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In this paper, we present a theoretical analysis of the propagation of acoustic waves through phononic 
crystals constituted of square array of hollow cylinders of steel immersed in water. The study of the trans-
mission along the principal high-symmetry direction, ΓX of the Brillouin zone reveals the presence of a 
Narrow Pass Band (NPB) falling inside a wide band gap. Nevertheless the band structure displays two 
NPB in the same frequency range. Symmetry arguments, based on the calculation of the displacement 
field, shows that only the lowest NPB contributes to the transmission. The two NPB transform into two 
wider bands along the ΓM direction of the Brillouin zone, but now only the highest branch contributes to 
the transmission when a normally incident wave is launched onto the phononic crystal. Finally, we show 
that, by inserting hollow cylinders as a line defect inside a phononic crystal of filled steel cylinders, one 
can realize selective frequency waveguides that may be useful for guiding and multiplexing applications. 
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During the last decade, several works have been devoted to the study of the propagation of acoustic 
waves in the so-called phononic crystals, made of two or three-dimensional [1, 2] periodic repetitions of 
different solid or fluid constituents, which exhibit large contrast between their elastic constants and/or 
mass densities. These elastic periodic composites can exhibit large acoustic band gaps where the propa-
gation of phonons is forbidden. The existence of absolute band gaps was predicted theoretically [3] prior 
to being demonstrated experimentally in various phononic crystals [4]. Recent studies have been con-
cerned with manipulating the propagation of sound through channel (or waveguides) created inside the 
phononic crystal that can be considered as phononic circuits [5]. These waveguides can interest engineer-
ing applications from transducer technology to guidance, filtering and wavelength division multiplexing 
of acoustics waves [6, 7]. 
 Considering solid/fluid phononic crystals, we have described in a recent paper [5] a class of two di-
mensional (2D) acoustic band gap materials that incorporates tunable narrow passing bands (NPB) in 
their gaps. The frequency of the passing band is controlled by modifying the geometry of the cylindrical 
inclusions, with little change of the location and form of the transmission gap. This class of phononic 
crystals provides a means to design selective acoustic waveguides with potential filtering and demulti-
plexing capabilities. To name one, we have studied a heteroradii waveguide constituted of hollow cylin-
ders with alternating inner radii. This device permits the transmission of two superposed NPB with dif-

 
 *  Corresponding author: e-mail: Yan.Pennec@univ-lille1.fr., Phone: +00 333 20 43 68 07, Fax: +00 333 20 43 40 84 



2712 Y. Pennec et al.: Transmission and dispersion modes in phononic crystals 

© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 

ferent frequencies. The main goal of this paper is to compare the transmission coefficient obtained on a 
finite size crystal made of hollow cylinders with their corresponding dispersion curves. We present a 
theoretical calculation of the displacement field that allows the interpretation of the differences between 
the transmission and the dispersion curves. Then, we discuss some applications of waveguides consti-
tuted by hollow cylinders in a phononic crystal made of filled cylinders. All calculations are made using 
the finite difference time domain (FDTD) method which solves the elastic wave equation by discretizing 
time and space and replacing derivatives by finite differences [8]. We limit the model to elastic dis-
placements, velocities and stress fields in XY plane perpendicular to the cylindrical inclusions. 
 Our calculations of transmission and dispersion curves are performed for 2D phononic crystals of 
square geometry composed of hollow steel cylinders in water matrix (see insets in Fig. 1). The lattice 
parameter of the square mesh of cylinders is a = 5 mm. The inclusions are hollow cylinders with an outer 
radius re = 2.3 mm and an inner radius ri = 1.2 mm. The longitudinal and transverse speeds of sound in 
steel are taken as 5825 and 3226 m/s. The longitudinal speed of sound in water is 1490 m/s. The density 
of steel and water are 7.78 and 1 g/cm3, respectively.  
 To calculate the transmission coefficients, the model system is built of three parts. The finite phononic 
composite occupies the central region and is sandwiched between two homogeneous parts filled by wa-
ter. The composite region is composed of five periods in the direction of propagation, Y, and one period 
in direction X along which periodic conditions are applied. Absorbing Mur conditions are imposed at the 
free ends of the homogeneous media. A broad band travelling wave packet is launched in the first homo-
geneous region. The signal transmitted is recorded at the end of the second homogeneous region and 
integrated along its width. The Fourier transform of the transmitted signal normalized to the Fourier 
transform of a signal propagating through a homogeneous water system of the same physical dimensions 
as the model composite yields a transmission coefficient. 
 Figure 1a shows the transmission coefficient through the perfect phononic crystal containing hollow 
cylinders of steel immersed in water, in the ΓX direction, as a function of frequency. The transmission 
spectrum exhibits a gap from 110 to 250 kHz and exhibits inside that stop band a NPB and with a central 
frequency that occurs at 155 kHz. The most remarkable feature is the possibility of tuning the frequency 
of the NPB by varying the inner radius of the tubular cylindrical inclusions [5]. We present in Fig. 1b the 
transmission spectrum in the ΓM direction of the Brillouin zone. In the frequency range of 100 to 240 
kHz, this spectrum exhibits also one pass band but much larger than the NPB displayed in Fg. 1a. The 
selective NPB is then available only in the ΓX direction of the Brillouin zone.  

 
 
 
 
 
 
 
 
 

 
Fig. 1 Transmission spectra of the phononic crystal constituted of hollow steel cylinders in water medium, (a) for 
the ΓX direction and (b) for the ΓM direction of the Brillouin zone. 
 
 The above results can be quantitatively compared with the dispersion curves. To this end, the FDTD 
method has been adapted to the calculation of dispersion relations of acoustic waves in 2D phononic 
lattices [9]. Owing to the periodicity within the (X,Y) plane, the lattice displacement and the stress tensor 
take the forms satisfying the Bloch theorem.  
 In Fig. 2, we plot the band structure for the case of hollow cylinders embedded in water. In the frequency 
range of 100 to 240 kHz, there are two nearly flat bands along the ΓX direction which transform into two 
bands more dispersed along ΓM. In the transmission spectra of Fig. 1, only the lowest branch (referred to as 
1st) is visible in the ΓX direction and the highest branch (referred to as 2nd) along the ΓM direction. 
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Fig. 2 Dispersion curve of  the phononic crystal constituted of hollow steel cylinders in water medium. The grey 
area delimit the wide frequency domain as defined in the transmission curves and containing the NPB. 
 
 This apparently contradictory result can be explained by symmetry arguments. To this end, we have 
studied the displacement field associated with each branch in the vicinity of the Γ point of the Brillouin 
zone, either along ΓX or ΓM direction. The results for the lowest branch are displayed in Fig. 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Displacement fields of the first mode of the dispersion curve in the vicinity of the Γ point for a incident 
plane wave incoming (a) from the [01] and (b) from the [11] direction. The first one is a symmetric mode and the 
second an antisymmetric one. 
 
In Fig. 3a, we have sketched the UY component of the displacement field for a normal incident wave  
propagating along the [01] (or Y) direction at the frequency of 151 kHz. One can notice the symmetry of 
this field with respect to the Y axis. The same symmetry is obtained for the component UX of the dis-
placement (not shown here). Now, from these components UX and UY, we have constructed the two 
combinations UX’ = UX–UY and UY’ = UX + UY that represent the components of the displacement field 
along the X’ = [1,–1] and Y’ = [1,1] directions, obtained by rotating the X and Y axes by 45°. The UY’ 
component shown in Fig. 3b is now anti-symmetrical with respect to the [11] direction. As a conse-
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quence, a plane wave normally incident upon the ΓM direction cannot contribute to the transmission 
because this wave is symmetrical with respect to the Y’ axis. As a conclusion, the dispersion curve la-
belled 1st in Fig. 2 contributes to a NPB to the transmission along ΓX direction but not to the transmis-
sion along ΓM. With similar calculations whose details are skipped, we have shown that the branch la-
belled 2nd contributes to the transmission spectrum along ΓM but not along ΓX.  
 The above class of phononic crystal with a NPB inside a wide frequency gap offers a good possibility 
of designing acoustic waveguides for selective frequency transmission. For instance, we have studied the 
transmission spectrum through a waveguide constituted by a row of hollow cylinders inside a phononic 
crystal composed of filled steel cylinders in water. Within the frequency gap of the phononic crystal, the 
waveguide can transmit at a given selected frequency. For example, when the inner radii of the hollow 
cylinders are ri = 1.2 mm (respectively ri = 1.0 mm) the transmission spectrum exhibits a narrow peak at 
161 kHz (respectively 194 kHz). It is worthwhile to notice that these frequencies are significantly differ-
ent from those obtained when the transmission occurs through a perfect phononic crystal composed of 
hollow cylinders. In the latter case, the frequencies of the NPB are respectively 155 and 184 kHz. This 
difference can be attributed to the confinement effect inside the waveguide which appears to be far from 
being negligible.  
 In Fig. 4, we show the transmission spectrum through a waveguide containing alternate hollow cylin-
ders of inner radii equal to 1.2 and 1.0 mm respectively. One can notice that the transmission spectrum 
exhibits now two distinct peaks at 161 and 194 kHz, which makes this structure a good candidate for 
multiplexing purposes. In a recent work [5] we have also shown that such a waveguide transporting two 
selected frequencies can be divided into two channels (Y-shaped waveguide). Then, each frequency will 
be transmitted into only one channel, which means that such structure behaves as a demultiplexing de-
vice.  
 
  
  
 
 
 
 
 
 
 
Fig. 4 (a) 2D cross section of NPB waveguide composed of hollow cylinders with large (1.2 mm) and small (1.0 
mm) inner radii in alternation. (b) transmission spectrum of the mixed waveguide. 
 
 
 In conclusion, we have calculated both the transmission spectra and dispersion curves in phononic 
crystals constituted by hollow cylinders and explained the apparent differences between their behaviours. 
This class of phononic crystal can exhibits a NPB inside a wide frequency gap in their transmission spec-
trum. This opens the possibility of applications such as selective waveguiding, filtering and multiplexing 
phenomena when such hollow cylinders are inserted as a row of defect in a perfect phononic crystal. 
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