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Abstract. We present elastic band-structure results for a new geometry of two-dimensional
phononic crystals: the boron nitride- (BN-) like structure. This array is constituted of two kinds
of infinite elastic parallel cylinder located at the vertices of a regular hexagon and surrounded
by an elastic background. This geometry includes both the triangular and graphite structures as
particular cases. The inclusions and matrix are either both fluids or both solids, the constituent
materials being water and mercury, and carbon (or tungsten) and epoxy.

We discuss the evolution of the band structure, and especially the existence of absolute band
gaps, as a function of the ratio between the radii of the two cylinders in the BN geometry. We
also discuss the existence of these gaps in relation to the physical parameters of the materials
involved, and compare the results with those for square and triangular structures.

1. Introduction

During the last ten years, the propagation of electromagnetic waves in binary periodic
artificial structures called ‘photonic crystals’ has received a great deal of attention. These
inhomogeneous materials constituted of dielectric inclusions embedded in a dielectric matrix
may present original physical properties such as the existence of forbidden bands in their
electromagnetic band structures. These gaps could lead to inhibited spontaneous emission
as well as to the localization of photons [1].

The analogy between electromagnetic waves and vibrations stimulated research on
the propagation of acoustic waves in ‘phononic crystals’ constituted of elastic inclusions
surrounded by an elastic medium [2]. Acoustic gaps being frequency domains in which
propagation of sound and phonons are forbidden, one can imagine for these phononic
crystals numerous engineering applications such as vibrationless environments for high-
precision mechanical systems, or the design of transducers. Various structures of phononic
crystals were studied. The existence of large gaps in the acoustic band structures of cubic
lattices of elastic spherical inclusions surrounded by a host matrix has been established, the
constituent materials being either both solids [3, 4] or both fluids [5, 6]. Complete acoustic
band gaps were also obtained in two-dimensional phononic crystals constituted of periodic
arrays of elastic solid (or fluid) rods embedded in an elastic solid (or fluid) background.
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Square [4, 7–10] and triangular [4, 11–13] lattices were investigated. The propagation of
elastic waves in one-dimensional systems such as superlattices [14–17] has also been studied
extensively during the last few decades.

In all of these composite systems, the contrast in elastic properties and densities between
the constituents, and the composition of the inhomogeneous artificial material are emerging
as critical parameters in determining the existence of acoustic gaps [2].

In this paper, we present results on the elastic band structure for a new geometry of two-
dimensional phononic crystals: the boron nitride- (BN-) like structure, in which the infinite
circular elastic rods are located at the vertices of a regular hexagon and are surrounded by
an elastic background. The unit cell of the Bravais lattice contains two kinds of infinitely
long parallel cylinder [18, 19]. With two cylinders of identical radius, constituted of the
same material, the graphite structure is obtained, while if the radius of one of the two
cylinders is infinitely small, the already widely studied triangular structure [4, 11–13] is
generated. We define the triangular structure, in accordance with the terminology used by
Plihal and Maradudin [20], as the 2D array in which the cylinders are located at the vertices
and at the centre of a regular hexagon. This pattern is often called ‘hexagonal structure’
in the literature [4, 11–13]. In the BN structure, in addition to the contrast in densities
and elastic parameters, the ratioα = R1/R2 between the radii of the cylinders appears as a
pertinent parameter in determining the existence of acoustic band gaps. The analogy between
electromagnetic waves and vibrations, and recent results on photonic crystals showing the
existence of large absolute band gaps for the triangular structure of cylindrical holes in
a dielectric background and for graphite structure of dielectric rods in air [18, 19] have
motivated this study.

We consider, in this paper, 2D composite media, for which the inclusions and the
matrix are either both fluids or both solids, cylindrical inclusions being disposed on BN
arrays. The physical realization of a 2D fluid/fluid composite system could be achieved
by inserting the inclusion material in a latex bladder. The dispersion curves are computed
for water (or mercury) cylinders in a mercury (or water) background, and for carbon or
tungsten (or epoxy) circular rods in an epoxy (or C or W) matrix. These band structures
will be discussed as a function of the parameterα, for different values of the inclusions
filling fraction f . For the practical realization of large acoustic band gaps, the graphite
structure, and more generally the BN geometry, can appear as better than, similar to, or
worse than the most-studied triangular structure, depending on the values ofα andf and
on the material parameters. For example, in the fluid composites, the graphite structure
is more favourable for mercury cylinders in a water background, both for high and low
filling fractions. In the opposite case of water rods in mercury, the triangular structure
gives rise to the largest band gap, but the BN and graphite geometries may allow several
additional gaps of similar magnitude. In the case of solid composites, the coexistence
of three different polarizations makes the formation of absolute acoustic band gaps more
difficult. The graphite and some BN patterns will be more interesting than the triangular
structure, for instance, for a low filling fraction of W fibres in epoxy or a high filling fraction
of epoxy fibres in C or W. We show that selective noise filters could be obtained from BN
arrays of cylindrical inclusions of very different radii. In this work, we shall also compare
our results for the triangular structure to those of the previous studies of both triangular and
square lattices.

The paper is organized as follows. The model and the method of calculation are briefly
presented for fluid/fluid and solid/solid binary 2D composite media in section 2. We discuss
the numerical results in section 3, and draw conclusions in section 4.
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2. The model and method of calculation

2.1. The model

In this paper, we calculate elastic band structures for solid/solid and fluid/fluid 2D binary
composite systems using a method developed by Kushwahaet al [8–10, 13]. These periodic
systems are modelled as arrays of infinite cylinders of circular cross section made up of
isotropic materials Ai embedded in an infinite isotropic matrix B. The elastic cylinders, of
radiusRi , are assumed to be parallel to thex3-axis of the Cartesian coordinate system
(Ox1x2x3) (e1, e2, e3 are unit vectors along thex1-, x2-, x3-axis, respectively). The
intersections of the cylinder axes with the(x1Ox2) transverse plane form a two-dimensional
periodic array which resembles the boron nitride crystallographic structure with two kinds
of cylinder, A1 and A2, in each unit cell. The distance between the nearest neighbours is
a (see figure 1). The graphite structure is obtained with cylinders of identical radius and
constituted of the same material. The removal of one type of cylinder (A1 or A2) from the
BN array results in a triangular array of lattice parameterd = a√3. The filling fractionfi
of the cylinder Ai , of radiusRi , is defined as the ratio between the cross-sectional area of
the rodi and the surface of the unit cell, i.e., for the BN structure,

fi = πR2
i

3
√

3a2/2
.

For the graphite structure(R1 = R2, i.e. α = R1/R2 = 1), in the close-packed arrangement
(Ri = a/2), the maximum value of eachfi is

fmax
i = π

6
√

3
∼= 0.302.

Figure 1. A two-dimensional boron nitride array of infinite cylinders, A1 (white) and A2 (black),
of different radii,R1 andR2, periodically distributed in an infinite matrix B. The cylinders are
assumed to be parallel to thex3-axis perpendicular to the transverse plane(x1Ox2), and may
be constituted of different materials. The distance between the nearest neighbours isa. The
unit cell contains one cylinder of each kind. The graphite structure is obtained for cylinders of
identical radius and constituted of the same material. When only one kind of site is occupied,
the 2D BN array results in a triangular structure with a lattice parameterd = a√3.
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In the triangular pattern (withR1 = 0, i.e. f1 = 0 andα = R1/R2 = 0, for example)
the close-packed value off2 = f corresponds toR2 = d/2, i.e.

fmax
2 = fmax= π

2
√

3
∼= 0.907.

One notices that the maximum filling fraction is lower for the graphite array than for the
triangular structure.

We investigate the propagation of elastic waves in the(x1Ox2) transverse plane.
With the choice of coordinate axes shown in figure 1, the primitive lattice vectors for

the BN structure can be written as

a1 = a
√

3

2
(1,
√

3)

a2 = a
√

3

2
(−1,
√

3).

(1)

The two infinite cylinders of the primitive unit cell are located at the positions

r1 = −r2 = a
√

3

(
0,

1√
3

)
. (2)

The primitive vectors of the reciprocal lattice are given by

b1 = 2π

a
√

3

(
1,

1√
3

)
b2 = 2π

a
√

3

(
−1,

1√
3

) (3a)

and the two-dimensional reciprocal-lattice vectorsG are then

G = h1b1+ h2b2 = 2π

a
√

3

[
(h1− h2)e1+ 1√

3
(h1+ h2)e2

]
(3b)

whereh1 andh2 are two integers.

2.2. The method of calculation

The method of calculation is the well known plane-wave method, where the densities and
the elastic constants of the isotropic constituent materials, which are position dependent
in the composite system, are developed in 2D Fourier series in the reciprocal space. We
summarize here this method for solid/solid and fluid/fluid 2D systems.

Throughout this paper, the matrix and inclusions are constituted of isotropic materials
described by linear elasticity. The mass density and the elastic constants areρAi

, C11Ai
, and

C44Ai
(i = 1 or 2) inside the cylinders Ai , andρB, C11B , andC44B in the background B.

These physical characteristics in the composite system, denoted asζ in a general way, are
space dependent with respect to the position vectorr = (x1, x2) in the transverse plane,
i.e. ζ(r) = ζAi

in the cylinder Ai andζ(r) = ζB in the matrix B.
In the 2D solid/solid binary composite material, in the absence of an external force, the

equations of motions are

ρ(r)
∂2ui

∂t2
=∇ · [C44(r)∇ui ] +∇ ·

[
C44(r)

∂u

∂xi

]
+ ∂

∂xi
[(C11(r)− 2C44(r))∇ · u] (4)

where u(r, t) is the position- and harmonic time-dependent displacement vector, with
componentsui (i = 1, 2, 3) in the Cartesian coordinate system(Ox1x2x3). If we limit



Acoustic band gaps in fibre composite materials 7331

the wave propagation to the(x1Ox2) transverse plane, one can introduce a 2D wave vector
K(K1,K2) (which meansK3 = 0), and the harmonic displacement vectoru is independent
of thex3-coordinate. Then, equation (4) can be separated into the following two equations:

ρ(r)
∂2ui

∂t2
=∇T · [C44(r)∇T ui ] +∇T ·

[
C44(r)

∂uT

∂xi

]
+ ∂

∂xi
[(C11(r)− 2C44(r))∇T · uT ] (5)

(i = 1 or 2) withuT = u1e1+ u2e2 and∇T = e1 ∂/∂x1+ e2 ∂/∂x2, and

ρ(r)
∂2u3

∂t2
=∇ · [C44(r)∇u3] . (6)

Equation (6) corresponds to pure transverse modes of vibrations (u3e3 ⊥ K) called Z-
modes. Equation (5) describes modes of vibrations for whichuT andK are coplanar
vectors, which are denoted asXY -modes [8].

In the 2D fluid/fluid binary composite systems, only longitudinal waves (C44 = 0) are
allowed, and the general equation of motion (equation (4)) becomes

ρ(r)
∂2u

∂t2
=∇(C11(r)∇ · u). (7)

However, the displacement fieldu(r, t) can be obtained from a scalar potential8(r, t)
such that

ρu =∇8. (8)

Then equation (7) may be rewritten as(
1

C11(r)

)
∂28

∂t2
=∇ ·

((
1

ρ(r)

)
∇8

)
. (9)

One observes that equation (9) is formally the same as equation (6). Indeed, replacing
in equation (9), 1/C11, 1/ρ, and8 by ρ,C44, andu3 respectively, one obtains equation (6)
[2, 13]. We must keep in mind that in fluids,C11 stands for the compressibilityχ of the
material.

In our calculations of elastic band structure of 2D binary composite systems, equations
(5), (6), and (9) are the basic equations. Taking advantage of the 2D periodicity in
the (x1Ox2) plane, the quantitiesρ(r), C11(r), andC44(r) for solid/solid composites and
1/ρ(r), and 1/C11(r) for fluid/fluid inhomogeneous media are developed in Fourier series
in the form

ζ(r) =
∑
G

ζ(G)eiG·r. (10)

The Fourier coefficients in equation (10) are given as

ζ(G) = ζBδG0+
∑
i

ζAi
(G)e−iG·ri (11)

where theri (i = 1, 2) are defined in equation (2),δ is the Kronecker symbol, and

ζAi
(G) = (ζAi

− ζB)Fi(G). (12)

In equation (12),Fi(G) stands for the structure factor [8–10] of the cylinderi defined as

Fi(G) = 2fi
J1(GRi)

GRi
(13)

whereJ1(x) is the Bessel function of the first kind of order one.
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The method of calculation for BN structures is strictly equivalent to the one used for
square [8–10] and triangular arrays [12, 13]. After some algebra, equations (5), (6), and (9)
become standard eigenvalue equations for which the size of the matrices involved depends
on the number ofG-vectors taken into account in the Fourier series.

3. Numerical results for the BN structure

We present, in this section, band structures calculated for 2D binary fluid/fluid and solid/solid
composite systems with BN structure. For solid inhomogeneous media, the constituent
materials are carbon or tungsten for the inclusions (or the matrix) and epoxy for the
matrix (or the inclusions), while for the fluid/fluid systems, water and mercury are the
two components. The choice of these materials is based on the strong contrast in their
densities and elastic properties, which are listed in tables 1 and 2. We shall compare our
results on the BN structure with those obtained previously for square lattices of C cylinders
in an epoxy matrix [8] and triangular arrays of water (or mercury) rods in mercury (or
water) background [13]. Let us recall that according to the ratio between the radii of the
two cylinders in the unit cell,α = R1/R2, the BN structure takes into account both the
triangular pattern and the graphite structure. Indeed, forα = 0, one obtains a triangular
array of lattice parametera

√
3, while for α = 1, the two cylinders being constituted of

the same material, the graphite structure is created. The effect of the parameterα and the
influence of the total filling fractionf = f1 + f2 on the band structure are investigated
intensively in this paper.

Table 1. The densities and elastic constants of carbon [22], tungsten [23], and epoxy resin [22].
Cl andCt represent the longitudinal and the transverse velocities of sound, respectively.

ρ Cl Ct C11 = ρC2
l C44 = ρC2

t

(g cm−3) (m s−1) (m s−1) (1010 N m−2) (1010 N m−2)

Carbon 1.75 13 310 7110 30.96 8.846
Tungsten 19.3 5090 2800 50.1 15.14
Epoxy 1.2 2830 1160 0.964 0.161

Table 2. Densities and longitudinal elastic constants for sea-water (at 25◦C) and mercury [24].
Cl represents the longitudinal velocity of sound.

ρ Cl C11 = ρC2
l

(g cm−3) (m s−1) (1010 N m−2)

Water 1.025 1531 0.24
Mercury 13.5 1450 2.84

3.1. 2D fluid/fluid binary composite systems

We solved the Fourier transform of equation (9) numerically for the longitudinal modes of
vibrations in 2D fluid/fluid binary composite systems. In these calculations, we took into
account the 169 shortestG-vectors. These vectors are generated in such a way that they
are inscribed in a disk of a certain radius. This number ofG-vectors ensures sufficient
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convergence, and offers a good compromise between accuracy and computing time. We
consider the case of water (or mercury) cylinders in a mercury (or water) background. As
suggested by Kushwaha and Halevi [13], one can imagine that, in practice, the liquid within
the cylinders would be contained by some latex material. The mass density and speed of
sound in rubber are comparable to those of water, and the effect of this thin latex partition
can be neglected. Moreover, these authors have found that forf = 0.27, the triangular band
structure of water cylinders in a mercury background exhibits the widest gaps ever reported
in the literature. In the opposite situation, i.e. a triangular pattern of mercury cylinders in
a water background, they have shown the existence of band gaps for 0.45 < f < 0.825,
the maximal width of the lowest stop-band being obtained forf = 0.75 (see figure 2
of reference [13]). Thus, in order to compare our results with those published by these
authors, we have calculated the dispersion curves of BN arrays of water/mercury systems
for f = f1 + f2 = 0.27 and 0.6, and investigated the evolution of the width of the gaps
versus the parameterα = R1/R2. Let us note that the close-packed configuration of the
graphite structure is obtained forf = f1+ f2

∼= 0.604. These dispersion curves have been
plotted for the first ten bands in the principal symmetry directions of the first Brillouin zone
(see figure 2).

Figure 2. The first Brillouin zone of the BN array. The irreducible part of this regular
hexagon is the triangle0JX, where the reduced coordinates (k = Ka

√
3/(2π), K being a

two-dimensional wave vector) of the symmetry points0, J, and X in the(x1Ox2) plane are
respectively(0, 0), (2/3, 0), and(1/2, 1/2

√
3).

Figure 3(a) shows the band structure for the BN array of water cylinders in a mercury
background withf1 + f2 = 0.27 andα = R1/R2 = 0.5345. The plots are given in

terms of the reduced frequency� = ωa
√

3/(2πCl) (with Cl =
√
(1/ρ)/(1/C11) where

(1/ρ) = (1/ρ)(G = 0) and (1/C11) = (1/C11)(G = 0) (see equation (11))) versus the
reduced Bloch wave vectork = Ka√3/(2π). There exist five acoustic band gaps in the
frequency domain of figure 3(a), the largest appearing between the second and the third band
with 1� ≈ 0.37. Figure 3(b) shows the dependence of these gaps versus the parameterα

for f1 + f2 = 0.27. Forα varying between 0 and 1, the BN array evolves from triangular
to graphite structure. In the range of frequency 0< � < 2, one very large gap appears in
the band structure of the triangular pattern (α = 0) for 0.27< � < 0.82, i.e.1� = 0.55.
This stop-band corresponds to the widest gap obtained by Kushwaha and Halevi (see figure
2 of reference [13]). The width of this gap decreases with increasingα, and reaches its
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(a) (b)

Figure 3. (a) The elastic band structure for the BN array of water cylinders in a mercury
background forf1 + f2 = 0.27 andα = R1/R2 = 0.5345 (fi and Ri, i = 1 or 2, are
respectively the filling fraction and the radius of the two cylinders in the unit cell). The band
structure is plotted for the longitudinal modes of vibration in the three high-symmetry directions
0JX of the first Brillouin zone (see figure 2). One can notice five gaps in the range of frequency
0< � < 1.9. (b) The variation of the width of the gaps appearing in the band structure of the
BN array of water cylinders in a mercury background, forf1 + f2 = 0.27, as a function of the
parameterα = R1/R2.

minimum value for the graphite structure (α = 1). An interesting result is the existence of
three additional gaps (the second, third, and sixth gaps appearing with increasing�) in the
band structure of the BN pattern for 0.1 < α < 1. The width of these gaps increases with
increasingα and is maximal in the graphite structure. One observes also that the width of
the fifth gap is maximal forα ∼= 0.5. Compared to the triangular pattern (α = 0), the BN
structure of this 2D binary fluid/fluid composite system presents some large additional gaps
in the same range of frequency. The narrowness of the pass-bands is also remarkable in this
composite. The BN band structures for this 2D binary composite were also calculated for
f1+ f2 = 0.6, and lead to qualitatively similar conclusions, although the gaps are narrower
in this case. In particular, the largest gap found in the triangular band structure has a width
1� equal to 0.42.

We have also considered the opposite situation, i.e. the BN array of mercury cylinders
in a water background. Figure 4(a) shows the band structure in this case forf1+ f2 = 0.6
andα = 0.642. There exist three gaps in figure 4(a), the largest appearing between the first
and the second band with1� ≈ 0.368. Figure 4(b) shows the width of the gaps versus
the parameterα for f1 + f2 = 0.60 in the range of frequency 0< � < 2. Forα = 0, the
second gap, centred on� = 1 with a width1� ∼= 0.1, corresponds to the one observed by
Kushwaha and Halevi (see figure 2 of reference [13]) in the triangular lattice. One observes
that the third gap (with increasing�) exists only in the BN structure for 0.25< α < 0.9,
and reaches its maximal width aroundα ∼= 0.65. The largest gap is obtained forα = 1
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(a) (b)

Figure 4. (a) The elastic band structure for the BN array of mercury cylinders in a water
background forf1 + f2 = 0.60 andα = R1/R2 = 0.642. One can notice three gaps in the
range of frequency 0< � < 1.9. (b) The variation of the widths of the gaps appearing in the
band structure of the BN array of mercury cylinders in a water background, forf1+f2 = 0.60,
as a function of the parameterα = R1/R2.

between the first and the second band (see figure 4(a)). Forf1 + f2 = 0.6, the graphite
structure (α = 1) is very near to the close-packed configuration for whichf1+ f2

∼= 0.604,
and where each cylinder is in contact with another. The technical realization of this structure
would probably be very difficult, because the background material separating two cylinders
becomes very thin. However, the contact between cylinders can be avoided by using the
BN geometry withα quite different from 1, even for this maximum filling fraction. These
results reveal that for mercury cylinders in a water background, the general BN structure,
and in particular the graphite pattern, is more favourable for the opening of large gaps in
the band structure while the triangular structure is less appropriate. Moreover, for high
filling fractions, the choice of cylindrical inclusions of different diameters allows an easier
technical manufacturing process together with the possibility of keeping large absolute band
gaps.

It is noteworthy that forf1+f2 = 0.6, the graphite band structure of mercury cylinders
in a water background presents some similarities with the triangular band structure of
circular water rods in a mercury matrix, especially for the dispersion of the low-frequency
bands. Following the observations of Cassagneet al [19] on photonic crystals, this can be
understood from the disposition of the cylinders in the graphite structure. From a geometric
point of view, in the close-packed arrangement, the graphite array of mercury cylinders in a
water background is equivalent to a triangular structure of lattice parametera

√
3 constituted

of water rods with non-circular cross section embedded in a mercury matrix.
In order to investigate the effect of the filling fraction on the band structure, we have

also calculated the dispersion curves for the BN array of mercury cylinders in a water
background forf1 + f2 = 0.30. There is no gap in the triangular band structure, while
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the graphite pattern gives rise to a single gap between the first and the second band with
1� ≈ 0.142. One can notice that the density of mercury is greater than that of the water,
while the speeds of sound in these materials are nearly the same. One can assume that, for
any value of the total filling fraction, in 2D binary fluid/fluid composite systems, the largest
acoustic band gaps appear for triangular structure of low-density inclusions in a high-density
background or for a graphite array of high-density rods in a low-density matrix. This result
parallels those of Cassagneet al [19] for photonic crystals. These authors have shown that
the largest photonic absolute band gaps appear for triangular structure of cylindrical holes in
a dielectric or for graphite structures of dielectric rods in air. This is easily understandable
by considering the analogy between the Maxwell equations and linear elasticity in fluids.
For α quite different from 0 and 1, the BN array gives rise to additional large gaps in the
same range of frequency.

3.2. 2D solid/solid binary composite systems

In a previous work [8], we have shown that the acoustic band structure of a square array
of carbon fibres embedded in an epoxy matrix exhibits large absolute band gaps; the widest
gaps are obtained for a filling fractionf = 0.55 (see figure 2(b) of reference [8]). In
complement to this work, we have calculated the dispersion curves for triangular arrays
of carbon rods in an epoxy background, considering various filling fractions. With this
pattern, the widest gap was obtained forf = 0.65. Its width is 1.7 times larger than the one
obtained for the square array [8]. In this case, the triangular structure is more favourable
than the square pattern for the opening of absolute gaps in the acoustic band structure of
2D binary solid/solid composite material. This observation is in agreement with previous
results obtained independently by Sigalas and Economou [11] and Kushwaha and Halevi
[12] for other constituents of the 2D inhomogeneous material.

In this section, we extend our investigation to 2D composite materials of BN structure,
the constituent materials being C (or W) and epoxy. Both cases of high and low filling
fractions of the inclusions will be considered; that is, we shall assume eitherf1+ f2 = 0.6
(which is the nearest value to 0.65 available for the BN structure) orf1 + f2 = 0.3, and
discuss the behaviour of the acoustic band gaps versus the parameterα = R1/R2.

The calculation is performed by solving numerically the Fourier transforms of equations
(5) and (6) for theXY - andZ-modes of vibrations, taking into account the 169 shortest
G-vectors. The plots are given in terms of the reduced frequency� = ωa√3/(2πC0) (with
C0 =

√
C̄44/ρ̄ whereC44 = C44(G = 0) andρ̄ = ρ(G = 0) (see equation (11))) versus the

reduced Bloch wave vectork =Ka√3/(2π).
Let us first consider the filling fractionf1 + f2 = 0.6. Figure 5(a) presents the first

ten acousticZ- andXY -bands when the ratio between the radii of the two cylinders in
the BN structure is given byα = 0.186. One can observe that there are five complete
band gaps in this band structure, the largest appearing between the thirdXY -band and the
secondZ-band with1� ≈ 0.048. The presence of nearly flat bands such as the second
or the fourthZ-bands may indicate the existence of localized states in this structure. The
effect of the parameterα on the band structure is investigated in figure 5(b) where we have
superimposed the variations of the width of theZ- (dashed lines) andXY - (solid lines)
band gaps versus the parameterα for f1 + f2 = 0.6. Numerous wideZ-gaps appear for
0< α < 0.5. The existence of a largeXY -gap, between the third and the fourthXY -bands
(see figure 5(a)), for 0.33 < � < 0.57, gives rise to three absolute band gaps where the
propagation of acoustic waves of any polarization is forbidden. These absolute gaps are
represented as speckled areas in figure 5(b). One can notice that the second absolute band
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(a) (b)

Figure 5. (a) The elastic band structure for a BN array of C cylinders in an epoxy resin matrix
for f1 + f2 = 0.6 andα = R1/R2 = 0.186. The band structure is plotted forZ- (dashed lines)
andXY - (solid lines) modes of vibration in the three high-symmetry directions0JX of the first
Brillouin zone (see figure 2). One can notice five complete band gaps in the range of frequency
0< � < 0.9. (b) The variation of the width of theZ- (dashed lines) andXY - (solid lines) gaps
appearing in the band structure of the BN arrays of carbon cylinders in an epoxy background,
for f1 + f2 = 0.60, as a function of the parameterα = R1/R2. Each pair of dashed lines (or
solid lines) represents the variation of the lower and upper frequencies for eachZ- (orXY -) gap
as a function ofα. The overlap of theZ- andXY -gaps results in absolute band gaps represented
as speckled areas in this figure.

gap which opens for 0.4< � < 0.5 exists only in the BN structure with 0.13< α < 0.45.
The maximum width of this gap, obtained forα ≈ 0.3, is of the same order of magnitude
as the largest gap observed in the triangular structure. One can imagine for this kind of
composite material engineering applications such as very selective acoustic filters. There is
no absolute band gap in the graphite band structure, i.e. forα = 1. This result shows that the
contrast between the diameters of the two cylinders plays an important role in determining
acoustic band gaps.

We have also investigated the inverse situation, i.e. the BN array of epoxy cylinders
in a carbon background forf1 + f2 = 0.6. As can be observed in figure 6, absolute band
gaps appear in this band structure for 0.4 < α < 1. The largest absolute gap, centred on
� = 0.45, is obtained in the graphite structure with1� ∼= 0.07. For smallα, most of
theZ- andXY -gaps are very narrow except the firstZ-gap. Forα close to 1, there exist
some largeZ-gaps. It is noticeable that in the case of square arrays of epoxy cylinders in a
carbon matrix, the band structure does not present absolute band gaps [8]. We deduce that,
for such a high filling fraction, the existence of band gaps is more favoured in triangular
arrays of inclusions having a density and elastic constants greater than those of the matrix.
If the background is the component of greater density and elastic constants, the graphite
structure is more appropriate.
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Similar studies were performed for BN arrays of W (or epoxy) cylinders in an epoxy
(or W) background forf1 + f2 = 0.6. Large absolute band gaps were obtained for BN
arrays of W cylinders in an epoxy background with 0< α < 0.65 as well as for BN arrays
of epoxy cylinders in a W background with 0.30< α < 1, the largest gaps being observed
for the triangular structure in the first case and for the graphite geometry in the second case.
The absolute band gaps in composite materials made of W and epoxy are larger than those
observed in C–epoxy BN structures. This result can be explained by the contrast between
the densities of W and C (see table 1).

Figure 6. The variation of the width of theZ- (dashed lines) andXY - (solid lines) gaps
appearing in the band structure of the BN arrays of epoxy cylinders in a carbon background,
for f1 + f2 = 0.60, as a function of the parameterα = R1/R2. The absolute band gaps are
represented as speckled areas in this figure.

It is noteworthy that for this filling fraction,f1 + f2 = 0.6, the first few dispersion
curves in the graphite band structure of the epoxy/C (or W) system show some similarities
with the corresponding curves in the triangular band structure of the C (or W)/epoxy
composite. A similar observation was made in section 3.1 for 2D binary fluid/fluid
composites in relation to the results obtained for photonic crystals [18, 19] . Finally, we
would emphasize that at such a high filling fraction near to the close-packed arrangement in
the graphite structure, the BN geometry offers the possibility of avoiding contact between
the cylinders together with the existence of large absolute band gaps.

We now come to consider the case of a low filling fraction such asf1 + f2 = 0.3.
In this case, there are no absolute band gaps in the BN arrays of epoxy fibres in a C
or W background. Absolute gaps were obtained for composites made up of C or W
fibres in epoxy, the widths of these gaps being much larger for W fibres than with C
inclusions. Figure 7(a) shows the first acousticZ- andXY -bands, in the range of frequency
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(a) (b)

Figure 7. (a) The elastic band structure for a BN array of tungsten cylinders in an epoxy resin
matrix for f1 + f2 = 0.3 andα = R1/R2 = 0.603. The band structure is plotted with the
same conventions as in figure 5(a). One can notice seven complete band gaps in the range of
frequency 0< � < 1.05. (b) The variation of the width of theZ- (dashed lines) andXY - (solid
lines) gaps appearing in the band structure of the BN array of tungsten cylinders in an epoxy
background, forf1 + f2 = 0.30, as a function of the parameterα = R1/R2 for 0 < � < 0.8.
The absolute band gaps are represented as speckled areas.

0 < � < 1.05, for the BN array of W cylinders in an epoxy matrix withf1 + f2 = 0.30
andα = R1/R2 = 0.603. There are seven absolute gaps in this band structure; the largest
appears between the third and the fourthZ-bands with1� = 0.228. Most of theZ-
andXY -bands, especially those at high frequencies, are very flat. The fourth and the fifth
absolute gaps are very much larger than those obtained in figure 5(a). In figure 7(b), we
present the dependence of theZ- andXY -gaps in the band structure of W/epoxy BN arrays
versus the parameterα = R1/R2 for 0 < � < 0.8. The width of the first absolute band
gap is maximal forα = 0, strongly decreases forα slightly different from zero, and then
reaches its minimum value forα ∼= 0.8. One observes that a very largeZ-gap exists for
all values ofα, for 0.5 < � < 0.7. This gap appears between the third and the fourth
Z-bands in the band structure (see figure 7(a)), and the maximum of its width occurs for
α = 1. For 0.25 < α < 0.75 and 0.4 < � < 0.7, the upper limit of the secondXY -gap
and the lower limit of the thirdXY -gap merge together. These two gaps are delimited
by the sixthXY -band (see figure 7(a)) which is strictly flat for these values ofα and�.
The first and the sixth absolute band gaps (of maximum width forα = 1) have widths of
the same order of magnitude (1� = 0.26 for the first and1� = 0.244 for the sixth).
One observes also that the third absolute band gap which opens for 0.35 < � < 0.5
exists only in the BN structure with 0.15 < α < 0.80, and reaches its maximum width
for α ≈ 0.5. For f1 + f2 = 0.3, the BN array of W cylinders in an epoxy matrix is a
good candidate for the opening of absolute band gaps with a configuration far from the
close-packed arrangement.
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4. Conclusions

The purpose of this paper was to investigate the existence of absolute band gaps in the
acoustic band structure of a new class of two-dimensional binary periodic composite
systems: the boron nitride array of infinite parallel cylinders in a background. In this
pattern, the unit cell contains two cylinders of different diameters, and the rods are located
at the vertices of a regular hexagon. We have considered artificial materials for which the
inclusions and matrix are either both solids or both fluids, such as carbon or tungsten (or
epoxy) fibres in an epoxy (or C or W) matrix, or water cylinders (or mercury) in a mercury
(or water) background.

We obtained relatively large complete gaps where the propagation, perpendicular to
the inclusions, of phonons in the acoustic region is forbidden. These gaps are larger for
fluid/fluid than for solid/solid binary composites. This result can be understood on the basis
that fluids can only support longitudinal modes of vibration. The influence of the cylinder
diameters as well as the effect of the composition of the composite material on the band
structure were studied.

For high filling fractions, the triangular structure of C or W cylinders embedded in
an infinite epoxy matrix is more favourable for the opening of very large gaps in the
band structure. In the opposite situation, i.e. epoxy fibres in a C or W background, the
graphite structure, in which all the cylindrical inclusions have the same radius, is more
appropriate. For quite low filling fractions, triangular and graphite arrays of W cylinders in
an epoxy matrix give rise to large absolute acoustic band gaps of qualitatively similar width.
Our results demonstrate also that 2D solid/solid BN structures with cylinders of markedly
different radii may be used as selective frequency filters.

For 2D binary fluid/fluid composites, the graphite structure yielded the largest acoustic
band gaps when cylinders of a high-density material were embedded in a background of low
density; this is the case independently of the filling fraction of the inclusions. In the opposite
case of low-density fibres embedded in a high-density matrix, the triangular structure gives
rise to one large absolute band gap (which is the largest one that we have obtained), but
in graphite and some BN geometries one can obtain several gaps having qualitatively the
same order of magnitude. Moreover in the limit of a high filling fraction, the BN geometry
offers the possibility of an easy technical realization which avoids the contact between the
fibres.

In solid composites, one may of course be interested in a separate study (or experimental
excitation) ofZ- andXY -polarized modes. In this respect, it is worthwhile to notice the
similarities between the wave equation which describes theZ-polarized modes in solid
composites and the one giving the fluid composite band structure. This comparison can
be made by replacing the parametersρ andC44 in a solid respectively by 1/C11 and 1/ρ
in the fluid. Then the conclusions mentioned above for fluid composites can also explain
or predict the behaviours of the band structure forZ-polarized modes in solid composites.
For instance, in the case of epoxy fibres in a C (or W) matrix (which meansC44A � C44B

and ρA � ρB) the largestZ-polarized gaps were obtained in the graphite and some BN
geometries. In the opposite case of C (or W) cylinders in an epoxy matrix, the triangular
structure gave the largest gap, although the BN patterns withα 6= 0, and in particular the
graphite structure, show richer band-gap structures.

Our calculation of the acoustic band structure was performed in this work for waves
propagating parallel to the(x1Ox2) plane (perpendicular to thex3-axis of the fibres). For
infinitely long cylinders, it is likely that these gaps will close if we take account of wave
propagation along thex3-direction in addition to the propagation along thex1- and x2-
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directions. However, one may assume that these gaps will still exist either if the cylinders
are of finite dimension with a length of orderπ/a, or if they are composed of a periodic
structure with a repeating period of the same order of magnitude [21].

Finally, it could be interesting to extend our calculation to two-dimensional mixed
periodic composite media where the inclusions and matrix are of different nature, i.e. fluid
(or solid) cylinders, disposed on patterns of various geometries, in a solid (or fluid) matrix.
The experimental manufacturing of these systems will of course be very easy.
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