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Abstract

The dynamics of brittle fracture in vitreous silica has been a subject of many molecular dynamics (MD) simulations and exper-

iments. A striking similarity between both simulations and experiments is the observation of nanoscale voids that eventually coalesce

leading to failure. In this work, we review the above MD simulations and carry out further MD investigations using two variations

of classical 2-body potentials. We study the effect of charge-transfer, an important aspect neglected by previous simulations. Fur-

ther, we examine the growth of �critical� voids and characterize regions surrounding the voids.

� 2005 Elsevier B.V. All rights reserved.
1. Introduction

Fracture in brittle materials results from the sudden

and rapid propagation of sub-micron level defects/

cracks under the influence of a local stress field. These

local stress fields are significantly higher than the macro-

scopic stress applied, causing local rearrangement of

atoms around the crack tip and a consequent straining

of atomic bonds that ultimately break, leading to sepa-
ration of the material. Early modeling efforts to study

the brittle fracture process, pioneered by Griffith [1],

and improved by Irwin [2] and Barenblatt [3], were

based on analytical continuum mechanics. These meth-

ods could accurately predict the initiation of fracture

as well as calculate the energetics of the process, but

lacked the versatility to account for atomic dynamics

in high-stress regions. With the advent of powerful com-
puters, high-speed, high-resolution atomistic computa-
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tion techniques like molecular dynamics (MD) became
the preferred modeling tool of investigators. MD inves-

tigations of the fracture process in brittle materials have

been carried out extensively [4–14], and the proposed

models that describe brittle fracture have been fairly

consistent with experimental findings [15,16]. In this pa-

per, we plan to review past MD simulations that have

looked at the fracture process of a prototypical brittle

material – vitreous or amorphous (a) silica (a-SiO2),
and then address some of the issues that have been pre-

viously ignored.
2. Vitreous silica – a prototypical brittle material

The structure of a-SiO2 is an open network of silica

tetrahedra, with each tetrahedron linked to its neighbor-
ing tetrahedra via a bridging oxygen (corner-sharing).

Experimental brittle fracture studies of silica glass have

yielded a number of properties that are characteristics of

an �ideal� brittle material. Specifically, a-SiO2 exhibits

the 3-regime behavior as described by Wiederhorn

mailto:krishna@qtp.ufl.edu


K. Muralidharan et al. / Journal of Non-Crystalline Solids 351 (2005) 1532–1542 1533
[17,18]. Fracture processes of regimes-1 and -2 are lim-

ited by environmental effects (slow crack growth),

whereas in type-3 fracture, the material becomes unsta-

ble under the applied stress without regard to environ-

mental effects and the high crack growth velocities that

result are limited only by the mechanical properties of
the material (sudden fracture). Procter et al. [19] mea-

sured the strength of ultra-pure silica fibers (without sur-

face flaws) to be 18.0 GPa, about two orders of

magnitude higher than the measured strength of bulk

silica. Maximum crack velocities during regime-3 frac-

ture, have also been calculated and have been reported

to be anywhere between 40% and 60% of the speed of

sound [20].
3. Molecular dynamics (MD)

Molecular dynamics methods are very orthodox

means for simulating molecular-scale models of matter

[21]. The essence of MD methods involves solving the

N-body problem of classical mechanics. In other
words, it involves solving periodically the Newton�s
equations of motions for a given set of interacting par-

ticles (the interactions between particles governed by

an interatomic potential), enabling one to keep track

of the evolution of the system in phase space. The

equations of motions are solved using standard finite

difference schemes at each time step of the simulation.

An MD simulation can be carried out under a variety
of constant thermodynamic conditions like total en-

ergy E, pressure P, volume V, temperature T, number

of atoms N or chemical potential l. Typical MD sim-

ulations employ periodic boundary conditions (PBC)

to avoid surface effects. The principal advantages of

MD simulations are that one could very precisely ob-

tain static and dynamic properties of the simulated

systems provided the interatomic potential describes
the atomic interactions accurately. Classical MD simu-

lations do not explicitly treat electronic effects, and

therefore cannot adequately handle regime-1 and -2

fracture, where physisorption and chemisorption pro-

cesses control fracture. However, MD is particularly

suited to study environment independent fast fracture

(regime-3) as it can keep track of the extensive atomic

rearrangements that occur around the crack tip, with-
out having to account for chemical reactions at the

crack tip as the crack propagates. Researchers have

used quantum mechanical calculations to study envi-

ronment induced fracture [22–24] as well as to obtain

the energetics of the fracture process [25] and have

also tried to combine higher-level electronic calcula-

tions in conjunction with MD to have a better descrip-

tion of the system. These �combination� methods have
their deficiencies and will not be discussed in this

paper.
4. Interatomic potentials for silica

As pointed out earlier, the exactness of MD simula-

tions is dictated by the accuracy of the interatomic

potentials being used. A plethora of interatomic poten-

tials are available to model the different structures of sil-
ica. Most of them are empirical and are fitted to a wide

variety of parameters in order to represent silica. Erik-

son and Hosteler [26] as well as Schaible [27] have de-

scribed the existing silica potentials in their respective

articles. Thus, in this paper, we will only review a hand-

ful of potentials used by researchers who have looked at

the mechanical properties of a-SiO2.

An essential requirement for a reliable silica potential
is to ensure the stability of the silica tetrahedron and

capture the partial ionic–partial covalent nature of the

Si–O bond. In addition, it should satisfactorily model

the various polymorphs of silica. Some of the successful

potentials comprise of only 2-body terms, and others use

a combination of 2-body and 3-body terms. Many of

these potentials are derived from the functional form

of the Born–Mayer–Huggins (BMH):

/ij ¼
qiqj
rij

þ Aije
�bijrij þ Cijr�6

ij þ Dijr�8
ij .
In the above equation, /ij represents the interaction po-
tential between atom i and j, rij equals the separation dis-

tance between i and j, qi and qj are the charges on atoms

i and j. Aij, bij, Cij and Dij correspond to potential

parameters. The latter two terms in the above equation

represent multipole terms and can be neglected if the

atoms are not highly polarizable-modified BMH poten-

tial (mBMH).

Woodcock et al. [28] were among the first to do sim-
ulations of silica. They used the mBMH potential which

was fitted to the experimental radial correlation function

of the glass. Soules used a similar approach to derive the

S-potential, and used a cutoff of 5.5 Å. The S-potential

was successful in its ability to simulate vitreous silica

structures with approximately the correct density. The

simulated pair correlation functions had good agree-

ment with experimental neutron diffraction data [29].
Mitra et al. [30–32] also used 2-body representations in

their potential formulation, the potential parameters

being fitted to the short-range structure and melting

temperatures of b-cristobalite. The above described

potentials (exclusively 2-bodied) were unable to describe

the experimental Si–O–Si angle distribution exactly and

yielded distributions much broader than experiment

[33]. Thus researchers added 3-body terms to existing
potentials and were able to force the distribution to be

more realistic. The Vessal potential [35], the Vashishta

(V) potential [34] and the Feuston–Garofalini (FG) po-

tential [33] are some of the successful, widely used 3-

body potentials.
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The functional form of the FG potential uses a com-

bination of the mBMH potential and the 3-body term of

the Stilinger–Weber potential [30]. The FG potential has

a weaker repulsion in the Si–Si and O–O interactions

when compared with the S-potential. It has the func-

tional form

/ij2 ¼ Aije
�rij=qð Þ þ

qiqj
rij

erfc
rij
b

� �
;

/ijk3 ¼ k exp
c

rij � rc
þ c
rjk � rc

� �
½cos hijk � cos hc�2;

where the parameters are the same as in Ref. [33]. The

V-potential included the electronic polarizability of the

constituent ions in its representation. The Vessal poten-

tial includes 40 adjustable parameters and claims an
excellent fit to experimentally measured properties of

various phases of silica. Wright [36] deduced that the

V-potential and the Vessal potential have the best fit

to neutron diffraction data of any simulated structures

at the time of comparison.

Almost all of the above potentials were empirically

derived, the parameters chosen to fit experimental data.

The effective charges on Si and O were also chosen
empirically and were based on experimental observa-

tions. Tsuneyuki et al. (TTAM) [37] and van Beest

et al. (BKS) [38] were the first to use ab initio cluster cal-

culations and independently determined the optimal

normalized charges on Si and O to be +2.4 and �1.2.

Both TTAM and BKS potentials have been successful

in modeling many silica polymorphic phases [39–43].

BKS differs from TTAM in the fact that it ignores the
Si–Si short-range interactions. Even though both

TTAM and BKS are able to represent the equilibrium

structures of silica, they do not accurately reproduce

the vibrational properties of silica [41,44].
4.1. Charge-transfer potentials

The above discussed potentials assume that the effec-
tive charges associated with silicon and oxygen are fixed

and do not vary as a function of their immediate envi-

ronment. This assumption is not necessarily true when

systems are far away from equilibrium, and could lead

to erroneous results while modeling fracture, as the pro-

cess is accompanied by extensive bond breakage and a

consequent rearrangement of atoms. Alavi et al. [45]

proposed a scheme to treat the charge-transfer processes
in an explicit way. The scheme used ensures that the

charge-transfer forces are conservative and no numerical

instabilities have been observed when used in conjunc-

tion with the BKS potential. Streitz and Mintmire [46]

developed a computational method for MD simulations,

which explicitly included variable charge-transfer be-

tween anions and cations. This method was developed

to study metal oxides and could describe the elastic
properties, surface energies and surface relaxation of

the metal oxides very accurately. In this method, the

effective charge on each atom is chosen such that the to-

tal electrostatic energy is minimized at each time step of

the simulation. Valone and Atlas [47] in a very recent

paper have devised a new charge-dependent pair poten-
tial that uses chemical potential equalization to dynam-

ically adjust the charges of constituents, similar in spirit

to the method of Streitz and Mintmire, but more self-

consistent as pointed out in the paper. Huang and Keif-

fer [44] developed a potential that accounted for explicit

charge-transfer upon breaking and forming chemical

bonds. They were able to describe the thermally induced

a- to b-cristobalite transformation very well.
5. MD and brittle fracture in a-SiO2

The mechanical properties of silica have been subject

to many MD investigations. Some of the work involved

studying the effects of pressure on silica (documented in

Ref. [21]) and will not be discussed in this paper. We will
review the studies that have looked at a-SiO2 under ten-

sile stress and (or) negative pressure. An important

point to be noted is that in all of the studies under re-

view, the influence of the environment has been ignored

and the silica system is assumed to be in vacuum.

Soules and Busby [4] used MD with the S-potential to

look at sodium silicate glass under both tension and

compression. They studied systems of approximately
1000–2000 atoms with free surfaces, and subjected them

to both uniaxial and biaxial expansions. Under biaxial

expansion, the sample was drawn thinner, and when

the expansion was large, the sample failed via cavitation.

When the sample was under uniaxial strain, the strain

applied by displacing the atoms close to the surface,

atomic bonds were initially elastically stretched, fol-

lowed by considerable plastic deformation. A flaw was
then formed, finally resulting in separation. The stress–

strain curves showed that fracture was brittle as the

resisting material tensile stress decreased rapidly past

the maximum stress point. These authors compared

the behavior of the sample at room temperature as well

as 625 K and obtained similar results. An introduction

of atomic-level defects did not play any role in the sam-

ple response to both uniaxial and biaxial expansions.
Keiffer and Angell [48] catastrophically ruptured the

a-SiO2 structure by the application of negative pressure

(isotropic expansion) in their MD simulations. This

caused bond-angle opening without rupture up to a

maximum tensile limit. Beyond this limit, the structure

ruptured in a very specific way, by developing a self-sim-

ilar void structure. This structure was described well by

a fractal dimension which changed linearly with density.
They chose the BMH functional form to represent

atomic interactions.



Table 1

Comparison of fracture strengths and Young�s modulus of simulated

silica glasses with experimental values

System Maximum

strength/strain

rate (GPa)/ps

Young�s
modulus

(GPa)

S-potential 24–35 (0.05–0.5) �220

BMH 30–65 (0.2–8.0) �220

FG 12–21 (0.05–0.5) �125

BKS 15–22 (0.005–0.1) �100

Experiment 18 71.9
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Ochoa and Simmons [6] were the first to examine the

fracture process in a systematic way. They applied uni-

axial strain at different pull-rates to a glass sample of

few thousand atoms and did a detailed analysis of the

effect of the strain-rates on the stress–strain curves.

The application of uniaxial strain was uniform through-
out the sample, unlike the way Soules and Busby applied

strain to their samples. Initially, Ochoa and Simmons

used the S-potential and observed that the fracture

strength of the glass increased with increasing strain.

They attributed this to the fact that at lower strain-rates

the system has more time to relieve its strain by struc-

tural rearrangement of atoms. In their stress–strain

plots, one could identify four distinct regions; (i) the
elastic regime where stress increased linearly with strain,

(ii) a yield region where the stress varied very slowly

with strain, (iii) a region where there was a dramatic

drop in the stress with increasing strain and finally (iv)

separation of the material corresponding to zero stress.

Later, Swiler and co-workers [7,8] extended these results

by looking at void formation and coalescence and con-

cluded that �at low strain rates, strain added uniformly
to the structure is allowed to flow from higher-density

regions to lower density regions. This effect leads to coa-

lescence of voids eventually causing fracture propaga-

tion through the simulated structure�. In addition they

also estimated the size of a critical void to be 4.5 Å

and linked the fracture process to the �availability of free

volume�. An examination of the fractured surface re-

vealed that it was oxygen-rich. In another paper [9],
these same authors examined the effect of thermal vibra-

tions and found these vibrations induced individual tet-

rahedra to rotate and orient along the strain direction.

In addition, the simulations were repeated using the

FG potential; there was no difference in the observed

behavior of the �strained� glass samples, leading to an

important conclusion that the fracture-controlling pro-

cesses were �potential independent�.
Van Brutzel et al. [12] performed multi-million atom

simulations on a-SiO2 to study the propagation of a

crack in the medium. They used the V-potential and

were able to see the growth and coalescence of voids

and pores (�50–60 Å in radius) near the crack tip due

to localization of strain around the crack tip. In their

studies, a V-shaped notch was created on one edge of

the simulation box and the box was then subjected to
an external strain by displacing atoms in the top and

bottom layers of the box. The effect of temperature on

crack propagation was studied and it was found that

some voids grew further away from the crack tip at

higher temperatures, leading to secondary crack growth.

They concluded that at lower temperatures (�300 K) the

strain energy was dissipated along the crack tip, and at

higher temperatures (>1000 K) the strain energy was
also dissipated in the formation and growth of pores

into a secondary crack. Further, crack branching was
observed and an average crack velocity was also re-

ported. The same set of simulations was repeated for

nanostructured silica glass and pore formation was ob-

served in the intergranular regions. Crack fronts then

coalesce with these pores causing intergranular failure.

Zhu et al. [49] using a novel method that integrated
elements of ab initio calculations with classical MD sim-

ulations, studied the fracture characteristics of SiO2

�nanorods�. Their work consisted of using quantum-level

MNDO calculations (explained in Ref. [51]) to obtain

forces on atoms, and MD to solve for the equations of

motions of atoms at every MD time step. As they used

a silica nanostructure which was not indicative of amor-

phous structure, the resultant fracture strength was
much greater than that seen in a-SiO2.

In almost all of the work that has been reviewed, a

common theme has been the formation and coalescence

of voids and pores that eventually leads to failure of the

strained glass sample. Recent experimental evidence

seems to show that brittle fracture at the nanoscale is in-

deed via formation and coalescence of voids [15]. Thus

the above agreement between the simulation and exper-
imental results is very significant and in particular, is of

generic importance from a simulation point of view, gi-

ven the fact that the research teams used different simu-

lation procedures. The methods of Simmons et al. and

Van Brutzen and co-workers were in fact markedly dif-

ferent, the former studying the effects of strain on a

small sample of few thousand atoms while the latter

using more than a million atoms to obtain their results.
Another important difference was the fact that while

Simmons et al. were over-constraining their samples

by applying uniform strain throughout a homogenous

sample, Van Brutzen et al. only displaced the boundary

atoms of a �pre-cracked� sample. Thus the former were

fracturing their samples about 20% strain, while the lat-

ter were able to rupture the glass at about 6.5% strain,

for a strain rate of 0.01/ps. Additionally, the potential
being employed were also different. In summary, Table

1 lists the fracture strength and the Young�s modulus

of silica glass when simulated using the various poten-

tials as well as the experimental values.

In spite of the fact that a very important issue – that

of void coalescence leading to failure has been



Table 3

Charge-transfer parameters

qsi (qi) q0 (qj) Dq Rab n

4.0 �2.0 0.4523 1.90 0.29
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established, a few other key issues were either neglected

or ignored. Though Swiler et al. could identify a �critical
void�, a methodical look at the growth of the void was

not undertaken. The open network structure of a-SiO2

gives rise to voids of different sizes. Thus a systematic

study of the evolution of the void-size distributions as
a function of strain-rate (and therefore strain) would

be extremely beneficial as one could then correlate it

to the stress–strain curves and characterize the different

regions in the stress–strain plots. Charge-transfer

between atoms is also an important aspect that has to

be examined. In addition, based on the above discussed

results, though one could infer that voids form due to

local stress/strain concentrations, the mechanism behind
void growth has not yet been identified. This is of enor-

mous significance as then we can clearly characterize the

extensive atomic rearrangement that takes place around

the propagating crack tip.
6. Recent progress

The discussion in the previous sections clearly identi-

fied the need to �fill in the blanks� in the current models

describing atomic-level fracture processes in brittle

materials. The following section will address some of

these issues; specifically, we look at the evolution of crit-

ical voids as a function of strain for all strain-rates. The

effect of charge-transfer will be documented and the

importance of charge-transfer will be discussed. Struc-
tural rearrangement in �critical regions� will also be

briefly scrutinized.

6.1. Simulation procedure

In our studies, we use a modified BKS potential [38]

to model the interactions between atoms. The modifica-

tion is necessary to prevent an unphysical divergence at
very small distances of separation between atoms. The

modified BKS potential has the form

/ij ¼
qiqj
rij

þ Aij expð�bijrijÞ �
cij
r6ij

þ 4eij
rij

rij

� �24
� 4eij

rij

rij

� �6
;

where /ij is the potential energy corresponding to

an interatomic separation of rij. Aij, bij, cij, eij and rij
are given in Table 2.
Table 2

Parameters used in the modified BKS potential

Interaction type Parameter

Aij (eV) bij (Å
�1)

Si–O 18003.7572 4.8732

O–O 1388.7730 2.7600

Si–Si – –
For our charge-transfer studies, we use the formula-

tion of Alavi et al., in conjunction with the modified

BKS potential to obtain the �CTBKS� potential. Net

charges on each atom are obtained by the following

equation:

qi ¼ qai � Dq
X
j

1

2
1� tanh

Rij � Rab

n

� �� �
;

qj ¼ qbj þ Dq
X
i

1

2
1� tanh

Rij � Rab

n

� �� �
.

The charge-transfer parameters (listed in Table 3) in the

above equation are chosen so that in the fully coordi-

nated equilibrated state, all Si and O atoms have a net

charge equaling that prescribed by the BKS potential

(+2.4, and �1.2 respectively), and in the zero-coordi-

nated state, an Si atom has a charge of +4, and an O

atom has a charge of �2.
The simulation studies were carried out on samples

that were prepared using the �recipe� prescribed by Huff

et al. [50]. Initially, a low-cristobalite BKS sample of

3528 atoms (1176 Si and 2352 O) was melted at

8000 K and was step-wise quenched all the way down

to 300 K. It was then equilibrated to ensure zero pres-

sure. The resultant glass obtained had a mass density

of 2.2 g/cc, very close to that of experiment. The same
procedure was carried out by including charge-transfer

and the equilibrated glass sample had a slightly higher

density of 2.3 g/cc. Both samples were cubic, the dimen-

sions for the BKS glass being 37 · 37 · 37 Å3, while the

dimensions for the CTBKS glass equaled 36.34 Å in

each direction. Following the method of Simmons et

al., the samples were uniformly strained at different uni-

axial strain rates ranging from 0.1/ps to 0.005/ps. All
simulations were carried out at 300 K, the temperature

maintained via a Nose–Hoover thermostat [51]. The size

of the MD time step used was one femtosecond and the

equations of motion of the atoms were solved using a

Verlet–Beeman integrator [52]. The MD box was sub-

jected to periodic boundary conditions in all simulation

runs. Ewalds summation [53] was used, to ensure a rapid
cij (eV/Å
6) eij (eV) rij (Å)

133.5381 1.12245 · 10�2 1.3100

175.0000 3.5653 · 10�4 2.2000

– 12.6387 0.4200
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convergence of the coulombic contribution to the total

potential energy of the system. Virial stresses were calcu-

lated in order to obtain the stress–strain relations for all

strain rates. Radial distribution functions (RDF), bond-

angle distributions (BAD) were periodically recorded

during the simulation runs. In addition, we used the
method of void analysis to characterize the local differ-

ences in densities of the various samples at the atomic-

scale. A discussion of the analysis is given below.

6.2. Void analysis

Generally speaking, a void can be defined to be a re-

gion enclosing empty space. For simplicity, in this work,
it is assumed that the voids are spherical in shape. Also,

we assume that the atoms are point particles and there-

fore do not associate any volume with the atoms. The
Fig. 1. Uniaxial stress–strain curves for the BKS glass. The �region�
labels are specific for the 0.10/ps case.

Fig. 2. Uniaxial stress–strain curves for the CTBKS glass. The �region�
labels are specific for the 0.01/ps case.
algorithm to compute the void size distribution is as fol-

lows: The MD box is divided into a very fine grid such

that the distance between neighboring grid points is

much smaller than the typical Si–O first neighbor dis-

tance (�1.6 Å). At every grid point, the distance to the

nearest atom is calculated; this signifies the void radius
at that given grid point. If this is smaller than a cutoff

(�1.6 Å) then this grid point is automatically neglected,

otherwise the coordinates of this grid point is retained.

Once the entire grid-space is scanned, the algorithm then

checks for overlap of grid points. In other words, if a

grid point lies within the void radius of another grid

point, then the former grid point is immediately rejected.

This approach automatically allows one to locate the
center of the biggest void enclosed in that region and

therefore a region devoid of atoms and of arbitrary

shape is represented by a series of non-overlapping

spherical voids.
Fig. 3. (a) Growth of the critical void (BKS) as a function of strain for

different strain-rates at 300 K. (b) Growth of the critical void (CTBKS)

as a function of strain for different strain-rates at 300 K. The �region�
labels are specific for the 0.05/ps case.



Table 4

Extent of each �stress–strain� region for the BKS glass as a function of

strain-rate

Strain-rate Range of strain

Region I Region II Region III Region IV

0.1/ps 0–0.16 0.16–0.23 0.23–0.50 >0.50

0.05/ps 0–0.16 0.16–0.22 0.22–0.48 >0.48

0.01/ps 0–0.16 0.16–0.20 0.20–0.30 >0.30

0.005/ps 0–0.15 0.15–0.18 0.18–0.27 >0.27
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7. Results and discussions

The uniaxial stress–strain curves for both BKS as

well as CTBKS glasses are represented in Figs. 1 and 2

respectively. By examining both figures, it is clear that

in each case, the stress–strain curves behave exactly as
that observed by Simmons et al.; (i) each stress–strain

curve has four distinct regions (as shown in the figures),

and (ii) the fracture strength increases with increasing

strain-rate.

A comparison of both figures shows that CTBKS

glasses are much stronger than the �normal� BKS glasses.

This is a direct consequence of the way we had set up

charge-transfer to proceed as we strained the sample.
In other words, the system is inherently biased to resist

the straining of Si–O bonds, as the magnitude of charge

increases on both atoms with increasing Si–O bond

lengths, thereby making the coulombic term much

stronger. It would have been instructive as well as infor-

mative to study the charge-transfer behavior of glasses

under strain, where the net charge on an atom goes to
Fig. 4. Evolution of the �BKS� first neighbor Si–O RDF�s in region I (a), regio

ps.
zero when all atomic bonds are broken for the given

atom. We have investigated such glasses, but the result-

ing glasses were very weak and their densities were much

smaller than the experimental densities. However, the

more important outcome is the fact that the stress–strain

behavior for both CTBKS and BKS glasses are similar

and only differ in a scaling factor (proportional to the

Si–O bond strength). Thus it would be very reasonable
to expect that the fracture mechanisms as such will not

be drastically affected by charge-transfer effects. In the
n II (b) and region III (c) as a function of strain at a strain-rate = 0.05/



Fig. 5. Evolution of the �BKS� O–Si–O bond-angle distribution (BAD)

as a function of strain at a strain-rate = 0.05/ps.
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following paragraphs, we report on the evolution and

growth of voids and try to correlate them to previous

results.
Fig. 6. (a) Evolution of the �BKS� Si–O–Si bond-angle distribution (BAD) in

strain-rate = 0.05/ps.
Fig. 3(a) and (b) shows the radius of the biggest void

(BV) as a function of strain for all strain-rates for the

BKS and CTBKS glasses respectively. Let us first exam-

ine the case when charge-transfer is �turned off�. As pre-

viously stated, each stress–strain curve has four distinct

regions, the final (fourth) region corresponding to an al-
ready separated sample (zero-stress region). The more

important regions are the first three distinct parts of

the curve. Consider Fig. 3(a) which depicts the evolution

of BV at all strain-rates. For every strain-rate one can

define three distinct regions (I, II and III), very similar

to the corresponding stress–strain curves. Region I is

characterized by a gradual growth in the size of BV.

In region II, the growth is muted and the increase in size
of BV with increasing strain is not as noticeable as it is in

region I. This is followed by a rapid increase in the size

of BV (region III). The limits of each region (i.e. the

strain interval over which each region is defined) in both

Figs. 1 and 3(a) are almost identical and can be easily

related to each other. The limits of each region in both

Figs. 1 and 3(a) are tabulated in Table 4.
region I (a), region II (b) and region III (c) as a function of strain at a



Fig. 7. (a) �Raw� atomic density distribution obtained at strain = 0.23

for a strain-rate = 0.05/ps for �BKS� glass. (b) Wavelet transformed

atomic density distribution at strain = 0.23 for a strain-rate = 0.05/ps

for �BKS� glass.
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Thus region I in Fig. 3(a) can be related to the elastic

deformation of voids, the voids growing via the exten-

sion of Si–O bonds. In region II, the fact that the size

of BV does not vary much, combined with the fact that

the stress is almost strain independent, implies that the

excess strain might be distributed in such a way that
only smaller voids grow, via structural rearrangement

rather than the elastic stretching of Si–O bonds. If the

above was not true, then we would have seen a further

linear increase of stress with strain. Once a critical distri-

bution of voids is achieved, coalescence occurs and BV

grows very rapidly (region III). This ultimately leads

to separation of the material.

Having identified three distinct regions in Figs. 1 and
3(a), we can define the size of a �critical void� to be the

size of BV at the �onset� of region III. Onset occurs at

strains that increase with increasing strain-rate (around

0.18 for 0.005/ps, all the way to 0.23 for 0.1/ps). The size

of the critical voids is also a function of strain-rate, the

critical radius being about 4 Å for lower strain-rates

(0.005 and 0.01/ps) and around 4.5 Å for the higher

strain-rates (0.05 and 0.1/ps). Similar conclusions can
be drawn for the CTBKS glass too, though there are

some minor differences (see Fig. 3(b)). Region II extends

over a smaller range of strain, while the onset strain oc-

curs at a larger strain with respect to the BKS glass for a

given strain-rate.

In order to further confirm some of our observations,

we looked at the RDF�s, and the BAD�s as a function of

strain for a representative strain-rate (0.05/ps) for the
BKS glass. Fig. 4(a)–(c) represents the first-neighbor

Si–O RDF at different strains. In Fig. 4(a), the Si–O

peak shifts to larger distances of separation with increas-

ing strain, corresponding to region I behavior, where

there is elastic stretching of the Si–O bonds. Between

strains of 0.16 and 0.22, the RDF distributions are very

similar (as shown in Fig. 4(b)), implying that the strain

is definitely not used up in extending the Si–O bonds fur-
ther. This clearly lends more support to the idea that in

region II, the external strain applied aids in some sort of

atomic rearrangement without a change in Si–O bond

length. Fig. 4(c) represents the fact that in region III

there is �bulk recovery�, as at a much higher strain

(0.325), the Si–O peak shifts back to 1.6 Å, correspond-

ing to an unstrained Si–O bond length. Figs. 5 and 6

illustrate the variation in BAD�s (both O–Si–O and Si–
O–Si) with strain. A comparison between both figures

indicates that while the O–Si–O BAD does not vary

much with increasing strain, there is a discernable

difference in Si–O–Si BAD as a function of strain. Spe-

cifically, within the elastic region, the Si–O–Si peak

shifts from about 144� all the way up to 163� (Fig.

6(a)), where it remains static over an interval of strain

(corresponding to region II – Fig. 6(b)), and then moves
back to a less-strained bond angle (region III – Fig.

6(c)).
The above observations could clearly identify and

characterize the stress–strain curves by correlating them

to the growth of voids as well as the evolution of RDF�s
and BAD�s. In addition, a careful interpretation of the

results enabled us to shed new light on the evolution

of voids. The interpretation was an important exercise
to characterize the fracture process; nevertheless further

analysis was required in order to describe atomic rear-

rangement in critical regions enveloping large voids –

�regions of low atomic densities�. In order to locate these

low-density regions, we divided the MD box into cells

perpendicular to the direction of uniaxial strain and

periodically recorded the number of atoms in each cell

as a function of strain. Once the region where separation
of the material occurs was identified (corresponding to

low atomic density), a systematic look at average local

coordination and average local BAD�s and RDF�s as a
function of strain was undertaken. Of most interest

was the variation of the average local Si–O–Si BAD with

strain in the critical cells. An important point has to be



K. Muralidharan et al. / Journal of Non-Crystalline Solids 351 (2005) 1532–1542 1541
noted; since the atomic density distribution was very

noisy, we �cleaned� up the �signal� using wavelet trans-

forms, which eliminates noise by averaging it out. Wave-

let transforms are extremely powerful tools finding great

uses in signal processing. A detailed description of the

technique is beyond the scope of this paper, and readers
can find more information in Ref. [54].

Using the same �representative� case for our analysis

(strain-rate = 0.05/ps for BKS), the change in local

atomic densities as a function of strain was examined.

The Daubechies wavelet functions were used as the basis

functions for the wavelet transforms, and the number of

cells equaled 128. Just beyond the onset of region III

(strain = 0.23), we obtained both the �raw� atomic den-
sity distribution (Fig. 7(a)) as well as its wavelet-trans-

formed signal (Fig. 7(b)). Fig. 7(b) clearly shows the

region of interest lies between cell 20 and cell 40, which
Fig. 8. (a) Comparison of wavelet transformed distribution of the

average local Si–O–Si bond angles at the initial stage (strain = 0.025)

and at an intermediate stage of fracture (strain = 0.23) for a strain-

rate = 0.05/ps for �BKS� glass. (b) Comparison of wavelet transformed

distribution of the average local Si–O–Si bond angles at strain = 0.23

and at a later stage of fracture (strain = 0.40) for a strain-rate = 0.05/ps

for �BKS� glass.
is not readily obvious from Fig. 7(a). Having located the

critical region, the average Si–O–Si BAD was examined

as a function of strain. The average Si–O–Si bond angle

is calculated by first picking out the O atoms and its Si

neighbors in each cell and then averaging the Si–O–Si

bond-angle value over all O atoms.
Fig. 8(a) and (b) depict the evolution of the wavelet

transformed local Si–O–Si BAD with strain. From

Fig. 8(a), one can deduce that at strain 0.23 (just beyond

the onset strain), the Si–O–Si BAD in the region of

interest (cells 20–40) is highest with respect to other re-

gions. At a much higher strain (=0.40), it drops down

to a value between 90� and 100� (Fig. 8(b)), once again

markedly different from the rest of the material, only
much smaller. The above observations indicate that

one can characterize the �critical� regions by looking at

the local BAD. In the initial stages of fracture, the Si–

O–Si BAD in the �critical� regions are much more

strained (as evident by the large bond angles), while in

the later stages of fracture, the atoms in the critical re-

gions rearrange such that the corresponding Si–O–Si

BAD drops to about 90�.
8. Conclusions

The main focus of this paper was to review past MD

investigations of the brittle fracture process in a-SiO2

and to address some of the key issues ignored by the

above works. We analyzed the effect of charge-transfer
on our fracture studies by using an empirical model

(CTBKS) in conjunction with the �BKS� potential. The
CTBKS glasses were much stronger than the regular

�BKS� glasses, but the fundamental mechanisms govern-

ing fracture in both cases were identical. A systematic

look at the evolution of �critical� voids was undertaken

and this was used to characterize the stress–strain curves

obtained when the glass sample was subjected to uniax-
ial strain at varying rates. In addition, �soft� regions in

the glass sample were identified by looking at local

bond-angle distributions. These regions were character-

ized by high Si–O–Si bond angles prior to failure.
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