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ABSTRACT
The elastic band structures of two-dimensional phononi

crystal plates are computed with the help of a super-cell plan
wave expansion (PWE) method. These band structures stron
differ from the infinite 2D phononic crystal dispersion curves
In particular, these band structures exhibit surface modes an
guided modes. The influence of the constituent materials, of t
plate thickness and of the geometry of the array on the ban
structure is investigated. We focus more specifically on dete
mining the thicknesses of the plate for which absolute forbidde
bands exist. Namely, we show that absolute forbidden bands o
cur in the band structure if the thickness of the plate is of the sam
order of magnitude as the periodicity of the array of inclusions.

INTRODUCTION
Phononic crystals also named acoustic band gaps materi

(ABG), are composite materials made of two or three dimen
∗Address all correspondence to this author.
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sional periodic distributions of inclusions embedded in a matrix.
The periodic structure of these composite materials gives them
peculiar properties, in particular the existence, under certain con-
ditions, of absolute acoustic band gaps i.e. forbidden bands tha
are independent of the direction of propagation of the incident
elastic wave [1, 2]. Absolute band gaps confer to these artifi-
cial materials potential applications as sound insulators or for
the filtering and demultiplexing of acoustic waves [3–5]. Earlier
studies of bulk phononic crystals i.e. phononic crystals assumed
of infinite extent along the 3 spatial directions, have shown that
the bandwidth of the forbidden band depends strongly on the
contrast between the physical characteristics (density and elas
tic moduli) of the inclusions and the matrix, as well as the ge-
ometry of the array of inclusions, the inclusion shape and the
filling factor of inclusions [1–3]. More recently, various au-
thors have studied theoretically the existence of surface acous
tic waves (SAW) localized at the free surface of a semi-infinite
two-dimensional phononic crystal [6–9]. For this geometry, the
parallel inclusions are of cylindrical shape and the surface con-
Copyright © 2006 by ASME
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Figure 1. (a) 2D PHONONIC CRYSTAL PLATE SANDWICHED BETWEEN TWO SLABS OF HOMOGENEOUS MATERIALS, (b) 3D SUPER-CELL

CONSIDERED IN THE COURSE OF THE PWE COMPUTATIONS.
-

sidered is perpendicular to their axis. Various arrays of inclu
sions [6, 7], crystallographic symmetries of the component ma
terials [8], and also the piezoelectricity of one of the constituen
[9] were taken into account. In these works, the same metho
of computation of the SAW band structure was applied. This
method is based on the well-known plane wave expansion (PWE
method [1, 2] with SAW explicitly searched as solutions of the
Fourier-transformed equation of propagation, exponentially de
creasing along the cylinders direction and by imposing the righ
boundary conditions on the free surface. The same method w
also applied for computing the symmetric Lamb modes ban
structure of two-dimensional phononic crystals plates made of W
cylinders in a Si background [10]. The propagation of acousti
waves along a surface parallel to the cylinders in a 2D phonon
crystal has also been studied [11]. More recently, the guide
elastic waves in a glass plate coated on one side with a period
monolayer of polymer spheres immersed in water was invest
gated with the help of the layer-multiple scattering method [12]
On the experimental point of view, high frequency SAW was
observed with a pair of interdigital transducers placed on bot
sides of a thick silicon plate in which a square array of hole
was drilled [13]. The existence of gaps for acoustic waves prop
agating at the surface of an Air/Aluminium 2D phononic crysta
plate was shown experimentally through laser ultrasonic mea
surements [14].

In this paper, we show that the band structure of a 2D
phononic crystal plate of finite thickness along the axis of the
2
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cylinders exhibits surface modes and guided modes. This band
structure strongly differs from the bulk 2D phononic crystal dis-
persion curves. The influence of the constituent materials, of
the plate thickness and of the geometry of the array on the band
structure is investigated. We focus especially on determining the
thicknesses for which absolute forbidden bands still exist.

This paper is organised as follows. In section II, we present
the model and the method of calculation of the acoustic band
structure of 2D phononic crystal plates. Several numerical results
are then presented in section III. Section IV contains discussion
of these results and the main conclusions drawn from this study.

METHOD OF CALCULATION
We calculate the acoustic band structures of 2D phononic

crystal plates using a method based on the plane wave expan
sion (PWE) method. The phononic crystal plate of thickness,
h2, is assumed infinite in thexy plane of the Cartesian coordi-
nates system(O,x,y,z). The phononic crystal is a periodic array
of cylindrical inclusions constituted of an isotropic material A
embedded in an isotropic elastic matrix B. The cylinders of ra-
dius R are parallel to thez direction and the nearest neighbor
distance between cylinders isa. In thexy plane, the filling fac-
tors are f and(1− f ) for materials A and B respectively. The
plate is sandwiched between two slabs of thicknessesh1 andh3,
made of elastic isotropic homogeneous materials C and D (see
Fig. 1(a)). In the course of the numerical calculations, one con-
Copyright © 2006 by ASME
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siders the parallelepipedic super-cell depicted in Fig. 1(b). The
super-cell of surface,a2, in thexyplane, and of height̀along the
z direction with` = h1 + h2 + h3, contains one, or more, cylin-
der A of heighth2, surrounded by material B and sandwiched
between two plates of thicknessesh1 andh3. This super-cell is
repeated periodically along thex, y andz directions. We desire
medium C to be a low impedance medium (L.I.M.) such as vac-
uum. Medium D can be either vacuum or a homogeneous mate
rial depending on whether one wants to model a phononic crysta
plate or a structure made of a phononic crystal plate deposited o
a substrate of finite thickness. The triple periodicity along the 3
spatial directions allows one to develop the elastic moduli and
the mass density of the constituent materials as Fourier series
η(~r) = ∑~G η(~G)exp(i~G~r) where~r and~G are three-dimensional
position vectors and reciprocal lattice vectors respectively. The
components in thexy plane of the~G vectors depend on the ge-
ometry of the array of inclusions while along thez direction,
Gz = 2π

` nz wherenz is an integer. Moreover, the displacement
field satisfies the Bloch theorem and one searches for solution
to the Fourier transformed equation of propagation as harmoni
waves of pulsationω and wave vector~K. The components, in
thexy plane, of the~K vectors are limited to the periphery of the
first Brillouin zone of the array whileKz is assumed equal to
zero. The choice of the physical parameters characterizing vac
uum in the course of the PWE computations is of main impor-
tance. Indeed, it is well known that convergence problems occu
when considering abruptly a transverse speed of sound for th
fluid equals zero in the PWE computations of band structures o
solid/fluid composites [11,14]. On the other hand, the super-cel
method requires an interaction as low as possible between th
vibrational modes of neighboring phononic crystal slabs. Then
vacuum must be modeled as a fictitious material where propa
gation of acoustic waves is forbidden [11]. Vacuum has been
modeled by an isotropic L.I.M. with very low density and very
high speeds of soundC` andCt . More specifically, we choose
ρ = 10−4kg.m−3 andC` = Ct = 105m.s−1. This ensures that
the ratio between the elastic moduli of vacuum and those of an
other solid material approaches zero. For checking the reliability
of these parameters, we have considered the peculiar case o
2D bulk phononic crystal made of a square array of cylindrical
holes drilled in a solid matrix. We computed its PWE band struc-
ture by modeling the material inside the holes with our isotropic
L.I.M., on one hand. On the other hand, the transmission coef
ficients along the principal directions of propagation were calcu-
lated with the help of the finite difference time domain (FDTD)
method and the material inside the holes was explicitly consid
ered as air i.e.ρA = 1.23kg.m−3,CA

` = 340m.s−1 andCA
t = 0. Let

us recall that the FDTD method allows one to compute accuratel
transmission coefficients through solid/fluid composite materials
by modeling fluids with their real physical characteristics i.e. in
particular, a transverse speed of sound equals 0 [15, 16]. We ob
served that the PWE and FDTD results compared quite well. In
3
3

loaded From: http://proceedings.asmedigitalcollection.asme.org/ on 02/09/2016 Ter
-
l
n

as

s
c

-

r
e
f
l
e

-

y

f a

-

-

y

-

particular, the domains of low transmission in the transmission
coefficients coincided exactly with the absolute band gaps of the
band structure. This indicates that in the course of the PWE cal-
culations, these values of the L.I.M. physical characteristics al-
lows one to model air (or vacuum) without numerical difficulties.
Moreover we also checked that our super-cell PWE method leads
to similar results to those published [6, 7, 13] for semi-infinite
phononic crystals, provided the thickness of the plate is large
enough. Finally with our numerical method, computations of
dispersion curves of phononic crystal plates withKz = 0 and with
any other non vanishing value ofKz, lower thanπ/`, lead to the
same result. This indicates that the homogeneous slab C made of
the L.I.M. modeling vacuum rigorously forbids the propagation
of acoustic waves in theZ direction.

NUMERICAL RESULTS
The steel/epoxy 2D phononic crystals

We first consider the case of 2D phononic crystals made of
two solid constituent materials. We choose steel for the cylin-
drical inclusions and epoxy for the matrix. Indeed these solids
possess very different densities and elastic constants and the
bulk phononic crystal exhibits very large absolute band gaps pro-
vided the filling factor of inclusion is sufficiently large. We used
the elastic constantsC11

A = 26.4 andC44
A = 8.1 (in units of

1010 N.m−2) and mass densityρA = 7780kg.m−3 for steel, and
C11

B = 0.754 andC44
B = 0.148 (in units of 1010 N.m−2) and

mass densityρB = 1142kg.m−3 for epoxy. Figure 2 represents
the band structures of the bulk phononic crystal (hollow squares)
and of the phononic crystal plates with different thicknessesh2

(black filled circles) ranging from0.1a to 4a. The computations
of the dispersion curves of the bulk phononic crystal were done
with an usual two-dimensional PWE scheme by imposing that
the propagation of the acoustic waves is limited to the plane per-
pendicular of the inclusions (see details in references [1, 3]). In
the course of the numerical calculations of the band structure of
the phononic crystal plates, the thicknesses of slabs C and D were
chosen equals toa and1029reciprocal lattice vectors were taken
into account. This ensures satisfactory convergence of the PWE
code. The array of cylindrical inclusions is square and the fill-
ing factor f = πR2/a2 is equal to0.56. The results are rendered

in terms of a reduced frequencyΩ = ωa
2πCt

, whereCt =
√

C44
ρ

with C44 = (C44
A f h2 +C44

B(1− f )h2 +C44
C f h1 +C44

D f h3)/`
and ρ = (ρA f h2 + ρB(1− f )h2 + ρC f h1 + ρD f h3)/`, is an av-
erage transverse speed of sound, versus a reduced wave vector
k = Ka/2π. One first observes that the band structure of the
phononic crystal plate strongly differs from the dispersion curves
of the bulk phononic crystal. The vibrational modes in the plates
are confined by the two free surfaces of the plates, and result
in only plate modes namely Lamb modes. The spatial distribu-
tion of these different modes can be derived from the calcula-
Copyright © 2006 by ASME
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Figure 2. PWE ELASTIC BAND STRUCTURES FOR THE BULK 2D PHONONIC CRYSTAL (OPEN SQUARES) AND THE PHONONIC CRYSTAL PLATE

OF THICKNESS h2 (BLACK FILLED CIRCLES) MADE OF A SQUARE ARRAY OF STEEL CYLINDERS EMBEDDED IN AN EPOXY RESIN MATRIX WITH

f = 0.56. (a) h2 = 0.1a; (b) h2 = 0.7a; (c) h2 = 4a.
tion of the elastic displacement field associated with a specifi
mode. For example, Figure 3 shows the maps of the three co
ponentsux, uy anduz of the displacement field in the planexz
(i.e. for y = 0) computed at theX point of Fig. 2(b). We restrict
ourselves to the three dispersion curves that start from the po
Γ. For the first mode, one deduces from Figs. 3(a,b,c) thatux

rapidly decreases from the surfacesz/a = ±0.35. In contrast,
uy = 0 anduz remains nearly constant along thez direction (for
a fixed value ofx) and exhibits an oscillatory behavior along the
x direction. This mode with a nearly parabolic dispersion curv
corresponds to theA0 mode i.e. the lowest order asymmetric
Lamb mode. The displacement field associated with the seco
mode presents a non-vanishing value only along they direction
(see Figs. 3(c,d,e)) and is of transverse polarization. The thi
branch starting from theΓ point with a reduced frequency0.38
at theX point presents a vanishing displacement along they di-
4
4
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rection anduz decreases from the surfaces. This is theS0 mode
i.e. the lowest order symmetric Lamb mode. These modes fold
at the vicinity of theX point. Lamb modes of higher order occur
at larger reduced frequencies. While in homogeneous plates, sur-
face modes appear commonly below the bulk dispersion curves
(as it can be seen in Fig. 2(a)), this is not observed in this par-
ticular case of phononic crystal plate. This was also observed in
a semi-infinite phononic crystal made of a square array of holes
in LiNbO3, a piezoelectric material [9]. Of particular interest in
Fig. 2(b) is the existence of an absolute band gap centered on
Ω ∼= 0.6. This gap in which no plate mode can propagate of-
fers the possibility of integrating at the scale of a thin slab of
phononic crystals, structural defects such as cavities or waveg-
uides. In that case, the vibrational modes associated with these
structural defects should fall inside this absolute band gap. This
may allow the design of functional devices for the filtering or the
Copyright © 2006 by ASME
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Figure 3. MAPS OF THE ELASTIC DISPLACEMENT FIELD IN THE xzPLANE (y = 0) FOR THE STEEL/EPOXY PHONONIC CRYSTAL PLATE OF

FIG. 2(b). FIGS 3(a), (b) and (c) SHOW THE ux, uy AND uz COMPONENTS OF THE DISPLACEMENT FIELD FOR THE A0 LAMB MODE AT THE X
POINT OF THE BRILLOUIN ZONE. (d), (e) AND (f) : THE SAME AS IN (a), (b) AND (c) BUT FOR THE FIRST TRANSVERSE MODE; (g), (h) AND

(i) : THE SAME AS IN (a), (b) AND (c) BUT FOR THE S0 MODE. THE COLOR SCALE INDICATES THE VALUE OF THE DISPLACEMENT FIELD IN

ARBITRARY UNITS.
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Figure 4. PWE ELASTIC BAND STRUCTURES FOR THE BULK 2D PHONONIC CRYSTAL (OPEN SQUARES) AND THE PHONONIC CRYSTAL PLATE

OF THICKNESS h2 (BLACK FILLED CIRCLES) MADE OF A SQUARE ARRAY OF CYLINDRICAL HOLES DRILLED IN STEEL WITH f = 0.70. (a)

h2 = 0.1a; (b) h2 = a; (c) h2 = 4a.
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multiplexing of elastic waves. A detailed analysis of the band
structures of steel/epoxy phononic crystal plates show that th
width of the absolute band gaps depends on the filling factor o
inclusion (larger gaps were observed forf larger than0.5 as is
the case for bulk waves [1]) and on the thickness of the plate
Indeed a comparison between Figs. 2(a), 2(b) and 2(c) show
clearly that for very thin (h2/a = 0.1, for example) or very thick
(h2/a = 4) plates, full band gaps are not observed. With other
constituent materials, our study shows thath2/a ranging from
0.5 to 1.5 leads to the largest absolute band gaps.

The air/steel2D phononic crystals
From an experimental point of view, the realization at the

micro- or at the nano-scale of 2D phononic crystals constitute
of two different solid materials is a very challenging task while
6
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actual techniques based, for examples, on reactive ion etchin
(RIE) or focused ion beam (FIB) allows one to drill relatively
easily regular network of holes in a solid [9]. Then with the aim
of designing structures exhibiting absolute band gaps for ver
high frequencies (≈GHz), that can be fabricated experimentally,
we focus our attention on arrays of holes drilled in a solid ma-
trix. Figure 4 shows the elastic band structure of square array
of cylindrical holes in steel for three different thicknesses of the
phononic crystal plate. For the sake of comparison, we also re
port the bulk band structure. The band structures are rendered
the same way as those in Figs. 2. With these constituent mate
als, the choice of the filling factor is of particular importance. In-
deed, most of the theoretical and experimental studies conduct
on bulk 2D phononic crystals have shown that larger gaps ar
obtained when the inclusions (resp. the matrix) are made of th
harder (resp. softer) material [1,3]. Nevertheless, this can be by
Copyright © 2006 by ASME
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Figure 5. LEFT PANEL : SCHEMATIC REPRESENTATION IN THE xy PLANE (TOP) AND IRREDUCIBLE BRILLOUIN ZONE (BOTTOM) OF THE

GRAPHITE ARRAY; RIGHT PANEL : PWE ELASTIC BAND STRUCTURES FOR THE BULK 2D PHONONIC CRYSTAL (OPEN SQUARES) AND THE

PHONONIC CRYSTAL PLATE OF THICKNESS h2 = a (BLACK FILLED CIRCLES) MADE OF A GRAPHITE ARRAY OF CYLINDRICAL HOLES DRILLED

IN STEEL WITH f = 0.5.
s
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passed by considering a very compact array of holes. For exam
ple, a square array of holes drilled in a solid with a filling factor
near the closed packed value (i.e.f = π/4) behaves like a square
array of solid inclusions of singular shape embedded in air. The
one may expect large gaps for high filling factor of holes. This
is illustrated in Figs. (4) wheref = 0.7. One observes that the
bulk band structure exhibits an absolute band gap centered o
Ω ∼= 0.5. As in Fig. 2, an absolute band gap only appears for a
thickness of the plate of the order of the lattice parameter name
h2/a = 1.0 (see Fig. 4(b)). A vibrational mode associated with
the plate falls inside the absolute band gap of the bulk phononi
crystal but an absolute stop band still remains when the phonon
crystal is of finite thickness. Furthermore one observes that th
width of this absolute band gap is narrower than the one observe
in Fig.2(b) for a phononic crystal made of two solid constituent
materials. One may search for larger band gaps with the sam
constituent materials by changing the geometry of the array of in
clusions. Indeed, it is well known that for bulk phononic crystals
geometry plays a fundamental role in designing large elastic ban
gaps. Especially, it has been shown that for bulk phononic crys
7
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tals, graphite arrays of soft inclusions in a hardest matrix lead
to very large absolute gaps [3]. Subsequently we investigate
the dispersion curves of 2D phononic crystal with the graphite
structure. In the graphite network, the inclusions are located a
the vertices of a regular hexagon and the distance between tw
nearest neighbors isa (see left panel of Fig.5). The super-cell
considered in the PWE calculations contains two cylinders. In
the schematic representation of the graphite array, the lozeng
pattern drawn with dotted lines delimits the area of the super-ce
in the xy plane. Along thez direction, the super-cell is similar
to that depicted in Fig. 1(b). The filling factor of each inclusion
is f = 2πR2/3

√
3a2 in the xy plane [3]. The irreducible Bril-

louin zone is the triangleΓJX (see left panel of Fig. 5). Figure
5 shows the bulk band structure (hollow squares) and the dispe
sion curves of a phononic crystal plate (black filled circles) for a
graphite array of holes in steel withf = 0.25 i.e. a total filling
factor of inclusions equals0.5, smaller than the close-packing
value of0.604. We consider a plate with a thickness equal to
the lattice parametera i.e. h2/a = 1. As in the previous cases,
the band structure of the plate differs from that of the infinite
Copyright © 2006 by ASME
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phononic crystal. One observes also the characteristic parabo
shape in the vicinity of theΓ point of theA0 Lamb mode. In this
particular structure, theS0 Lamb mode and the first transverse
mode overlap with the bulk dispersion curves. On the other han
the width of the full band gap centered around0.6 is markedly
larger than the gaps reported in Figs. 2(b) and 4(b). As prev
ously, the existence of this absolute stop band depends on
thicknessh2 of the plate and the optimum value ofh2 is of the
order of magnitude ofa. Thinner or thicker plates do not exhibit
such absolute stop bands. Moreover, while for the square arr
of holes, absolute band gaps were obtained for filling factors a
proaching the close-packed value for which cylinders are in co
tact with one another, the graphite network shows wide gaps f
non contacting cylinders. Consequently, the technical realizati
of phononic crystals made of holes in a solid matrix exhibitin
absolute stop bands is probably much easier when the holes
arranged upon a graphite array than a square network especi
at the scale of a thin plate.

CONCLUSION
The purpose of this paper was to investigate the existen

of absolute stop bands in the elastic band structure of tw
dimensional phononic crystal plates. A super-cell plane wav
expansion method was applied for computing the dispersio
curves of phononic crystals plates. Compared with previou
works on waves propagating at the surface of 2D semi-infini
phononic crystals, our method does not require writing explic
itly the boundary conditions on the free surfaces. This alleviat
some numerical difficulties such as the computation of pseud
modes without physical meaning [6]. PWE results show that th
band structure of a phononic crystal plate strongly differs from
that of a 2D composite material of infinite extent in the thre
spatial directions. Absolute stop bands in plates were observ
for solid/solid systems such as steel inclusions in epoxy or f
fluid/solid composites such as periodic arrays of holes in ste
We observed that the thickness of the plate plays an importa
role for designing artificial structures exhibiting absolute sto
band. A thickness of the same order of magnitude as the l
tice parameter of the array of inclusions seems to be the most
vorable case for observing large absolute band gaps in phono
crystal plates. As far as arrays of holes drilled in a solid ma
trix are concerned, the graphite structure with the cylindrical in
clusions placed at the vertices of a regular hexagon leads to
largest absolute band gaps. Structural defects such as point
fects, cavities, channels inserted inside the phononic crystal pl
could lead to the existence of vibrational modes inside such a
solute stop bands. These defect modes could then be used
realize acoustic devices such as waveguides, specific freque
filters or wave length demultiplexers. In particular, these func
tionalities are of particular interest in radio-frequency device
for telecommunication applications. For example, surface acou
8
8
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tic waves (SAW) devices have been used extensively as radio-
frequency (RF) band pass filters for the telecommunication in-
dustries [17]. Usual SAW devices are made of homogeneous
piezoelectric films placed between two interdigital transducers.
By replacing the piezoelectric film with a ”defective” phononic
crystal plate, one will be able to introduce inside the device new
functionalities such as wave guiding or wavelength demultiplex-
ing. But in the range of radio-frequency (i.e. a few GHz), the
thickness of absolute band gaps phononic crystal plates must be
of the order of a few tens of nanometers (i.e. the same order of
magnitude as the lattice parameter). Physical realization of such
structures would then require that the thin plate of phononic crys-
tal be deposited onto a thick substrate for support. It would then
be interesting to investigate the influence of the substrate on the
absolute band gap of the phononic crystal plate.
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