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ABSTRACT

Removal of nano-scale contaminant particles from the photomasks is of critical importance to the implementation
of EUV lithography for 32nm node. Megasonic cleaning has traditionally been used for photomask cleaning and
extensions to sub 50nm particulates removal is being considered as a pattern damage free cleaning approach.
Several mechanisms for removal are believed to be active in megasonic cleaning systems, e.g., cavitation, and
acoustic streaming (Eckart, Schlichting, and microstreaming). It is often difficult to separate the effects of these
individual mechanisms on contamination removal in a conventional experimental setup. Therefore, a theoretical
approach is undertaken in this work with a focus on determining the contribution of acoustic streaming in cleaning
process. A continuum model is used to describe the interaction between megasonic waves and a substrate (fused
silica) immersed in a fluid (water). The model accounts for the viscous nature of the fluid. We calculate the
acoustic vibrational modes of the system. These in turn are used to determine the acoustic streaming forces
that lead to Schlichting streaming in a narrow acoustic boundary layer at the substrate/fluid interface. These
forces are subsequently used to estimate the streaming velocities that may in turn apply a pressure and drag
force on the contaminant particles adhering to the substrate. These effects are calculated as a function of angle
of incidence, frequency and intensity of the megasonic wave. The relevance of this study is then discussed in
the context of the cleaning efficiency and pattern damage in competing megasonic cleaning technologies, such as
immersion, and nozzle-based systems.

Keywords: EUV lithography, Megasonic Cleaning, Acoustic Streaming.

1. INTRODUCTION

Development work on extreme ultraviolet lithography (EUVL) is gaining momentum as the current lithographic
techniques are reaching their limits. Smaller wavelength sources are needed to produce feature sizes below 50-
nm. The 13.4-nm EUVL technique is envisaged to become the method of choice for the 32-nm node by the year
2009. As the light at this wavelength is absorbed by most materials and even air, the conventional transmissive
photomasks are of little use for EUVL. Instead, a composite structure formed by alternate layer of silica and
molybdenum is used as photomask that reflects the EUV light.1 A lot of effort has already been spent on
developing a reflective, defect free mask structure in a collaborative effort between several industries and US
national laboratories. One of the outstanding challenges in the implementation of EUVL technology is the
cleaning of photomasks to remove contaminant particles of sub-50 nm sizes. The cleaning method is expected
not only to be efficient in particle removal, but also the one that does not sacrifice the integrity of the patterned
features.

Megasonic cleaning has been used traditionally in post-CMP cleaning of wafers as a damage free approach
for the removal of sub-micron contaminant particles. In megasonic cleaning, the cassette of wafers to be cleaned
is immersed in a cleaning tank with a piezoelectric transducer at the bottom of the tank. The transducer sends
sound waves of 600 KHz-1 MHz frequency in the cleaning bath.2 The sound waves propagating in a medium
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can often be represented in terms of pressure waves.3 These traveling pressure waves result in several physical
effects in the liquid medium, such as cavitation, and acoustic streaming which are considered to be instrumental
in the removal of contaminant particles.

Cavitation is caused by the pressure variations traveling through the liquid.4 The low pressure component
of the sound wave causes a hole or cavity in the liquid. The cavity implodes when it can no longer support
the compressive stress due to the high pressure component of the sound wave. The cavity implosion results
in the transfer of energy stored in the cavity to the surroundings. This event has the potential to dislodge
the contaminant particles and to even cause some damage to the substrate and the patterned features. This
latter disturbing feature of cavitation is more prevalent in the ultrasonic cleaning systems employing low sound
frequencies. The megasonic frequencies appear to mitigate the problem of damage, however, a clear understanding
of the reasons for the same is still lacking. While some have claimed that the time between the megasonic pulses
(on the order of 1.25 micro second) is too short for the formation of cavities,5 others have detected cavities in
the megasonic tank by sonoluminiscence.6

As the name suggests, acoustic streaming is a (time-independent) fluid motion caused by the sound wave
traveling through the liquid medium. The sound wave propagating through a viscous fluid suffers attenuation
resulting in a loss of acoustic momentum which is reflected in a time-independent motion of the fluid.7 There
are several types of acoustic streaming classified in terms of scale, namely Eckart’s quartz-wind like streaming,8

Schlichting streaming,9 and microstreaming.10 The boundary conditions imposed on the sound wave at the
solid/viscous-fluid interface result in a fluid motion within a viscous boundary layer. This viscous boundary layer
is termed acoustic boundary layer and depending on the frequency of the acoustic wave it can be a few microns
thick. The fluid motion within the acoustic boundary layer is known as Schlichting streaming. The fluid motion
caused by the attenuation of sound field outside the acoustic boundary layer is termed as Eckart’s streaming.
Microstreaming is a consequence of fluid vortices resulting from the scattering of sound waves from oscillating
bubbles in a viscous medium.

It is apparent at this stage that any experimental investigations for the feasibility of megasonic cleaning of
EUV photomasks will be clouded by the overlap of the above discussed mechanisms. Furthermore, the small
spatial scales associated with the cavitation and acoustic streaming will cause difficulties in separating the effects
of individual mechanisms on cleaning efficiency. Also, it will be difficult to determine the potential causes of
damage to the substrate and features. Therefore, we elect to undertake a theoretical investigation of the subject.
In the present work, we focus on the effects of acoustic streaming in megasonic cleaning. As we are interested
in the removal of sub-50 nm contaminant particles, the Eckart’s streaming operating outside the micron-thick
acoustic boundary layer is expected to play little role in cleaning. Therefore, we specifically focus our attention
on the effects of Schlichting streaming on the particle removal.

The article is organized as follows, the models and methods used in this work are briefly introduced in section
II. Section III presents results of the calculation of the acoustic streaming force, and acoustic streaming velocity
near the solid-liquid interface. Next, the streaming velocity is used to calculate the resulting drag force and
rolling moments on a spherical particle adhered to a solid substrate. These are compared with the adhesion force
(van der Walls) and the resistive moments on the particle. Finally, we summarize the findings of the work in
section IV.

2. MODEL AND METHODS

In a previous work, Deymier et al11 have obtained the streaming forces and velocities generated in megasonic
systems during the cleaning of silicon wafers. As the present problem of interest, removal of nanoparticles from
the EUV photomasks, is principally similar to the previously reported work, we follow the model of Deymier.11

Here we only briefly recall the main features of their model and methods and make use of the appropriate
equations developed there without re-deriving them.

In a typical megasonic cleaning system, the disc-shaped substrates (wafer or photomask) to be cleaned are
immersed in a cleaning tank filled with an aqueous solution. Such a system can then be modeled as a layered
composite, one with alternate layers of fluid and solid substrate, as shown in Fig. 1. Since the diameter of the
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Figure 1. Illustration of the fluid/solid/fluid model.

substrate is much larger than its thickness, the layered composite can be treated as being infinite in directions
parallel to the solid/fluid interface. Also, for the sake of simplicity the solid medium is considered to be isotropic.

The acoustic streaming due to a sound wave propagating through a viscous medium is known to be a viscosity
induced second order effect. Often, acoustic streaming is treated as the nonlinear correction to the linear (first
order) acoustic field in a viscous medium. Therefore, we first calculate a first order (time-dependent) acoustic
displacement field at a solid/viscous-fluid interface and then use it to obtain the time-independent (second-order)
pressure field. We make use of the interface response theory (IRT)12 based on a Green’s function formalism to
obtain the first-order acoustic displacement field. Next, an approach developed by Nyborg13 is used to obtain
the acoustic streaming force and acoustic streaming velocity from the first-order acoustic displacement field.
The equations developed in11 provide streaming forces and streaming velocities normalized to the amplitude (B)
of the incident wave. Since, in practice, power (or intensity) of the megasonic wave is used as a controllable
parameter, we normalize the streaming forces and velocities with respect to the intensity of the wave using3

B =
1

2πf

√
2I

ρ0c0
, (1)

where f is the frequency and I is the intensity of the megasonic wave, ρ0 is the density of water and c0 is the
speed of sound in water.

3. RESULTS

The recent industrial activity in the megasonic cleaning is focused on using 3 MHz frequency in order to minimize
cavitation in the cleaning tank. Therefore, in this work we use acoustic waves with a frequency of 3 MHz
to simulate the effect of acoustic streaming in particle removal. The solid substrate modeled in this work is
considered to be made of fused silica with a thickness of 6.35 mm. The input parameters used in the calculations
of streaming forces and velocities are: a density of 2.2 × 103 Kg/m3, a Young’s modulus of 72.6 MPa, and a
Poisson’s ratio of 0.16 for fused silica, and a density of 103 Kg/m3 and a viscosity of 10−3 Pa-s for water. The
longitudinal speed of sound in water is taken to be 1500 m/s. The longitudinal and transverse speeds of sound
in fused silica are calculated to be 5929 m/s and 3771.3 m/s, respectively.

Following Deymier,11 we first calculate the streaming force as a function of the wave vector k|| of the incident
megasonic wave at a distance of 0.1 µm from the substrate (Fig. 2). The peaks in this curve correspond to the

Proc. of SPIE Vol. 5992  59923X-3

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 19 Aug 2021
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Figure 2. Streaming force as a function of the wave vector k|| of the incident megasonic wave.

acoustic modes of vibration excited by the megasonic wave of frequency 3 MHz. The large peak at k|| = 3175.49
m−1 suggests that streaming force F1 is sufficiently strong here to warrant further examination. We, therefore,
calculate the streaming force for waves with k|| = 3175.49 m−1 as a function of distance from the substrate.
In our calculations we find that the component of streaming force normal to the fluid/substrate interface (F3)
is much smaller than the one parallel to the interface (F1), i.e., F3 � F1. Therefore, only the force profile
corresponding to F1 is presented in Fig. 3. The streaming velocity is then calculated using an equation derived
by Nyborg

µ∆2v2 = ∆p2 − F, (2)

where µ is the viscosity of the fluid, v2 is the streaming velocity, and F is the streaming force. Assuming
F3 = 0 since F3 � F1) leads to the following simplified form of ( 2)

∂2v1

∂X2
3

= −F1

µ
= D(X3) (3)

The solution of Eq. 3 is then given by13

v1(X3) = X3

[
−

∫ ∞

0

D(α)dα +
∫ X3

0

D(α)dα

]
− α

∫ X3

0

αD(α)dα (4)

Eq. 4 is then solved numerically to calculate the streaming velocity as a function of distance from the substrate
(Fig. 4). Since streaming force and velocity vary only in a thin region of thickness of ∼ 1.5µm (Figs. ( 3) and
( 4)), the acoustic boundary layer thickness is estimated to be 1.5 µm.

The forces acting on a particle adhered to a solid substrate and subjected to megasonic cleaning are repre-
sented in Fig. 5.14 Here, FD represents the drag force on the particle due to fluid motion, FL represents the
lift force on the particle due to pressure differential in the fluid normal to the fluid/solid interface, FA is the
adhesion force between particle and the substrate, and MD is the hydrodynamic moment.

The adhesion force on the particle is calculated as the van der Walls force of adhesion between a spherical
particle and a planar surface
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Figure 3. Streaming force as a function of distance from the substrate for k|| = 3175.49 m−1.

Figure 4. Streaming velocity as a function of distance from the substrate.
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Figure 5. Forces and moments on a spherical particle in a linear fluid flow.

FA =
A132r0

6(X3 − r0)2
, (5)

where X3 is the distance between the center of the particle and the surface, A132 is the effective Hamaker
constant and is taken to be as A132 = 0.83×10−20J11 for a silica particle adhered to a silica surface in an aqueous
medium. The quantity (X3 − r0) is defined as the distance (h) between particle and the substrate. When the
particle is in near contact with the surface, a deformation of the particle, or of the surface, or of both can occur.
This deformation increases the interaction area between the surface and the particle. The van der Walls force
then gets modified as

FA =
A132r0

6h2

(
1 +

a2

hr0

)
, (6)

where a is the contact radius between particle and the surface and depends on the properties of the materials
involved. In our calculations of adhesion force we have neglected the effect of deformation. However, we discuss
the possible impact of this deformation on our results while comparing the adhesion force with the removal
forces.

As long as the flow of fluid over the particle diameter is linear (as shown in Fig. 5), the drag force and the
hydrodynamic moment on the particle can be calculated as15

FD = 1.7009 · (3πµdVp), (7)

and
MD = 0.9439934 · (2πµd2Vp), (8)

where Vp is the fluid velocity at the center of the spherical particle.

The conditions to be satisfied for the particle removal are given by14
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Figure 6. Drag and adhesion forces on the particles as a function of particle size.

FD ≥ Cf (FA + FL) Sliding mechanism,

MD + FDl1 + FLl2 ≥ FAl2 Rolling mechanism, (9)

where Cf is the friction coefficient between particle and substrate, and l1 and l2 are the lever arms for FD,
and FA and FL, respectively. Typically, the lift force in the megasonic system is considerably smaller compared
to Fd, and FA. It is then possible to neglect the effect of lift force in the Eqns.( 9) leading to following simplified
form

FD ≥ CfFA Sliding mechanism,

MD + FDl1 ≥ FAl2 Rolling mechanism, (10)

We consider here the removal of particles with diameter d ≤ 100 nm. As can be seen from Fig. 4, the velocity
profile is linear in this range, permitting the use of equations ( 7) and ( 8). In calculating the drag forces and
moments using the streaming velocities in Fig. 4, we use an intensity of 5 × 107 W/m2 for the megasonic wave.
This intensity corresponds to an input power of 50 W with the transducer area of 0.01 cm2. Although the
intensity used here may be an overestimate of the intensities used in an immersion type megasonic system, it is
well within the range of the intensities used in the nozzle-based megasonic systems. In Fig. 6 we show the drag
force on the particles in the size range d ∈ [20, 100] nm and compare it with the adhesion force on the particles
for several separation distances from the substrate. It is seen that the drag force is much higher in comparison to
the adhesion forces at h = 5, 7, and 10 Å. Additionally, the adhesion force is seen to be larger than the drag force
for h = 1 Å for particles with d < 60 nm. However, it must be noted here that the distance h = 1 Å provides
only an upper bound on the adhesion force. In real systems, the separation distance between the particle and
substrate is considered to be ∼ 4 Å.14 At this distance, the drag force is again expected to be much larger than
the adhesion force. Also, since the drag force on the particle is proportional to the streaming velocity (normalized
to the intensity), an order of magnitude smaller intensity will result in an order of magnitude smaller drag force.
As can be seen in Fig. 6 the drag force still remains larger than the adhesion force at h = 5, 7, and 10 Å.
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Figure 7. Ratio FD/FA at h = 1 Å as a function of particle diameter; k|| = 3149.75 m−1 for f = 3 MHz, and
k|| = 2160.16 m−1 for f = 1 MHz.

Next, considering that the drag and adhesion forces are normal to each other, a direct comparison of the
two is of little interest from the particle removal point of view. Instead, the ratio of the drag force and adhesion
force is of a more fundamental importance as is indicated by Eq. 10. According to Eq. 10, the condition for
particle removal is satisfied as long as the ratio FD/FA is greater than the coefficient of friction, Cf , between
particle and the substrate. The friction coefficient for any two bodies in sliding contact is always between 0
and 1 (Cf ∈ [0, 1]). According to Fig. 6, the ratio FD/FA is always larger than 1 at separation distances of
h = 5, 7, and 10 Å indicating removal of all particle sizes. Next, we plot the ratio FD/FA as a function of
particle diameter for h = 1 Å (Fig. 7). It is seen from this figure that as long as the friction coefficient between
particle and the substrate is less than 0.4, all the particles with diameter d ≥ 20 nm can be removed by sliding
mechanism. Although, the true friction coefficient between the particle and the substrate is not known, a recent
molecular dynamics study16 of friction between two alkylsilane monolayer coated silica substrates calculated a
friction coefficient of 0.1-0.3. Therefore, a reasonable first guess for the friction coefficient between particle and
substrate can be considered to be ∼ 0.3. Even when µ = 1.0 (worst case!), Fig. 7 indicates that megasonic
cleaning at 3 MHz can potentially remove all particles down to sizes ∼ 60 nm with sliding mechanism. For
comparison purposes, we have also calculated drag force on particles due to the acoustic streaming resulting
from megasonic waves of frequency f = 1 MHz. The ratio FD/FA for this frequency (and k|| = 2160.16 m−1) is
also plotted in Fig. 7. It is seen from Fig. 7 that at f = 1 MHz, the removal of particles with d < 60 nm requires
Cf < 0.55. In other words, removal of smaller particles at f = 1 MHz will require much smoother surfaces than
in the case of megasonic waves with f = 3 MHz.

As mentioned before, we have neglected the effect of particle deformation in the calculation of the adhesion
force FA. In Eq. 6, we can express a and h as multiples of r0, i.e., a = m · r0, and h = n · r0. The effect of
deformation on adhesion force increases with increasing m and decreasing n. Assuming a fix value of h = 0.4
Å, n is smallest for r0 = 50 nm. Next, assuming a deformation of particle corresponding to n = 1/5 (significant
deformation!), the correction term is calculated to be equal to 5. This indicates that the adhesion force calculated
without incorporating the effect of deformation is less than an order of magnitude smaller. According to Fig. 6,
the drag force will still be larger than the adhesion force at h = 5, 7, and 10 Å for a large range of particle sizes.

A particle in near contact with the surface can also lead to the deformation of either the particle, the surface
or both. Such deformation can provide a point (P in Fig. 5) about which the hydrodynamic moment MD and
the moment of drag force FD can apply a torque to set the particle in a rolling motion. Similarly, the point P
could also be a point of contact between the particle and an asperity on a rough surface. The rolling motion is
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Figure 8. Removal(MR) and resistive (MR) moments on the particles as a function of particle size.

resisted by the moment of adhesion force acting in the opposite direction. The conditions for removal by rolling
mechanism are then set forth by Eq. 10. We refer to the left side of the moment equation in Eq. 10 as removal
moment (MR), and the right side as resistive moment (Mr). The relative amounts of the removal moment and
the resistive moments will also depend on the length of the lever arms l1, and l2. As the point P moves away
from the center of the particle, in a direction parallel to the substrate (larger deformation or surface roughness),
the length of lever arm l1 decreases and length of lever arm l2 increases. As a first estimate, the lever arms l1,
and l2 can be related as

l2 = l1 sin θ, (11)

where θ is the angle between lever arm l1 and the line connecting the center of particle and the point P.
We compare the removal and resistive moments as a function of particle size in Fig. 8 for l1 = 0.45d. It is seen
from Fig. 8 that the removal moment is appreciably larger than the resistive moments for separation distances
of h = 5, 7, and 10 Å for all particle sizes. However, the removal moment fails to overcome the resistive moment
at h = 1 Å. Again, the separation distance of 1 Å is only an upper bound in the calculation of adhesion forces
and the resistive moment. Considering a realistic separation of ∼ 4 Å, Fig. 8 suggests that the resistive moment
curve for h = 4 Å will lie between the curves for Mr at h = 5 Å and MR. This indicates that rolling mechanism
can also remove most particle sizes at the megasonic frequency of 3 MHz. Also, the effect of deformation induced
modification of adhesion force on the resistive moment can be explained in the same way as in the discussion of
removal by sliding mechanism.

4. CONCLUSIONS

A continuum model study has been performed to investigate the feasibility of megasonic cleaning method for
removing sub-50 nm particles adhered to the photomask material. In particular, we study the effect of acoustic
streaming in particle removal. The current work is of fundamental importance to the implementation of EUVL
technology for the generation of 32-nm node in chip manufacturing. We use the methods based on interface
response theory and a method due to Nyborg to calculate acoustic streaming forces and velocities in the vicinity
of the solid/viscous-fluid interface. These in turn are used to calculate the drag forces and rolling moments on
a spherical particle adhered to a fused-silica substrate. We consider a van der Walls adhesion force between the
particle and the surface. Although not specifically calculated, the effect of deformation of surfaces on the adhesion
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force is also discussed. The calculations show that the Schlicting streaming velocity in a thin acoustic boundary
layer due to the megasonic waves can give rise to sufficiently strong drag forces and rolling moments to remove the
adhered particles via sliding and rolling mechanisms. A comparison of particle removal with sliding mechanism
at two different megasonic frequencies of 1 MHz, and 3 MHz shows that cleaning at lower frequencies would
require much smoother surfaces of particle and substrate. This suggests that for the removal of small particles
(d < 60 nm), megasonic frequencies of 3 MHz would be more appropriate. Future work will include experimental
validation of simulation results on photomask blanks. Removal of particulates using Megasonics clean process
without inducing damage to sub 90nm node patterned photomask features remains a challenge. Future modeling
work will focus on evaluating microcavitation effects on integrity of patterned photomask minimal feature size
and substrate to assess Megasonics induced damage.
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