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Jerôme O. Vasseur*, I, Pierre A. DeymierII, Maxime BeaugeoisIII, Yan PennecI, IV, Bahram Djafari-RouhaniI

and Dominique PrevostI
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Abstract. Transmission of acoustic waves through a
two-dimensional composite material made of PVC cylin-
ders surrounded by air is measured experimentally. The
spectrum presents a very large absolute band gap in the
audible frequency range. A waveguide created inside this
phononic crystal by removing a row of cylinders can
transmit very efficiently the waves falling inside the stop
band. We show the existence of deaf modes in the band
structure of the linear waveguide. Resonant filtering is also
demonstrated experimentally by coupling the waveguide to
a side branch resonator of variable length. Frequency fil-
tering is observed in the form of narrow dips in the trans-
mission spectrum of the waveguide. Most of these obser-
vations compare favorably with theoretical calculations of
dispersion curves and transmission coefficients of model
structures using the plane wave expansion and the finite
difference time domain methods. Narrow dips similar to
those of the guide with resonator are also observed in the
transmission spectrum of a waveguide with a sharp bend.

1. Introduction

Acoustic band gap (ABG) materials, are inhomogeneous
materials made of two- or three-dimensional repetitive ar-
rangements of inclusions in a matrix constituted of a dif-
ferent substance [1–3]. ABG materials, also called phono-
nic crystals, possess absolute stop bands in their acoustic
transmission spectrum (i.e. gaps independent of the direc-
tion of propagation of an incident wave). The removal of
inclusions along some pathway in the phononic crystal
produces acoustic waveguides [4–9]. Acoustic waves that
would not propagate otherwise in a phononic crystal can
be guided with minimal loss along such waveguides. Low

loss transmission can be achieved in linear waveguides as
well as guides with sharp bends. Furthermore, the passing
band of a guide can be altered by attaching resonators to
its side. For instance, side branch resonators obtained by
removing additional inclusions in a direction perpendicu-
lar to a linear waveguide in a two-dimensional phononic
crystal, induce zeros of transmission in the spectrum of
the unperturbed guide [4, 7]. The zeros of transmission
appear as narrow dips with frequencies depending on the
geometry of the resonator. Such resonant filters rejecting
specific frequencies may serve as building elements for
the design of specific functions in the treatment of acous-
tic signals.

The existence of absolute stop bands in phononic crys-
tals was demonstrated experimentally [10–12], several
years after their theoretical prediction [1–3]. Experimental
observation of a phononic crystal waveguide was reported
only recently [13, 14] following several numerical studies
of similar guides [4–7]. In support of a recent theoretical
study showing the existence and properties of resonant fil-
ters in two-dimensional phononic crystal waveguides [4],
this paper shows experimentally that the presence of reso-
nators in the vicinity of a waveguide induces narrow zeros
of transmission in the passing band of the guide. The ex-
perimental results are supplemented by numerical calcula-
tions of dispersion curves and transmission coefficients
based on the plane wave expansion (PWE) and the finite
difference time domain (FDTD) methods.

This paper is organized as follows. In Section 2, we
present with some details the experimental structures and
setup used to measure acoustic transmission spectra. The
numerical methods employed to support the experiments
are also reviewed in that section. Section 3 contains the
results. These consist essentially of measured and calcu-
lated transmission spectra for several structures, namely a
perfect phononic crystal, a linear waveguide in a phononic
crystal, a linear waveguide with a side branch resonator of
variable length and a bent waveguide. Finally, some con-
clusions are drawn in Section 4.
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2. Systems and methods

2.1 Systems

The basic experimental system is a two-dimensional solid/
fluid phononic crystal composed of 18� 18 Polyvinyl
Chloride (PVC) cylinders in air. The cylinders are one me-
ter long, parallel to the Z direction of the (O, X, Y, Z)
Cartesian coordinates system (see inset in Fig. 1) and are
arranged on a square array with lattice parameter a ¼ 2.7 cm
(see illustration in Fig. 1a). The cylinder radius is r¼ 1.29 cm.
This results in a filling factor, f ¼ pr2/a2 ¼ 0.717. We have
chosen a PVC/air phononic crystal with lattice parameter
in the centimeter range to achieve acoustic band gaps in
the audible range of frequency [1–3]. Acoustic wave-
guides and resonators are easily created in this structure
by removing cylinders. More specifically, we have con-
structed, a linear waveguide (Fig. 1b), two resonators of
different lengths coupled to a linear guide (Figs. 1c and
1d) and a guide with a sharp bend (Fig. 1e).

2.2 Methods

2.2.1 Experiments

We measure the transmission across the phononic crystal
and along the guides with a speaker connected to a func-
tion generator (HP3324A) and a microphone whose fre-
quency response lies in the range [40 Hz–12 kHz]. The
speaker produces the incoming signal and the microphone
records the transmitted one. The transmitted signal is de-
tected with a tracking generator coupled to a spectrum
analyzer (HP89410A). The speaker and microphone are

placed against the walls of the structures in the same
plane perpendicular to the cylinders. For each system, two
measurements are conducted with and without the struc-
ture. The difference between these frequential signals is
calculated to subtract any background effect.

2.2.2 Theoretical methods

a) PWE method: Band structures
In the most general case of wave propagation in a solid/
solid periodic 2D inhomogeneous medium, one makes the
assumption that the wave propagation is limited to the XY
plane perpendicular to the cylinders. This has the effect of
decoupling the elastic displacements in the XY plane
(called XY or mixed-polarization modes) and those parallel
to the Z direction denoted Z modes (transverse modes) [2,
3]. Since the 2D fluid/fluid phononic crystals can support
only longitudinal acoustic waves, there is no need to de-
coupling the different modes and the problem of propaga-
tion in the composite is much simpler than for solids [15].

In the PWE method, the 2D periodicity in the XY plane
allows one to develop the density and the elastic constants
in Fourier series. Then, the equations of linear elasticity
become standard eigenvalue equations for which the sizes
of the matrices involved depends on the number of G vec-
tors of the reciprocal lattice taken into account in the
Fourier series. The numerical resolution of the eigenvalue
equations is performed along the principle directions of
propagation of the 2D irreducible Brillouin zone of the
array of inclusions (see inset of Fig. 2a). Numerical diffi-
culties arise when considering mixed solid/fluid compo-
sites. While the equations of motion for solid/fluid com-
posites are the same as for solid/solid systems, taking
naively the transverse velocity of sound in the fluid equals
to 0 results in convergence problems [16, 17]. To resolve
this difficulty, we can make the solid part of the compo-
site, rigid by assuming that its compressibility and its den-
sity are infinite. On the practical side, we replace the solid
by a fluid with equivalent longitudinal speed of sound and
density. In comparison to air, this solid is nearly rigid.

b) FDTD method: Transmission and band structures
The finite difference time domain method (FDTD) has
been extensively used with success to study the propaga-
tion of electromagnetic waves through photonic band gap
materials [17–19]. In recent years, this method has been
extended to the investigation of acoustic wave propagation
in inhomogeneous elastic media [12, 16, 17, 21, 22]. We
apply the FDTD approach to calculate the transmission
coefficients through finite thickness samples of phononic
crystals and the dispersion curves of mixed solid/fluid
composite materials. We limit the calculation to a strictly
2D FDTD scheme, that is the Z component of the elastic
displacement, velocity, and stress fields are set equals to
zero. In addition, we solve the 2D equations governing the
motion inside the inhomogeneous medium in the XY
plane. The Z dependency of any physical quantity is then
neglected. The wave equation to be solved is

rðX; YÞ @
2u
@t2
¼ r � s ð1Þ

830 J. O. Vasseur, P. A. Deymier, M. Beaugeois et al.

a�

b� c�

d� e�
Fig. 1. Cross sections of the phononic crystals for the directions of
propagation and the geometries considered in this paper. The PVC
cylinders are parallel to the Z direction of the cartesian coordinate
system (OXYZ). The full and dashed arrows symbolize the location of
the speaker and the microphone during the experimental process. (a)
The GX direction of propagation along the perfect phononic crystal,
(b) the perfect linear waveguide, (c) a stub of length equal to one
period attached vertically to the waveguide, (d) a stub two periods
long, and (e) a guide with a sharp bend.
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where r(X, Y) is the mass-density, u and s are the displa-
cement field and the stress tensor. The component of the
stress tensor are calculated from the elastic displacement
using isotropic Hooke’s laws with position dependent elas-
tic coefficient C11(X, Y) and C44(X, Y). The latter elastic
constant is zero for a fluid. To calculate the transmission
coefficient of a finite size ABG composite, we construct a
sample in three parts along the Y direction, a central re-
gion containing the finite phononic crystal sandwiched be-
tween two homogeneous regions. A travelling wave packet
is launched in the first homogeneous part and propagates
in the direction of increasing Y across the whole sample.
Periodic boundary conditions are applied in the X direc-
tion perpendicular to the direction of propagation. Absorb-
ing Mur’s boundary [23] conditions are imposed at the
free ends of the homogeneous regions along the Y direc-
tion. The incoming signal is a sinusoidal wave of pulsa-
tion w0 weighted by a Gaussian profile. In Fourier space
this signal varies smoothly and weakly in the interval [0,
w0]. The input signal amplitude does not depend on X.
Space and time are discretized with fine enough intervals
to achieve convergence of the finite difference time do-
main algorithm. Further details concerning the numerical
integration of the equation of motion can be found in Ref.
[21]. The transmission spectrum along the GX direction of
propagation in the irreducible Brillouin zone of the phono-
nic crystal is calculated with an inhomogeneous region of
thickness 18a along the Y direction and a width a along
the X direction (i.e. 18 cylinders). For these structures the
transmitted signal is averaged over the entire width of the
system. A transmission coefficient is obtained by Fourier
transforming the transmitted temporal signal and normaliz-
ing it to that of a homogeneous system composed of air.
The central regions for the linear waveguide and the wave-
guides with a side branch resonator are constructed from a
structure constituted of 18� 18 periods. For this, cylin-
ders are removed along the Y direction to form the guide
and along the X direction to create the resonator. The
signal exiting the guides is averaged over their width.
The Fourier transform of the average exciting signal is
again normalized to the Fourier transform of a signal
propagating inside homogeneous air. In contrast to the
case of the perfect phononic crystal, the normalization of
the guided signal can give values of transmission exceeding
1 in linear scale or equivalently slightly positive values in
dB.

To avoid difficulties encountered in the calculation of
the band structure of mixed composites with the PWE
method, Tanaka et al. [16] have reported an extension of
the FDTD method for the calculation of dispersion rela-
tions of acoustic waves in 2D phononic crystals. In con-
trast with the standard FDTD approach, the band structure
FDTD technique (BS-FDTD) implies a periodic system in
the XY plane. The displacement field and the stress tensor
must satisfy Bloch theorem

uðr; tÞ ¼ eiK:r Uðr; tÞ ; ð2Þ
sðr; tÞ ¼ eiK:r Sðr; tÞ ð3Þ

where r(X, Y) is the position vector in the XY plane and
K(KX, KY) is the Bloch wave vector. U(r, t) and S(r, t) are

spatial periodic functions of period a, the lattice transla-
tion vector. Inserting Eqs. (2) and (3) into (1) as well as in
Hooke’s law results in equations of motion for U. To
solve them, one first specifies a 2D wave vector, K, along
the principal direction of the irreducible Brillouin zone.
An assumption on the initial displacement U(r, t ¼ 0) in
the form of a delta stimulus at some random location with-
in the unit cell is then made. The equations of motion are
solved by discretizing both space and time. The time evo-
lution of U(ri, t) at several predetermined locations within
the unit cell is recorded. Peaks in the frequency space of
the Fourier-transformed signals are identified as the eigen
frequencies of the normal modes of the system for the
wave vector, K. In contrast to the PWE method, the band
structure FDTD technique allows us to compute the band
structure of periodic mixed solid/fluid composite materials
without requiring the assumption of solid rigidity.

The physical parameters used in these calculations are
the longitudinal, Cl, transverse, Ct, speeds of sound and
the mass density, r for the solid. The acoustic properties
of a fluid like air are the longitudinal speed of sound and
the density. For all calculations we use Cl ¼ 2230 m/s,
Ct ¼ 1000 m/s and r ¼ 1364 kg/m3 for PVC, and
Cl ¼ 340 m/s and r ¼ 1.3� 10�3 kg/m3 for air.

3. Results

3.1 Perfect phononic crystal

Figure 2a presents the band structures along the GX direc-
tion of propagation computed with both the PWE and the
FDTD methods. The PWE band structure was calculated
with 169 G vectors of the reciprocal space. In the range
of frequency of Fig. 2a, there exists a large stop band be-
tween 2.8 and 10 kHz. The very good agreement between
the two theoretical methods validates the assumption of
the rigidity of the solid in the peculiar case of the PVC/air
composite in this range of frequency. Figures 2b and 2c
show the experimental and theoretical transmission spectra
of the PVC/air phononic crystal along the GX direction of
propagation, respectively. The measured transmission is
drastically depressed in the interval of frequency [3, 10]
kHz. This stop band is also confirmed by the computed
transmission and agrees with the band structure calcula-
tions. On the other hand, we have verified experimentally
and theoretically via PWE and FDTD calculations, that
along the GM direction, a stop band extends from 4 to 10
kHz. This shows that the PVC/air phononic crystal pos-
sesses an absolute band gap in the audible frequency
range between 4 and 10 kHz. This interval of frequency is
the intersection of the gaps in the GX and GM directions.

3.2 Linear waveguide

In this section, we investigate the properties of a 2D pho-
nonic crystal made of PVC cylinders surrounded by air
and containing a straight wave guide (see Fig. 1b). Figure
3a reports its band structure. These dispersion curves were
obtained numerically, on one hand, using the PWE meth-
od (solid lines) with a supercell of 7 periods. The super-

Experimental observation of resonant filtering 831
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cell contains 7 unit cells, one of which is filled with air
only. The supercell is also repeated periodically in the X
direction leading to a stack of waveguides separated by 7
periods in this direction. This separation is sufficient to
avoid coupling between neighboring guides. The PWE
band structure was calculated with 1105 G vectors. On the
other hand, the band structure was also computed with the
help of the FDTD method (dots) and the agreement with
the PWE calculations is again quite good. The slight dif-
ference in frequency of the FDTD bands compared to
those obtained with the PWE method results from the fact
that the PWE calculation has not fully converged with re-
spect to the G vectors [16]. The dispersion curves num-
bered 6, 7, 8 and 9 are related to localized modes in the
straight waveguide. The measured and calculated transmis-
sion spectra of the linear waveguide are presented in Figs.
3b and 3c, respectively. Experimentally, the waveguide
permits transmission of waves that otherwise would be
forbidden in the perfect phononic crystal. There are two

waveguide passing bands with frequency intervals [2.4,
5.6] kHz and [6.8, 8.5] kHz. Transmission of waves with
frequency in these intervals takes place along the wave-
guide without any loss. Stops bands still exist for frequen-
cies between 5.6 and 6.8 kHz and 8.5 and 10 kHz. The
experimental spectrum is confirmed by the FDTD calcula-
tion. Indeed the right panel of Fig. 3 shows two passing
bands from 0 to 5.5 kHz and 6.8 to 8.5 kHz, separated by
a region with low transmission that extends from 5.5 to
6.8 kHz. The gap of the perfect phononic crystal persists
for frequencies in the range [8.5, 9.6] kHz.

A comparison between the transmission spectra and the
band structures indicates that the dispersion curves labeled
7 and 9 in Fig. 3a do not contribute to the transmission.
An analysis of the symmetry of these modes may explain
this singular effect. For this, using the PWE method, we
compute some eigenvectors associated with the bands 6
through 9 at a given wave vector. The Fourier transform
of the eigenvectors yields the pressure field inside the pho-
nonic crystal [11]. Figure 4 illustrates the pressure field
pattern corresponding to the 6th, 7th, 8th and 9th bands at
the X point of the irreducible Brillouin zone. It is impor-
tant to note that the 6th and 8th modes have a symmetry
readily excitable by an incident wave of longitudinal po-
larization. In contrast, the 7th and 9th modes are anti-sym-
metric with respect to the symmetric plane of the wave-
guide. Consequently, these antisymmetric modes cannot be

832 J. O. Vasseur, P. A. Deymier, M. Beaugeois et al.

b� a� c�
Fig. 2. (a) Band structures of the perfect PVC/air phononic crystal
along the GX direction of propagation of the irreducible Brillouin
zone (see inset) computed with the PWE (solid lines) and the FDTD
(dots) methods. Experimental (b) and theoretical (c) transmission
coefficients along the GX direction.

b� a� c�
Fig. 3. (a) PWE (solid lines) and FDTD (dots) band structures of a
PVC/air phononic crystal containing a straight waveguide along the Y
direction (see Fig. 1b). The supercell contains 1� 7 unit cells. Ex-
perimental (b) and theoretical (c) transmission spectra along the linear
waveguide. The bands numbered 6, 7, 8 and 9 in Fig. 3a are asso-
ciated with waveguides modes. Bands 7 and 9 are “deaf bands” and
do not contribute to the transmission (see text for details).

Fig. 4. Pressure fields inside the PVC/air phononic crystal containing
a straight waveguide. The grey scale indicates the relative amplitude
of the pressure field. These maps were obtained from the PWE com-
putations of the eigenvectors associated with the 6th, 7th, 8th and 9th

eigenfrequencies at the X point of the irreducible Brillouin zone (see
Fig. 3a).
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excited by a longitudinal incident wave and will not con-
tribute to the transmission. Modes of this kind, named
“deaf bands”, were reported for perfect photonic or pho-
nonic crystals [11, 24–27]. Let us stress again that the
deaf modes reported in this paper are not modes of the
perfect crystals but waveguide modes.

In Fig. 4, the centers of the cylinders in the phononic
crystal are located at integer values of the ratios X=a and
Y=a, excluding X=a ¼ 3 which is the position of the sym-
metry plane of the waveguide. The rigidity of the inclu-
sions explains that the acoustic waves do not penetrate in-
side the cylinders and this leads to a vanishing pressure
field inside the inclusions. The air waveguide is bound by
PVC cylinders at X/a ¼ 2 þ r/a ¼ 2.48 and X/a ¼ 4 � r/a
¼ 3.52, that is, its width is equal to 1.04a. The acoustic
pressure field extends significantly beyond these bounds,
showing that the waveguide modes are not strictly con-
fined inside the waveguide. At larger distances from the
waveguide boundaries, the pressure field vanishes every-
where since the frequency of the propagating waves falls
inside the stop band of the perfect phononic crystal. In a
previous study of a waveguide in air/water and steel/water
2D phononic crystals, the guiding modes were shown to
obey classical waveguide models with strictly perfectly re-
flecting walls [4]. The extent of the pressure field outside
the limits of the waveguide in the PVC/air system indi-
cates that in this particular case the wave guide modes can
not be derived analytically from simple waveguide theory.
It therefore appears that straightforward and generalized
application of this theory to waveguides in phononic crys-
tals can be misleading.

3.3 Linear waveguides with side branch resonator

The effect of a side branch resonator on the transmission
spectrum of the waveguide is illustrated in Figs. 5 and 6.
The removal of a single cylinder adjacent to the wave-
guide produces a resonator of nominal length a. The cal-
culated transmission spectrum in Fig. 5a retains the gener-
al characteristics of the linear waveguide (see Fig. 3c) with
two additional features. Narrow dips appear in the calcu-
lated transmission spectrum at two frequencies, namely
4.7 and 7.5 kHz. These reductions in transmission are si-
milar in nature to those observed in a recent theoretical
study of waveguides with side branch resonators in water/
air and steel/water phononic crystals [4]. The transmission
in the waveguide is significantly altered due to interfer-
ence phenomena between the acoustic modes of the guide
and those of the resonator. The characteristics of the ex-
perimental spectrum of the guide with resonator of length
a are best seen by calculating the difference between the
transmission along the guide with resonator and that of the
perfect linear guide as reported in the insets of Fig. 5b. A
small depression in transmission occurs in the first passing
band of the linear guide at 4.85 kHz. This agrees quite
well with the theoretically predicted dip at 4.7 kHz (see
Fig. 5a). In the range [7, 8.5] kHz, the experimental trans-
mission spectrum exhibits two depressions around 7.5 kHz
and 8.2 kHz. Since the first depression is in accordance
with the one observed in the theoretical transmission, the
feature at 8.2 kHz have no analog in Fig. 5a. Nevertheless,

one notes that this feature appears in the very near vicinity
of the edge of the second waveguide passing band and
this renders its analysis very difficult.

Lengthening the resonator increases the number of re-
sonant modes and therefore the number of narrow dips in
the transmission spectrum of the guide with resonator. For
instance, in the case of Fig. 6a where the resonator is
twice as long as in Fig. 5, the theoretical transmission
spectrum exhibits four narrow dips in transmission at 3.95,
7.3, 9.7 and 9.8 kHz. The experimental spectrum of the
guide with a resonator of length 2a possesses a significant
reduction in transmission at 4.1 kHz in very good agree-
ment with the first calculated dip (see Fig. 6a). Two addi-
tional and well-defined depressions in transmission are ob-
served in the second passing band of the guide at the
frequencies 7.4 and 8.2 kHz. As in the previous case, the
first of these two features is in good agreement with the
theoretical predictions but the second one which appears
in the near vicinity of the stop band has no equivalent in
Fig. 6a. Because the second stop band in the experimental
spectrum (see Fig. 3) is larger than the theoretically pre-
dicted transmission band gap, the dips calculated around 9
kHz cannot be observed experimentally.

A comparison between Figs. 5b and 6b reveals that the
influence of the resonator on the waveguide transmission
is much more pronounced with a longer resonator. For
instance, the first depression in transmission which occurs
around 4.5 kHz in these two figures is much more impor-
tant with a resonator of nominal length 2a than a. As

Experimental observation of resonant filtering 833

a�

b�
Fig. 5. Theoretical (a) and experimental (b) transmission spectra
along the linear waveguide with a side branch of nominal length a.
The insets represent the difference between the transmission in the
guide with resonator and the transmission in the linear waveguide in
the range of frequency associated with the passing bands of the linear
guide. The dashed line in Fig. 5a represents the computed transmis-
sion along the linear waveguide of Fig. 3c.



T
h

is
 a

rtic
le

 is
 p

ro
te

c
te

d
 b

y
 G

e
rm

a
n

 c
o

p
y
rig

h
t la

w
. Y

o
u

 m
a
y
 c

o
p

y
 a

n
d

 d
is

trib
u

te
 th

is
 a

rtic
le

 fo
r y

o
u

r p
e
rs

o
n

a
l u

s
e
 o

n
ly

. O
th

e
r u

s
e
 is

 o
n

ly
 a

llo
w

e
d

 w
ith

 w
ritte

n
 p

e
rm

is
s
io

n
 b

y
 th

e
 c

o
p

y
rig

h
t h

o
ld

e
r. 

noted before, the waveguide modes extend significantly
beyond the physical bounds of the guide. The interference
between these modes and those of a short resonator are
therefore anticipated to be weak. Simple models based on
one-dimensional waveguides coupled to one-dimensional
resonators introduced in [4] will not be applicable to sys-
tems such as those studied here where the guiding modes
are not strictly confined inside the bounds of the guide.

3.4 Bent waveguide

The transmission spectrum along a bent waveguide
(Fig. 7) is similar to that of the linear guide. This spec-
trum is measured by emitting sound waves at the entrance
of the guide and collecting the signal at its exit. This re-
sult demonstrates that acoustic waves can be transmitted
without significant loss along a guide with sharp bends.
To verify that transmission occurs without much loss, we
have also measured the transmission by placing the speak-
er at the entrance of the bent guide and the microphone
on the opposite side. In this case one recovers the trans-
mission spectrum in the GX direction of the perfect phono-
nic crystal. The most significant difference between the
transmission spectra of the linear and bent waveguide
arises in the form of dips in the passing bands of the
latter. The most notable features occur at 4.5 kHz and
7.3 kHz and are reminiscent of the dips in the transmis-
sion spectrum of a guide with a side branch resonator of
nominal length 2a. The observed features appear therefore

to be due to interferences between the incident wave and
waves reflected by the bend.

4. Conclusions

The experimental results presented in this paper report
primarily on the transmission of audible acoustic waves
along waveguides in a two-dimensional phononic crystal.
We show the existence of deaf modes in the band struc-
ture of the waveguide. We demonstrate the possibility of
resonant filtering in a linear phononic crystal waveguide
with one single side branch resonator. Frequency filtering
takes place by reduction of the transmission at specific
frequencies within the passing band of the waveguide.
These frequencies depend on the length of the resonator.
The experimental results are in fair agreement with theo-
retical calculations based on the FDTD method, espe-
cially at the lowest frequencies studied. A waveguide
with a sharp bend appears to transmit acoustic waves
without significant loss over most of the passing band of
a linear guide. Similarly to the linear guide with resona-
tor, transmission along the bent waveguide is significantly
reduced at some specific frequencies which is believed to
be due to interference between incident and reflected
waves near the bend. The structures presented in this pa-
per may serve as element in the design of devices for the
treatment of acoustic signals such as filtering or demulti-
plexing.
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