arises from adding a temporal modulation to the spatial
modulations considered in the previous study. In particular, we consider a moving spatial modulation with a fixed velocity
along a 1D elastic superlattice. Applying computational tools developed in the case of the spatial modulation, we note that the
geometric phase of the first two fundamental bands does not change due to the temporal modulation. The temporal mod-
ulation does open gaps in the band structure, however, and the geometric phase becomes an open path geometric phase.
These numerical results are explained within the context of multiple time scale perturbation theory.

The structure of the paper is the following: in Section 2 we present a 1D mass and spring elastic superlattice subjected to
spatiotemporal modulations of the stiffness. In Section 3, we illustrate the computational tool for the spectral analysis of
amplitudes and phases, and a theoretical analysis within the framework of method of multiple time scales. In Section 4, we
present results for time-dependent superlattice and compare with time-independent superlattice to demonstrate the
invariance of the geometric phase. We draw conclusions in Section 5.
2. Mass and spring model

We seek to explore the topological characteristics of elastic waves in a 1Dmass and spring elastic superlattice (Fig. 1). For a
mass and spring systemwith a total of NmNc identical masses, whereNm is the number of masses in a single unit cell and Nc is
the total number of unit cells, the equations of motion are:

m€un;Ni
ðtÞ¼ bn�1ðtÞ

�
un�1;Ni

ðtÞ � un;Ni
ðtÞ�� bnðtÞ

�
un;Ni

ðtÞ � unþ1;Ni
ðtÞ� (1)

where u0;Ni
¼ uNm;Ni�1; u0;1 ¼ uNm;Nc

; uNmþ1;Ni
¼ u1;Niþ1; uNmþ1;Nc

¼ u1;1; b0 ¼ bNm
. In Eq. (1), m is the mass, bn is the force

constant of the n� th spring, t is time, and un;Ni
ðtÞ is the displacement from equilibrium as a function of time t of the n� th

mass in the Ni � th unit cell of the chain, respectively. We use Born-von Karman periodic boundary conditions for which
Fig. 1. Schematic illustration of a 1D chain comprised of masses and springs with spatiotemporal modulations of the spring stiffness.
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eikLNc ¼ 1, where L is the unit cell parameter, and k is the wave number. In the first Brillouin zone, kL is limited to the interval
�p to p with a spacing of 2p=Nc. For this study, we consider a four mass unit cell for comparison with results from the static
spatial modulation of stiffness.

The spring constants have a modulation in time and space that is sinusoidal so that:

bnðtÞ¼b0±Db sinðkmxn � umtÞ (2)
In Eq. (2), b0 is the unmodulated spring constant, Db is the modulation amplitude, and km and um are the propagation
wave number and the angular frequency of the modulation, respectively. Therefore, the mass and spring system can be
described as the assembly of unit cells of spatial modulation period being lm ¼ 2p=km ¼ L ¼ Nma, where a is the inter-mass
spacing and Nm ¼ 4 is the number of masses per unit cell. As such,

bnðtÞ¼b0±Db sin
�
2p
L
ðxn � VmtÞ

�
; (3)

where Vm ¼ um=km ¼ umL=2p is the speed of the modulation. For the sake of simplicity, we define the spring constant
modulation of bnðtÞ¼ b0 þ Db sinð2pðxn � VmtÞ=LÞ type as bþn and bnðtÞ¼ b0 � Db sinð2pðxn � VmtÞ=LÞ type as b�n . The ar-
rangements of the springs constants bþn and b�n are related to each other by a change in origin of the unit cell from mass 1 to
mass ðNm=2þ 1Þ i.e., by shifting the origin to the left/right by half of the unit cell parameter L. In the modulated medium, due
to the repetition of the unit cell, both stable and unstable interactions can occur [30]. To have a stable interaction that is
associated with frequency conversion effects [30], we limit the phase velocity of the modulation to be less than that of the
signal in themodulatedmedium, i.e. Vm < c0, where c0 ¼ ffiffiffiffiffiffiffiffi

E=r
p

is the phase velocity of the longitudinal wave in themedium, E
is the longitudinal elastic constant, and r is the density. We consider the medium to be composed of Ge-Se chalcogenide glass
of composition GeSe4 [31] with E ¼ 13:8 GPa and r ¼ 4361 kg=m3. Therefore the sound velocity is c0 ¼ 1780 m=s. We also
impose the physical restriction of the relative modulation amplitude such that Db=b0 <1 i.e., the spring constant must remain
positive.

3. Methods

We investigate the vibrational properties of the time-dependent elastic superlattice both computationally and using
multiple time scales perturbation theory.

3.1. Computational method: spectral analysis of amplitudes and phases (SAAP)

The Spectral Analysis of Amplitudes and Phases (SAAP) method [29] is employed to computationally generate the band
structure, traveling modes’ amplitudes and phases, and subsequently the Berry connections and geometric phases associated
with the bands of an elastic periodic superlattice, as a characterization of the global vibrational behavior of the elastic system
and its topological character. Traditional theoretical approaches such as the eigen value/vector approach are limited to linear
systems, however the SAAP method which is directly related to the dynamics of the system can be applied to either linear or
nonlinear systems. The SAAP method entails the use of molecular dynamics (MD) simulation twice with differing initial
conditions. The choice of initial conditions for the simulations is essential to compute both the band structures and phases.
For the 1st MD, we choose the initial conditions as un;Ni

ð0Þ ¼ cosðkNiLÞ and _un;Ni
ð0Þ ¼ 0. After eachMD run for a specific wave

number k, the frequency spectrum is found by the temporal integral of the displacement un;Ni
ðtÞ

~un;Ni
ðuÞ ¼ 1

t0

Z t0

0
un;Ni

ðtÞe�iutdt (4)
In Eq. (4), t0 is the total time of the MD run for which the displacements are tabulated. Eq. (4) is like a Fourier transform
whose peak positions define the frequencies for the given value of k. Since, multiple frequencies can be supported for a single
wave number k, we denote the frequencies as ujðkÞ which refers to the jth lowest frequency the system supports for wave
number k. Once ujðkÞ is known, we calculate the elastic wave amplitudes and phases using another set of MD simulations
with new initial conditions un;Ni

ð0Þ ¼ cos ðkNiLÞ and _un;Ni
ð0Þ ¼ � ujðkÞ sin ðkNiLÞ. This new set of initial conditions now sets

the values of the velocity to those prescribed by the computed band structure.We emphasize here that one has to use specific
traveling elastic wave initial conditions, instead of random initial conditions, to obtain the amplitudes and then phases, since
random initial conditions add or subtract a constant value to the phase. After the second set of MD simulation, we project the
calculated displacement un;Ni

ðtÞwith wave vector k and frequency ujðkÞ onto plane waves to calculate the complex amplitude
An;jðkÞ as
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An;jðkÞ ¼
1
Nc

XNc

Ni¼1

1
t0

Z t0

0
un;Ni

ðtÞe�ikNiLe�iujðkÞtdt; (5)

and the elastic band structure is generated as
��Aj
�
k;ujðkÞ

	�� ¼ ���� 1Nm

XNm

n¼1

An;jðkÞ
���� (6)
Finally, the phase of the complex amplitude is given by

fn;jðkÞ ¼ angle
�
An;jðkÞ

�
; (7)

where
angle ðzÞ ¼

8>>>>><
>>>>>:

atan
�
ImðzÞ
ReðzÞ

�
þ p; if signðReðzÞÞ<0 and signðImðzÞÞ>0

atan
�
ImðzÞ
ReðzÞ

�
� p; if signðReðzÞÞ<0 and signðImðzÞÞ<0:
Note that the phase of z is defined on the interval ep to p.
A further characterization of the behavior of the amplitudes is realized by the Berry connection for a particular band of the

band structure. When the system contains a finite number of unit cell, NC , the Brillouin zone is discretized and the Berry
connection is given by Ref. [32].

BCjðkÞ ¼
XNm

n¼1

~A
*
n;jðkÞ~An;jðkþ DkÞ; (8)
In Eq. (8), BCjðkÞ is the Berry connection value for a discrete wave number (k) of band j and DkL ¼ 2p=NC , and ~An;jðkÞ is the
normalized complex amplitude for the n-th mass in a unit cell on band j and is calculated as

~An;jðkÞ ¼
An;jðkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNm
n¼1

��An;jðkÞ
��2q (9)
The ~An;jðkÞ with n2½1;Nm� represent the complex n-th components of a unit vector in a Nm dimensional complex space.
This normalized amplitude unit vector (n.b., the normalization is for the full vector) can be defined as:

~A
!

¼ �~A1;jðkÞ; ~A2;jðkÞ;…; ~ANm;jðkÞ
	

(10)
This amplitude unit vector evolves along some parametric curve as k is varied. The Berry connection characterizes the
variation in orientation of the unit vector along some path in the complex space of amplitudes parametrized by k. Summing
the Berry connection for the possible k values of some specific band over a path in k-space defined by the first Brillouin zone,
gives the geometric phase. Therefore, the geometric phase fG of band j is then defined as [32].

fG;j ¼ � Im
n
ln
hYNc�1

i¼1
BCjðkiÞ

io
mod 2p (11)
In Eq. (11), Im takes the imaginary part of its argument. For infinite systems or continuous k, a differential form of the
above expression is used [27]. The geometric phase that characterizes the property of bulk bands in periodic systems is known
as the Zak phase [33], whereas Berry introduced the general concept of geometric phase earlier [27]. We use the term
geometric phase for which the summation of Eq. (11) (or the line integral for the continuous system) is evaluated over an open
path in k space, and we reserve the name of Berry phase for which the summation of Eq. (11) is evaluated along an arbitrary
closed path in a parameter space. This is because the calculation of Berry phase is conditioned by the existence of a closed

path in the k-space with the amplitudes or projections ~An;jðkÞ being periodic in k space. Hence, for the calculation of Berry

phase, ~An;jðp=LÞ is taken to be same as ~An;jð� p=LÞ. Finally, the evolution of the amplitude unit vector ~A
!

in the Nm dimensional
space parametrized by the wave number k generates a manifold. The geometric phase is the net phase accumulated by the
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amplitude unit vector over the entire manifold for a specified path. That is to say, the geometric phase characterizes the
topology of themanifold. Therefore, the SAAPmethod is a useful tool to explore the topological characteristics of elastic waves
in elastic structures. As we have seen above, in the SAAP method Newton's equations of motion are solved as a function of
time via a molecular dynamics approach and the solutions are projected on to planes waves, which allows the extraction of
the amplitudes including their phases. While in the current manuscript we test the SAAP computational tool on simple mass
and spring models, the method can be applied to continuous systems including rods, beams and plates.

3.2. Theoretical study: method of multiple time scales

In Refs. [4,5] a multiple time scale perturbation theory [34] is used to study the time-dependent elastic superlattice in the
long wavelength limit. Here, we summarize the analysis that will provide insight into the origin of the features discussed in
Section 4. The displacement field uðx; tÞ is written as a second order power series [4].

uðkþ g; t0; t1; t2Þ¼u0ðkþ g; t0; t1; t2Þ þ 3u1ðkþ g; t0; t1; t2Þ þ 3
2u2ðkþ g; t0; t1; t2Þ; (12)

where 3is a small perturbation parameter that is a measure of the magnitude of the modulation and g ¼ 2p
L mwithm being a

positive or negative number. Here, ui with i ¼ 0;1;2 are the displacement functions expressed to zeroth-order, first-order, and
second-order in the perturbation. The single time variable, t, is replaced by three variables representing different time scales:
t0 ¼ t; t1 ¼ 3t; and t2 ¼ 32t. The zeroth-order equation in 3represents propagation of an elastic wave in a homogeneous
medium with the eigenvalue u0 ¼ c0ðkþ gÞ. The solution to the first-order in 3is

u1ðkþ g; t0; t2Þ¼ a1ðkþ g; t2Þeiu0ðkþgÞt0 þ i
f ðkþ g � kmÞa0ðkþ g � km; t2Þ

u2
0ðkþ gÞ � ½u0ðkþ g � kmÞ þ um�2

ei½u0ðkþg�kmÞþum�t0

þ i
f ðkþ g þ kmÞa0ðkþ g þ km; t2Þ

u2
0ðkþ gÞ � ½u0ðkþ g þ kmÞ � um�2

ei½u0ðkþgþkmÞ�um �t0 ;
(13)

where f ðxÞ¼ xkm þ x2 and hðxÞ ¼ xkm � x2. The zeroth- and first-order solutions give the positions of the hybridization gaps,
kgap (vide infra).

4. Results and discussion

4.1. Numerical results

We proceed to do the spectral analysis of elastic wave amplitudes and phases when the modulation velocity ðVmÞ is 350
m=s and for both bþn and b�n modulation types. Fig. 2 shows the band structure of the spatiotemporal modulated elastic
superlattice, calculated using Eq. (6). The spectrum ujðkÞ and hence the band structure remains invariant regardless of bþn or
b�n modulation type. Fig. 2 shows the directional band gaps i.e., opening of band gaps on only one side of the Brillouin zone, as
previously observed by other researchers [4,5,7,8,35,36]. The location of the gaps can be tuned by changing the modulation
speed [7].

The band structure of the time-dependent superlattice contains a series of frequency shifted bands (see Fig. 2). The fre-
quency shift amounts to multiples of um, which is independent of the speed of wave in the propagating medium if Vm < c0
(unlike time-dependent photonic and phononic crystals [37,38]). The intensity of these bands decreases as the shift in fre-
quency increases. Between the frequency shifted bands and the prior bands of the static modulation, hybridization gaps form
Fig. 2. Elastic wave band structure resulting from a moving periodic sinusoidal modulation with a modulation velocity of Vm ¼ 350 m=s. Red (blue) dotted line
shows the 1st (2nd) fundamental branch below (above) the 1st (2nd) hybridization gap. Here, both axes are in units of radians, obtained by multiplying wave
number by L and frequency by

ffiffiffiffiffiffiffiffiffiffiffiffi
m=b0

p
. System parameters: m ¼ 4:361� 10�9 kg, a ¼ 0:1mm, b0 ¼ 1380kN=m, Db =b0 ¼ 1=3, Nc ¼ 96; and Nm ¼ 4. (For

interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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at kgap [5]. We define the band below the first hybridization gap as the 1st fundamental branch (FFB), and the band above the
second hybridization gap as the 2nd fundamental branch (SFB). The path for the FFB (SFB) starts from A (A/) and goes through
point B (B/) and ends at point C (C/), as shown in Fig. 2 by the red (FFB) and blue (SFB) dotted lines. We denote the frequencies
and amplitudes associated with the fundamental branches as upðkÞ and An;pðkÞ, where p labels the fundamental branches. We
wish to characterize the behavior of the amplitudes of these two fundamental branches by the Berry connection and geo-
metric phase.

Figs. 3 and 4 show the real and imaginary components of the normalized complex amplitudes, ~An;pðkÞ. Fig. 3 (Fig. 4) shows

the complex amplitudes of each mass n and each fundamental branch p for bþn ðb�n Þ modulation type. For bþn modulation, we
Fig. 3. Numerically calculated normalized complex amplitudes at the (a) FFB, and (b) SFB of masses 1, 2, 3, and 4 for the bþn modulation. The system is composed
of 24 unit cells.



Fig. 4. Numerically calculated normalized complex amplitudes at the (a) FFB, and (b) SFB of masses 1, 2, 3, and 4 for the b�n modulation. The system is composed
of 24 unit cells.
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note from Fig. 3a that the real components of the FFB amplitude is an even function of k and the imaginary components is an

odd function i.e., ~An;pðkÞ ¼ ~A
*
n;pð� kÞ. However, for the SFB (Fig. 3b) we find ~An;pðkÞ ¼ ~A

*
n;pð�kÞ until kgap, and ~An;pðkÞ¼ �

~A
*
n;pð�kÞ after kgap where there is a discontinuity. The discontinuity at kgap leads to a change in sign of the real and imaginary

components of the amplitudes. On the SFB, there is also a discontinuity for the imaginary components at k¼ 0, as well as, at
kgap. Therefore, for b

þ
n modulation type we observe either zero or two discontinuities for the imaginary components of the

complex amplitudes.
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Fig. 4 displays the same information about the real and imaginary components of the complex amplitudes for the b�n
modulation.Unlike the bþn modulation, for the b�n modulation, we observe a single discontinuity for the imaginary compo-
nents of the amplitudes either at kgap (FFB, see Fig. 4a) or at k ¼ 0 (SFB, see Fig. 4b). As will discuss below, these discontinuities
lead to a geometric phase value of either 0 or p. For bothmodulations, we also note that if there is a discontinuity at kgap of the
FFB amplitudes, there is no discontinuity at kgap of the SFB amplitudes, and vice versa. Further, for a particular fundamental

branch, if there is a discontinuity at kgap for b
þ
n modulation, there is no discontinuity at kgap for b

�
n modulation, and vice versa.

Using SAAP tool, we can numerically estimate kgap.
From Figs. 3 and 4 we also note that the real components of the complex amplitudes are equal for masses 1 and 4, and

masses 2 and 3, and that the imaginary components of the amplitudes are equal but of opposite signs, so that for each of the

fundamental branches we find ~A1;pðkÞ ¼ ~A
*
4;pðkÞ and ~A2;pðkÞ ¼ ~A

*
3;pðkÞ. Fig. 5 shows the impact of these relations in terms of the

phase values for masses 1 and 4, and masses 2 and 3 i.e., f1;pðkÞ¼ �f4;pðkÞ and f2;pðkÞ ¼ � f3;pðkÞ. This relationship is similar
to that seen for the static system where it arises from the inversion symmetry of the elastic superlattice [29]. At the initial
time, we have b1ð0Þ ¼ b3ð0Þ and hence mass 1 is connected with springs b1ð0Þ and b4ð0Þ to its right and left, and mass 4 is
connected with springs b4ð0Þ and b1ð0Þ to its right and left. From Fig. 5, we also observe that the phase value is an odd
function of wave number such that fn;pðkÞ¼ �fn;pð�kÞ if there is no discontinuity at kgap. If there is a discontinuity at kgap, we
find fn;pðkÞ¼ �fn;pð�kÞ before kgap and fn;pðkÞ¼ �fn;pð�kÞ þ p after kgap.
Fig. 5. Numerically calculated phase values of each mass n at each fundamental branches and for both modulations. The system is composed of 24 unit cells.
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Using Eq. (8) of the Berry connection, we have for each fundamental branch:

BCpðkÞ¼
XNm

n¼1

~A
*
n;pðkÞ~An;pðkþ DkÞ ¼

n
~A
*
1;pðkÞ~A1;pðkþ DkÞ

o
þ
n
~A
*
1;pðkÞ~A1;pðkþ DkÞ

o*
þ
n
~A
*
2;pðkÞ~A2;pðkþ DkÞ

o

þ
n
~A
*
2;pðkÞ~A2;pðkþ DkÞ

o*
;

since at each fundamental branch we observed ~A1;pðkÞ ¼ ~A
*
4;pðkÞ and ~A2;pðkÞ ¼ ~A

*
3;pðkÞ, regardless of the modulation. There-

fore, BCpðkÞ given by the above equation is purely real with either positive or negative values and therefore a geometric phase
of either 0 or p. In Fig. 6, we plot the Berry connection values on each fundamental branch and for both modulations and note
that the connections are real. Using Eq. (11), we find that the geometric phase value is 0 for each fundamental branch for bþn
modulation and p for b�n modulation.

For a sinusoidal spatiotemporal modulated elastic superlattice, we find a multiple of p (either 0 or p) geometric phase
values. We also observe that multiple of p geometric phase values are conditioned by the selection of the origin of the unit
cell, i.e., the geometric phase value of 0 corresponds to bþn modulation and p for b�n modulation. For the case of static only
spatial modulation, we also note that the geometric phase values are the same for the bþn modulation (that is, 0) and the b�n
modulation (that is, p). In summary, the temporal modulation does not change the value of the geometric phase for either

modulation, however, the path in k space goes from being closed in the static case i.e., uk



�p

L

�
¼ uk



p
L

�
to being an open path

for the temporal modulation i.e., uk



� p

L

�
suk



p
L

�
.

Fig. 6. Berry connection ðBCpðkÞÞ and geometric phase ðfG;pÞ values at each fundamental branch p and for both modulations (R and I stand for real and imaginary
components, respectively). The system is composed of 24 unit cells.
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4.2. Theory of hybridization gaps

From the numerical study we have observed hybridization gaps that lead to a discontinuity in the fundamental branch
amplitudes (see Figs. 3 and 4). In this section, we theoretically estimate kgap and give an explanation of the discontinuity.

As mentioned in Section 3.2, the zeroth-order solution of the perturbation analysis represents propagation of an elastic
wave in a homogeneous mediumwith the eigenvalue u0. However, the first-order solution (Eq. (13)) corresponds to the first-
order Brillouin harmonics that is observed in the band structures of the time-dependent superlattice (see Fig. 2) [5]. If f0 is the
frequency of the elastic waves, then the frequency of the Brillouin modes ðfaÞ contains harmonics of the frequency associated

with the moving modulation


fm ¼ um

2p

�
i.e., fa ¼ f0 þ afm; a ¼ 1;2; ::: [5]. These harmonic components appear as Stokes and

anti-Stokes bands parallel to the folded bands of the static superlattice corresponds to u0. The scatteredmodes hybridize with
the static folded bands to form directional band gaps i.e., opening of band gaps only on one side of the Brillouin zone.
Therefore, the gaps in Figs. 2 and 7 result from the hybridization between a first-order Brillouin harmonic ða ¼ 1Þ and the first
and second zeroth-order bands of the static superlattice.

We analyze the above results using the discrete mass and spring elastic superlattice. To zeroth-order in perturbation, the
dispersion relation for 1D mass-spring system is

uðkÞ ¼ 2

ffiffiffiffiffi
b0
m

r ����sin
�
k
2

����� (14)
For a superlattice of four identical masses per unit cell with no spring constants modulation, there are four folded bands.

The dispersion relation for the lowest two bands is u0;1 ¼ 2
ffiffiffiffi
b0
m

q ����sin
�

k
2

����� and u0;2 ¼ 2
����sin

�
�jkjþ2p

L
2

����� ¼ 2
ffiffiffiffi
b0
m

q ����sin
�
p
4� jkj

2

�����,
where kL ¼ ½�p;p� and the subscript ð0; jÞ indicates zeroth-order modes of branch j. We know that hybridization band gaps
form between the zeroth-order modes and the first Brillouin harmonics at the resonance wave numbers, kgap. Therefore, the
2nd hybridization gap forms at the intersection between upper zeroth-order band ðu0;2Þ and lower first Brillouin harmonic
ðu1;1Þ (see Fig. 7). The lower first Brillouin harmonic ðu1;1Þ can be obtained by shifting the zeroth-order band by þum i.e.,
u1;1 ¼ u0;1 þ um. Therefore, at the hybridization wave number kgap we have

u0;1 þum ¼ u0;202

ffiffiffiffiffi
b0
m

r ����sin
�
kgap
2

�����þ um ¼ 2

ffiffiffiffiffi
b0
m

r ����sin
�
� kgap

2
þ p

4

����� (15)
For the given modulation speed of Vm ¼ 350m=s, we obtain kgapL ¼ 2:472 within the 1st Brillouin zone.
We now analyze the normalized complex amplitudes and phases of 1D mass and spring superlattice composed of four

identical masses per unit cell but no spring constants modulation. In Figs. 8 and 9we plot the normalized complex amplitudes
and phases for the lowest two bands using the zeroth-order frequency spectrum ðu0;1 and u0;2Þ. To calculate the complex
amplitudes and phases, we have used the SAAP method as discussed in Section 3.1. By comparing Figs. 8 and 9 with Figs. 3e5,
we see that both the amplitudes and phases are in excellent agreement until the hybridization point, kgapL. Therefore, using
the zeroth-order solution in 3, we can theoretically calculate the complex amplitudes and phase of the two fundamental
branches up to kgap. To the first-order in 3, we find a change in sign of the amplitude of the first-order displacement function as
the wave number is varied across kgap (see Eq. (13)). This is because as we pass through kgap, the wave function transitions
Fig. 7. Schematic illustration of the band structure of the static superlattice and of the Brillouin harmonic bands involved in the formation of the hybridization
gaps.



Fig. 8. Normalized complex amplitudes of zeroth-order (a) 1st ðu0;1Þ and (b) 2nd ðu0;2Þ branches of masses 1, 2, 3, and 4. The system is composed of 24 unit cells.
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Fig. 9. Phase values of zeroth-order 1st ðu0;1Þ and 2nd ðu0;2Þ branches of masses 1, 2, 3, and 4. The system is composed of 24 unit cells.
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from a state corresponding to a zeroth-order type wave ðeiu0ðkþgÞt0 Þ to a wave having the characteristics of a first-order wave
ðei½u0ðkþg�kmÞ�um�t0 Þ. The transition between these two types of wave leads to a phase difference of p and hence a discontinuity
at kgap. From Fig. 7, we see that there are four transitions between these two types of waves. However, as we discuss in the
next paragraph, if there is a p phase difference or discontinuity at kgap to the first transitions, there is no discontinuity at the
second transitions, and vice versa. These alternate discontinuity phenomenon continues to the upper pairs of transitions as
well.

Let's assume fðkÞ is the phase value of the zeroth-order type wave and there is a p phase difference at the first transition.
Though before and after kgap, the phase value of zeroth-order band will remain the same, however due to a p phase difference
at the first transition, after kgap the phase value of the first-order band will be fðkÞþ p. Moreover, since there is a change in
sign of the amplitude of the first-order displacement function as the wave number is varied across kgap, to the left of kgap the
phase value of the first-order band will be fðkÞ. Therefore, we find 0 local phase difference at the second transitions between
these two types of waves. Similarly, there is p and 0 phase difference at the third and four transitions between these two types
of waves, respectively. As a result, if there is a discontinuity at the 1st transition (similar to FFB of Fig. 2), there is no
discontinuity at the 4th transition (similar to SFB of Fig. 3), and vice versa.

5. Conclusions

We have demonstrated using perturbation theory and numerical calculations of the SAAP method that the geometric
phase of the first two fundamental branches of the band structure of a mass and spring superlattice is not changed by a
temporal modulation of stiffness. However, there are two effects of temporal modulations on the band structure that have
been shown here, 1) the geometric phase changes from being a closed loop to an open loop geometric phase and 2) hy-
bridization gaps are opened in the band structure for each of the fundamental branches. Within the context of multiple time
scale perturbation theory, we observe that the fundamental bands moves from the zeroth-order solution to the first-order
solution at the hybridization gap wave number, kgap. It is noted that at kgap as the wave number increases, if there is a
discontinuity in the traveling wave amplitudes when the zeroth-order solution changes to the first-order solution, there is no
discontinuity when the first-order solution changes to the zeroth-order solution. In either case, the overall change to the
geometric phase for each fundamental band is invariant to the temporal modulation.

The insights provided by SAAP method and multiple time scale perturbation theory can be used in understanding and
designing phononic structures that support topological characteristics that may include non-reciprocal propagation of
acoustic waves for a range of frequencies. These topological invariants of the geometric phase in a periodic system can also be
used to determine the existence of topological interface states within a certain band gap [39]. Further, based on the invariance
of geometric phase to temporal modulation, the topological character of an acoustic can be determined for the static spatial
modulation. Engineering acoustic metamaterial band structures to manage both the position in wave number and width in
frequency, as well as, controlling the topological character of these metamaterials can give rise of exciting new functional
capabilities and applications for these remarkable structures.
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The asymmetry of the elastic band structure, observed in the current work, also leads to non-reciprocity and hence in turn
can lead to immunity to backscattering by any defect or imperfection in the medium. These properties readily suggest ap-
plications in the domain of elastic wave-based signal processing and in particular, the possibility of utilizing non-reciprocity
to achieve low loss coherent signal propagation in many technological devices such as telecommunication surface acoustic
wave (SAW) or bulk acoustic wave (BAW) filters [40]. These low loss devices would then consume significantly less power and
would have significant impact on telecommunication technologies. Furthermore, we have observed that the Berry phase
remains “quantized” by taking value of either p or 0. This quantization suggests that the classical elastic system investigated
here may lead to analogies with true quantum mechanical systems. It is therefore possible to employ and control the Berry
phase (and perhaps the geometric phase in general) to encode information similarly to that encoded in emerging quantum
information storage and processing devices [41]. Our work therefore may also result in alternative paradigm in quantum-
analogue information processing. Finally, the geometrical phase investigated here is a non-local quantity as it represents
the collective behavior of a number of spatially distributed elastic masses. The extension to heterogeneous continuummedia
is straightforward and the geometrical phase would be a measure of the global spatial (also temporal) variations in the
properties of the medium. In that sense, the geometrical phase represents the collective effect of scattering by the hetero-
geneities in the medium. Our work suggest therefore that the geometrical phase and the Berry phase may be used in ul-
trasonic or acoustic sensing of infrastructure [42].
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Appendix
A1. Geometric/Berry phase and topology

In this appendix, we illustrate the concept of topology for elastic waves in themass and spring superlattice. The topological
characteristics of waves in elastic structures are determined by the geometric/Berry phase of waves, as a characterization of
the global vibrational behavior of the system.

As a demonstration, we consider a system of two identical masses per unit cell with spring constants modulation [29]. The
equations of motion for masses 1 and 2 of the Ni-th unit cell interacting with spring constants b1 and b2 in an infinite 1D
system are (see Fig. A1)

m€u1;Ni
ðtÞ¼b2

�
u2;Ni�1ðtÞ � u1;Ni

ðtÞ�� b1
�
u1;Ni

ðtÞ � u2;Ni
ðtÞ�;

m€u2;N ðtÞ¼b1
�
u1;N ðtÞ � u2;N ðtÞ�� b2

�
u2;N ðtÞ � u1;N þ1ðtÞ

�
(A1)
i i i i i
In Eq. (A1), m is the mass, b1 and b2 are the force constants of the spring, and t is time, respectively. The dot denotes
differentiation with respect to time.

Fig. A1. Schematic illustration of a 1D chain comprised of two mass unit cells and springs with spatial stiffness modulations.

We seek traveling wave solutions of Eq. (A1) using the following ansatz [29]:

u1;Ni
ðtÞ¼A1e

ikNiLþiut and u2;Ni
ðtÞ ¼ A2e

ikNiLþiut ; (A2)

which, as anticipated in connection to the Berry phase calculation, have amplitudes An that are periodic in reciprocal space.

Substituting Eq. (A2) to Eq. (A1) leads to0

@ a �g
�g* a

1
A
0
@A1

A2

1
A ¼

0
@0

0

1
A; (A3)
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with ðb1 þ b2 e�ikLÞ ¼ g and ðb1 þ b2 �mu2Þ ¼ a Taking the complex conjugate of Eq. (A3) and exchanging rows and col-
umns, we have0

@ a �g
�g* a

1
A
0
@A*

2
A*
1

1
A ¼

0
@0

0

1
A (A4)
Comparing Eqs. (A3) and (A4) we find that each is satisfied if

A1 ¼ A*
2 (A5)
Further, from Eq. (A3) we obtain the dispersion relation

u2
k ¼ 1

m

 
b1 þ b2 H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb1 þ b2Þ2 � 4b1b2 sin2

�
kL
2

�s !
; (A6)
where the first sign corresponds to the acoustic branch and the second sign corresponds to the optical branch in the band
structure. Choosing these solutions for the frequencies, we have for the amplitudes:

A1

A2
¼±

ffiffiffi
g

pffiffiffiffiffi
g*

p (A7)
Taking into account Eq. (A5) leads to the following selection for the amplitudes of the acoustic branch

A1;1 ¼
ffiffiffi
g

p
; A2;1 ¼

ffiffiffiffiffi
g*

q
; (A8)

since for the acoustic branch A1;1

A2;1
¼

ffiffiffi
g

pffiffiffiffi
g*

p : For the optical branch

A1;2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
e�ip g

q
; A2;2 ¼

ffiffiffiffiffiffiffiffiffiffiffi
eipg*

q
; (A9)

which satisfies Eq. (A7) taking the minus sign.
In Fig. A2, we plot a representation of the manifold spanned by the real and imaginary parts of the amplitude unit vector,

~A
!

(calculated using Eq. (10)), within the Brillouin zone. At each k point, mapped on to the angle to form a ring, we have an

arrow pointing in the ~A
!

direction (red arrow: k varies from ep =L to 0; blue arrow: k varies from 0 to p =L). We take ~A2;jðkÞ
along the normal to the ring plane and ~A1;jðkÞ along the radius with the positive direction pointing away from the center of the

ring. As A1 ¼ A*
2 (Eq. (A5)), the ~A

!
¼ ð~A1;jðkÞ; ~A2;jðkÞÞ vectors form a 45� angle with the normal to the ring plane, and hence

there exists only twists but not a change in the direction of ~A
!
. Moreover, the amplitude unit vector for b1 =b2 ¼ 0:5 generates

a manifold with the imaginary part taking the form of a closed ribbon with a single twist at k¼ 0 (see Fig. A2b). The total
accumulated geometric phase over the Brillouin zone is therefore p. In contrast, the amplitude unit vector for b1 =b2 ¼ 2
generates amanifoldwith the imaginary part taking the form of a closed ribbonwith two twists at k¼ 0 and at the boundaries
of the Brillouin zone (see Fig. A2a). The total accumulated geometric phase over the Brillouin zone is therefore zero. These two
manifolds differ in their topology by one twist.
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Fig. A2. Analytical results for the real (Re) and imaginary (Im) representation of the manifold generated by the evolution of the amplitude unit vector ~A
!

along the
path in the Brillouin zone from k¼ �p=L to 0 (red arrow) and from k ¼ 0 to p =L (blue arrow). Two cases are showed: (a) with b1 =b2 ¼ 2 and (b) with b1 =b2 ¼
0:5. The scale represents the magnitude of the amplitude unit vector ~A

!
. The vertical elevation of the viewpoint of the manifold is 45� . The system is composed of

36 unit cells.
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