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Abstract

Externally driven parallel arrays of elastic waveguides inelastically coupled along their length are
shown to support inelastic modes that span exponentially complex Hilbert spaces. The nonlinear
coupling takes the form of power functions of the relative displacement between waveguides. First
order perturbation theory is employed to obtained closed form solutions for the contribution of
nonlinearity to the displacement field in the form of nonseparable superpositions of product states of
plane waves. When the system is dissipative, the coefficients of the superposition of product states are
complex and can be varied by controlling the characteristics of the way the array is driven externally.
The entropy of ‘entanglement’ of these nonseparable superpositions of product states is calculated
from the complex amplitudes through the density matrix. Navigation of the exponentially complex
Hilbert space of product states enables manipulation of the degree of nonseparability of the
superpositions.

1. Introduction

Superposition of states and entanglement are at the core of today’s second quantum revolution [1]. Entangled
superpositions of states possess two distinct attributes, namely nonlocality and nonseparability. Nonlocality is a
unique feature of quantum mechanics, but nonseparability is not. The notion of ‘classical entanglement’, i.e.,
local nonseparable superposition of states has received a significant amount of attention, theoretically and
experimentally, in the area of optics [2—4]. For instance, degrees of freedom of photon states that span different
Hilbert spaces have been locally correlated. Laser beams with spin angular momentum and orbital angular
momentum (OAM) can be prepared in a nonseparable state [5-12]. Nonseparability of OAM, polarization and
radial degrees of freedom of a beam of light has also been reported [13]. Photonic schemes have also been
employed to correlate polarization with propagation direction [14, 15]. The notion of classical nonseparability
has also been extended beyond the optical field to neutron beams [16]. However, to date, much less attention has
been paid to elastic waves; yet, remarkable new behaviors of sound, analogous to quantum physics, such as the
notions of elastic pseudospin [17-22] and Zak/Berry phase [23-29], are emerging. Recently, elastic
nonseparable states, analogous to ‘classically entangled’ states were observed experimentally in externally driven
systems composed of parallel arrays of one-dimensional elastic waveguides coupled elastically along their length
[30]. These classically nonseparable states are Bell states constructed as a superposition of elastic waves, each a
product of a plane wave part spanning the length of the waveguides and a spatial part spanning the direction
across the array of waveguides. We demonstrated that the amplitude coefficients of the nonseparable
superposition of states are complex due to dissipation in the constitutive elastic materials. By tuning these
complex amplitudes, we have shown that we can experimentally navigate a sizeable portion of the Bell state’s
Hilbert space. These states lie in the tensor product Hilbert space of the subspaces associated with the degrees of
freedom along and across the waveguide array. The dimension of this product space scales linearly with the
number of waveguides as 2N where N is the number of waveguides. In order to achieve the full potential of the
second quantum revolution, it is highly desirable to construct classical nonseparable states that lie in an
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Figure 1. Schematic representation of N one-dimensional waveguides (rods) coupled along their length.

exponentially complex Hilbert space. More specifically, one would like to design a multipartite elastic system
composed of Q subsystems or degrees of freedom, each of which able to be in at least two states. The dimension
of the Hilbert space of such a system would then take the value 22 which scales exponentially with the number Q.
We have recently shown such a behavior in a system composed of one-dimensional elastic waveguides which
were coupled via quadratic nonlinear forces along their length [31]. The elastic nonlinearity by enabling wave-
wave interaction was necessary to achieve wave mixing and therefore to allow the formation of waves which
frequency and wave number are the sum of the frequencies and wave numbers of parent linear waves. These
nonlinear waves were product waves of the parent waves and therefore spanned a 2> dimensional Hilbert space
which was the product of the spaces supporting the parent waves (each one two-dimensional).

In the present paper, we generalize this approach to planar array of N > 3 nonlinearly coupled waveguides
with nonlinear exponent Q < N driven externally by external harmonic forces. We show that to first order in
perturbation, if we excite Q of the N possible bands and two plane wave states in each band, the nonlinear elastic
system can be visualized as a multipartite two level system which can support superpositions of nonlinear modes
which span exponentially complex Hilbert spaces. By partitioning the spatial degrees of freedom across the
planar array, i.e., separating the system into two subsystems, we implement an approach based on the density
matrix of the subsystems to calculate the entropy of entanglement. This approach is extended to all values of N
and Q by the use of singular value decompositions which leads to the possibility of achieving maximally
entangled exponentially complex superpositions of nonlinear product states.

The paper is organized as follows. In section 2 we introduce a formalism that enables us to determine the
acoustic field of any externally driven planar array of one-dimensional waveguides coupled inelastically along
their length. The nonlinear coupling can be any power, Q, of the displacement as long as it is smaller than the
number of waveguides. This formalism is based on first order perturbation theory. Section 3 presents three
exampleswith N = 3, 4, 5and Q = N — 1. We present the nonlinear component of the displacement field as
a superposition of product of plane waves. Section 4 introduces the method for the calculation of the
entanglement entropy which is then applied to the example systems of section 3. Finally, we draw some
conclusions as to the applicability of driven planar arrays of nonlinearly coupled one-dimensional elastic
waveguides supporting exponentially complex nonseparable states as quantum analogues in the area of
quantum information science.

2. Planar array of N parallel externally driven waveguides coupled elastically along their

length

We consider N one-dimensional elastic waveguides coupled elastically along their length. The system is driven
externally at some position x = 0 (figure 1).
In the long wavelength limit the wave equation takes the form:

[(aT — O+ gy )’ * O‘ZM]U = oo @

The parameter 3is proportional to the speed of sound in the waveguides. x represents the position along the
waveguides. p is a damping parameter. I is the identity matrix. & represents the coupling strength between

waveguides with M being the matrix describing the elastic coupling between the N waveguides. F represents the
driving force. In the case of a planar array of waveguides, the coupling matrix takes the form:

2
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1 =10 0 .00 0 O
-1 2 -1 0 .00 0 ©
M=o -1 2 1.0 0 0 o0
0 0 0 0 .0—-1 2 —1
00 0 0 .00 —1 1

The N x 1vector U = (U, U,,...,Uy) represents the displacement in waveguides 1 through N,
respectively. In equation (1), wy is the frequency of the driver.

We now define )\, and E, withn = 1,2,...,N, the eigen values and eigen vectors of the matrix M. The E,
represent the spatial eigen modes across the waveguides with components E,, ;, with the jth rod in the nth mode.
We can write:

ME, = \,I E, )
Since the E, form a complete orthonormal basis, we can write the displacement vector as:

0=Y uk, 3)

The N x 1vector, F,isalso expressed in the E, basis:

F=YEE, @)

The E,’s are therefore defined as the dot product F.E, between the two N x 1 vectors.
Inserting equations (2)—(4) in equation (1) leads to a set of N equations of the form:

2 2
(% - ﬁZ% + M% + az/\n)un = El(sx:()eiwdt (5)

We seek plane wave solutions which follow the driver in time:

Uy = ZAn(kn)eik,,xeiwdt (6)
k

n

k, 1s awave number.
Inserting equation (6) into equation (5) evaluated at x = 0 yields the driven complex amplitudes:

E

Ay(ky) = 7
(ko) winlkn) — Wi + ipw @
where the characteristic frequency
wo,u(kn) = Bk + a?X, ©)
The complete displacement field is therefore obtained as
n=1 . .
U= > E.> Aulky)etretat 9)
Nk

with the complex resonant amplitudes given by equation (7). In equations (6) and (9), the summation over the
wave numbers, k,, is discrete, thus implying that the waveguides have the same finite length. For a given driving
frequency, we now limit the summation over the wave numbers to the two terms which contribute the most to
the displacement field. Let k,, and k,, be the wave numbers for which w§ ,, — wj is small. This is illustrated in
figure 2.

We can now approximate equation (9) by:

N
U =37 Eu(An(k)e™ + Aj (k) el etont (10)
n=1

We note that the number of terms in the sum, ¥,,, can be reduced by nullifying some of the complex
amplitudes (i.e. choosing some of the F, to be zero).

3
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Figure 2. Schematic representation of the band structure of an array of N = 5 waveguides. The spatial modes are labelled E,,,
n = 1,.,5. The k, and k, are the wave numbers of the plane waves contributing the most to the complex amplitudes given by
equation (7) at the driving frequency wg.

3. Planar array of N parallel externally driven waveguides coupled inelastically along their

length

We introduce a nonlinear coupling term in equation (1):

[(6—2 = 528—2 + /ig)f + aZM]U + G = Fb,_je™t (11)
or? Ox? ot
where
G = (U, — U)R (12a)
Gicjen = (Ujim1 — U)R + (Ui — UR (12b)
Gy = (Unv-1 — Uy (12¢)

We assume that the exponent of the nonlinear termsis an integer, N — 1 > Q > 2.
We solve equation (11) within perturbation theory. Assuming a small £, we expand the displacement field to
first order in perturbation:

0=09+c0V (13)

Inserting equation (13) into equation (11) yields to zeroth order in perturbation:
2 2
[(8— — ﬁza— + ,ug)f + oz21\71] 0O = F§,_eiwit (14)
t

Equation (14) is nothing but the linear equation (1) which solutions, U9 are given by equation (10).

4
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To first order in € we obtain:

2
[(a@tz ﬂZ S)T + aZM’] oW = -G (15)

G¥is given by equations (12a)—(12¢) with the displacement 09 1n equation (15), the zeroth order
displacement drives the system.
Let us consider the nonlinear terms of the form:

Q
* ) o * . iy )
(Uip1 — U = (} " Epji1(Age™ + Aje®®) — 3" E, i(A,eh + A,;elan)] e'Quat
n n

Q
* B ol .
- [Z (Enjor — Enp)(Aner 4 A,ie%] eiQuut (16)
n

In equation (16) we have chosen the driving force F such that N — Q components, E,, are zero (and
therefore the corresponding complex amplitudes are also zero). This choice is highlighted in the summation %,
witha . This enables us to limit the summation over modes to the same number as the exponent of the
nonlinear coupling term.

We now seek one particular solution of equation (15) by singling out in the power expansion of equation (16)

the term which is a product of Q different (E,, j; 1 — E,;)(A, ek 1 Al e"",""). That is, we define that term as:

* . a2 n * .
(U1 — UDQ = QU] (Aneir* 4+ AL [T (Enjir — Enjei@t (17)
n n
The driving corresponding to this singled out term:
— * .- . .
GS(O) _ Q’H (Amezk,,x + A,'nelk"")g(o)e’QW”” (18)
m
with
k
gl(O) = H (En,Z - En,l) (19a)
n
o * *
Sicien = H (Enj — Enj-1 + H (Enjr1 — Enyj) (19b)
(0) = H (EnN — Exn-1) (19¢)

Again since the E,’s form a complete orthonormal basis, it is possible to expand g on that basis. For this

we write:
g0 =28k (20)
n
To first order in perturbation, a particular solution, corresponding to the conditions above, of the nonlinear
equation is solution of:
0? 0? 0 o o | (1) * . ;o 0= i
— = B+ p— | + M |7 = —Q[] (Anen + Ay ey gOF, et 1)
ot Ox ot o "

Expanding the first order particular solution on the E,, basis:

o Z uVE, (22)

And inserting equation (22) into equation (21) and using equation (2), equating the coefficients for each
eigenvector, E,, results in the set of N equations:

2 * , .
(% _ 52_ + Maﬁ + o)\ ) 1 — 7Q1H (Ameikmx + A&eikmx)g}go)el()wdt (23)
t m

To solve equation (23), we rewrite the product on the right hand side of the equal sign into the sum:

* . oy
H (Ame’k"’x =+ A,;elk"’x) = Z/kl,kl AAAAA kQAklAkz AkQ(pkl,kz...kQ (24)
m

where ¥’ sums over all combinations of primed and unprimed k,,,’s of the allowed Q wave numbers. Here,
Phokkg = e'(kithot .. +ko)x The complex amplitudes also take two possible values (primed and unprimed) for

5
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each of the Qallowable states. There are 22 terms in the summation of equation (24). We simplify the notation
P

by reformulating the summation as » | A; ¢,. We subsequently seek solutions in the form of the expansion:
I=1 g
uld =137 apup |t (25)
I=1
Inserting equation (25) into equation (23) and equating terms with the same phase ¢, gives:

o A
ap, = —Q!g,fO)D—l (26)
Ln

In equation (26), the denominator is expressed in the form:
Dy = —Quwj + FK} + inQua + oA, @7

The combination of indices 1, 2,...,Q is that that correspond to the overall index [ with K] being the Ith term
in the sum of the left-hand side of equation (24).

In summary, the first order particular solution for the displacement is with all conventions introduced
above:

5@
_ A o
0" =~y |2 Sl 30 F, e (28)
n \I=1 Dl,ﬂ
Equation (28) can be reorganized as a linear combination of product states of plane waves:

2¢ A

Us(l) _ _Q,Z(Z 1 g’EO)En)%eidet (29)
I=1\ n Dl,ﬂ

4. Examples

The displacement field given by equation (29) is illustrated by three examples, namely N = 3and Q = 2,
N=4andQ =3and N = 5and Q = 4.

4.1.Case N =3and Q = 2

In the case of three waveguides coupled in a planar array, the coupling matrix M admits three eigen vectors and
three eigen values. One of the eigen vector for which ) = 0, namely ElT = %(1 , 1, 1), does notinvolve
transfer of energy between the waveguides via the coupling. This trivial case is equivalent to three independent
waveguides. The other two eigen modes of the coupling matrix with eigen values A, = 1,and \; = 3, are:

B Ey (1) . E;, (1
E,=|Ep|l=—| 0| EB=|Ey|=—|-2 (30)
B3 2 Es3 Yol

We now suppose that we are driving the system with F; = 0 (to eliminate the E; mode)and F, = F; = 0.
The vector ¥ has three components given by equations (194)—(19¢), namely:

1
g0 = g[ 0 ] = EEZ (31)
—1

According to equation (2), we therefore have §1(0) =0, gz(o) = \/g ,and g~3(0) = 0. The summation ¥, in

. . . Q-2
equation (29) has, therefore, only one non-zero term corresponding to n = 2. The summation X7~ ~ has four
terms. The four denominators

Dy, = —Q%Wj + BK} + iuQua + X, (32)

with A, = 1,and K, A;, ¢, =T[k + ks, Ay (k) As3(ks), elethk)x ] [k, 4 k3/> Ay (k) As (k3/)’ ei(kﬁk;)x] >
(k) + ks, Ay(k))Az(ks), e ®RIx) k) + ki, Ay(kD)As(kD), ei®etkdxfor | = 1, 2, 3, 4, respectively.

Here, the four numerators, A;, and plane wave terms, ¢, are those of equation (25) and the A, (k,) are given
by equation (7). The states of the system span a four dimensional Hilbert space product of two two dimensional
Hilbert spaces.

For the sake of illustration, we will write explicitly only for that case all the terms contributing to the
displacement field:
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0w = 21 \E £, Ay(ka)As (k) ith i
2\ —4wi + 2k + ks)? + 2ipwa + a?
n Ay (ko) As (k3) gtk k)
—4w3 + Bk + k3P + 2ipwy + o
n Ay (k) Az (ks) RICETSY:
—4wi 4 B2k + k3)* + 2ipwg + o
n Ay (k) As (k3) pitki+kDx | pizwat (33)
—4wi 4 B2k 4 k3)? + 2ipwy + a?

Depending on the value of the complex coefficients of the amplitude of this superposition of states in the
product space of plane waves, the superposition may be separable or nonseparable. It is nonseparable if it cannot
be written in the form:

(75(,11)@ = (p,eh + plzeikz’x)(T3eik3x + Tgeik;x) (34)

Here, the subscript amp refers to the amplitude part of equation (33). The degree of separability of the amplitude
in equation (33) will be quantified in section 4 by calculating its entropy of ‘entanglement.’

4.2.Case N =4andQ = 3

In the case of four waveguides coupled in a planar array, the coupling matrix M admits four eigen vectors and
their corresponding eigen values. One of the eigen vector for which A; = 0, namely EIT = %(1 , 1, 1, 1), again
does not involve transfer of energy between the waveguides via the coupling. This trivial case is equivalent to four

independent waveguides. The other three eigen modes of the coupling matrix with eigen values
XM=2-+2, \3=2, and \y = 2 + V2, are:

Es 14+ 42 Es; 1

B — Exnp| 1 1 5 _ Espl 1| -1

2 = = —— B3 = = — ,

Er3 202 + V2) -1 Es3 2| -1
Esy —-1-42 Es4 1
Esn 1

R ) [ (35)
sl 2o+ v | 1+v2
Esq -1

We now suppose that we are driving the system with F; = 0 (to eliminate the E; mode) and
F, = F; = E, = 0.The vector §® has four components given by equations (19a)—(19¢), namely:

1
o L =-1]_ 14

e el o
1

According to equation (2), we therefore have for this particular case §© =0, g =0, ¥ = % and g =

0. The summation ¥, in equation (29) has, therefore, only one non-zero term corresponding ton = 3. The
. Q=3 . . .
summation ¥?° has eight terms. The eight denominators

Dy = —9wi + BK} + 3ipwy + o) (37)
with
ky + ks + ky Ay (ky)As(ks)Ag(ky) pitkatkstky)x
ke + ks + kg Ax(ky)As(ks) Ay (ky) pilkatkytk)x
ko + ki + ky Ay (ky) Az (ky)Ag(ky) gkt kiky)x
o iz’ + k? + kf . Az(kz’)A3(k3/)A4(k3) - ef(k;+k3/+kt>x 9
5+ ks + ky Ay (k) As(ks)Ag(ky) eikthksthyx
ky + ks + ky Ay (k5) As(ks) Aa(ky) eilksthotkox
K+ K+ ks Ay (k) As (k) As(ka) eilkithithix
Ky + K + ki Ax(k])As (kD) As(k}) ik Tk

Here, the particular first order states span an eight dimensional Hilbert space. This space is the product of three
two dimensional Hilbert spaces.
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43.Case N=5and Q = 4
In the case of five waveguides coupled in a planar array, the coupling matrix M admits five eigen vectors and
their corresponding eigen values. One of the eigen vector for which A; = 0, namely EIT = %(1, 1,1, 1, 1),

again is equivalent to five independent waveguides. The other four eigen modes of the coupling matrix with
eigen values \, = %(3 —J5), = %(5 —J5), A= %(3 + /5)and \s = %(5 + +/5), are:

—1 1
E> 1 Es, 1
Ey» ) E(l -5 Es, I E(_3 +V5)
E = | By |p——r 0 B = | Bl = ——| 1-5 |}
Bl V6 —+5) Ly s Es, 53-V5) | 5
24— ’ ~(=3+ 45
E2,5 2 E3,5 2( )
1 1
-1 1
Ey 1 Es —1
E4, . E(l +5) Es» ) 7(3 + 5
E4 = E4)3 . 0 3E5 = E5,3 = T/ 1 + \/g (39)
E44 \[(5 + \/g) 1 E54 5(3 + \/g) —1
, ——(1 4+ 5) ’ —G +5)
Eys 2 Es 5 2
1 1

We now suppose that we are driving the system with F; = 0 (to eliminate the E; mode) and
F, = F; = E, = F5 = 0. The vector § has five components given by equations (194)—(19¢), namely:

1

L4 —
5

1 2
70 — = 40
g 4 5 (40)

In contrast to the two other previous cases, g is a linear combination of the spatial eigen vectors with

7O _ 1 1Y 50 _n 50 _ —1 1 50
8= 551+ 5)a0=08" = g (2 55 - V5) g =0mnd

gs(o) — ﬁ (% + 5 ) In that case the particular solution for the displacement field becomes:
24
. 1 — 1 — 1 N .
Us(l) — _4!2 AI[_g](O)E1 4 _g~3(0)E3 + _gS(O)ES)SOlel4wdt (41)
=1 \ D Dy s Dys

with the 16 denominators for each n given by
Dy, = —16w3 + B2K} + idpwy + o), (42)

The 16 components of Kj, Ay, and ¢, are generalizations of those in equation (38). The Hilbert space
supporting these states has dimension 2%,

It is straight forward to generalize these examples to planar arrays of N > 5 waveguides and nonlinear
exponent Q = N — 1. The dimension of the Hilbert space spanned by the nonlinear elastic states scales
exponentially as 22,

5. Entropy of entanglement

For the purpose of calculating the entropy of entanglement in the case of the example systems presented in the
previous section and beginning with the firstexample N = 3 and Q = 2, we rewrite the complex coefficients in
the superposition of product states as:

Ci A
C=|GC.|= -2 l 7OF (43)
: Czj — 4w 4 PKP + 2wy + az)\zgz 2
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Let us now focus on the complex amplitude for one of the waveguides, say for example, the first waveguide,
C;,1. These amplitudes can be written in the form of a second rank tensor.

G, G
A [Gr 44
' (C3,1 C4,1) )

Note that, by construction, the amplitude tensor Al separates the k; and k, containing amplitudes by row,
top and bottom, and the k3 and k4 containing amplitudes by column, top and bottom. The classical
entanglement for this system is seen in the two dimensional Hilbert space of the product states represented by
these amplitudes, hence we calculate the entanglement entropy from the amplitudes by forming the product
A, A which is proportional to the density matrix.

The product matrix is diagonalized using the transformation matrix T to give:

TAA T = (‘/E 0 ) (45)
0 o
oL = %(Tr(AlAlT) + J(Tr(A/A]))? — 4Det(A1A])) (46)

Recalling that the product matrix is proportional to the density matrix, the entropy of entanglement is
calculated as the von Neumann entropy with a normalization constraint:

S= -+ m) (47)
Where % = ? and the normalized eigen values obey 212 + f]; =1.

- 2
The entropy of entanglement can be rewritten in the form:

S—In2— %(1 _ T=aR)h( — yT—4R) — %(1 + JT=aR)In(1 + T —4R) (48)

Det (A|A)
(Tr(4A))?

For a given finite length of the waveguides (i.e., discrete set of wavenumbers), it might be possible to choose
the driving frequency, wy, such that the denominators of the diagonal terms are significantly smaller than those
of the off diagonal terms. Let us also assume that the driving frequency is such that the numerators of the
diagonal terms are nearly the same. In that case, if we neglect the off diagonal terms compared to the diagonal
ones, then (Tr (A, A, ))2~4Det (A A;") and the ratio R™1. Under these conditions, § = In 2, and the system is
maximally entangled. This system is equivalent to a maximally entangled Bell state. On the other hand, if the
four denominator were the same (in the current situation this is highly improbable unless the wave numbers are
the same), Det (A;A") = Oi.e., R = 0andsubsequently § = 0. The superposition would be separable.

Extending this discussion to the N = 4and Q = 3 system, recall the complex coefficients in the
superposition of product states:

In equation (48), R =

Ci
~ C _
G=| "= -3— AL 3OE, (49)
Ci3 —4w3 + B2KF + Buwg + o)y
Cia
The coefficients can be rearranged in the form of an unfolding tensor
G, G551 Gy C
A =[G CarCar G (50)
Gs1 Cr1 G Gy

The amplitude matrix for this systemis4 x 2 andis ordered such thatthe2 x 2 matrix on theleft has
amplitudes including k, k5, ks k3, as in the previous system and amplitudes that include k,, while the 2 x 2
matrix on the right has amplitudes that include k,, see equation (38).

This construction can be seen as a bipartite system which spans an 8 dimensional Hilbert space tensor
product of a two-dimensional Hilbert and a 4 dimensional Hilbert space. We employ the singular value
decomposition (SVD) to factorize the 2 X 4 complex matrix, A into the productofa 2 x 2 complex unitary
matrix, X,a 2 X 4 rectangular diagonal matrix, 33, with singular real positive values on the diagonal and a
4 x 4 complex unitary matrix, V¥, where the dagger refers to the conjugate transpose matrix. The SVD is
written as:

A=XXVi (51)
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To find the singular values, we determine the eigen values of AjA]” = X ¥ XX, Since X is unitary, the
square root of the eigen values of A, A, will be the singular values of 3. Note that the SVD is a generalization of
the diagonalization employed for the N = 3 & Q = 2 system.

The result takes on again the general form of equation (46) with the two eigen values given by:

oL = %(Tr(AlAlT) + J(Tr(A/A]))? — 4Det(A1A])) (52)

The rectangular diagonal matrix, 3, then is obtained as:

Y 0 00 Jor 0 00
(0 2200) (o 4/—000) (>3)

Note that the matrix A;A, isa2 x 2 matrix and the analysis of the entanglement entropy follows the
development for the previous system.

The case ofthe N = 5 and Q = 4, theamplitude matrixis2 x 8and can be constructed by replicating the
2 x 4matrix of the previous systemie., N = 4and Q = 3 onleft and right, segregating terms in the left and
right2 X 4 matrices as before while writing amplitudes that depend on ks in the right 2 x 4 matrix and those
depending on k! in the left. SVD can be used to generate the entropy of entanglement as in equations (52) and
(53) for any planar array of N nonlinearly coupled waveguides with nonlinear exponent Q < N.

6. Conclusions

We have shown that we can achieve exponentially complex superpositions of product states in externally driven
planar arrays of N one-dimensional elastic waveguides coupled nonlinearly along their length. The nonlinear
coupling is a power function of the relative displacements between waveguides with exponent Q. Such systems
can be realized experimentally by binding near one-dimensional elastic rods with intrinsically nonlinear elastic
media to form the parallel arrays of waveguides. Other approach may use granular materials as coupling agent
between the waveguides/rods to exploit Hertzian contact as a source of nonlinearity.

To first order in perturbation, if we excite Q of the N possible elastic bands and two plane wave states in each
band, the nonlinear elastic system can be visualized as a multipartite two level system which can support
superpositions of nonlinear modes which span exponentially complex Hilbert spaces of dimension 22. By
partitioning the spatial degrees of freedom across the planar array, i.e., separating the system into two
subsystems, we introduce and implement an approach using singular value decompositions to calculate the
entropy of entanglement from the density matrix. We show the possibility of achieving maximally entangled
exponentially complex superpositions of nonlinear product states. The exponentially complex Hilbert space can
be navigated by varying the driving frequency and the amplitude of the drivers. The nonseparable superpositions
of product states can be measured experimentally using contact and/or noncontact probes such as arrays of
transducers to determine the relative amplitude and phase of the displacement field in the waveguides to get
access to the E, states. Laser Doppler vibrometry can be used to scan the elastic field along the waveguides. By
spatial Fourier transformation of the displacement field along the waveguides measured via noncontact laser
vibrometry, we can access the exponentially complex wave number space of K.

This work expands the capability of arrays of nonlinearly coupled elastic waveguides to produce quantum
like phenomena. Nonseparable superpositions of elastic product states are not subject to the instability due to
decoherence of true quantum systems. Recently, the use of classical light with entangled degrees of freedom have
found applications in quantum information [32] and metrology [33, 34]. The present study suggests that the
same sort of applications can be realized with acoustic systems. Moreover, due to the flexibility of elastic system,
the coupling between elastic waveguides can easily be tailored to be linear, periodic, and nonlinear (with
different types or degrees of nonlinearity) [35, 36], which in turn would widen the Hilbert space accessible to
elastic superposition of states. This coupling can be easily manipulated by choices of materials and fabrication.
Finally, externally driven arrays of nonlinearly coupled elastic waveguides, with their ability to navigate a large
section of an exponentially complex Hilbert space of product of plane wave states, may therefore offer a stable
classical alternative to quantum bits for massive information storage or processing.
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