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Spectral analysis of amplitudes and phases of elastic waves:
Application to topological elasticity
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(Received 29 September 2018; revised 15 February 2019; accepted 17 February 2019; published
online 31 July 2019)

The topological characteristics of waves in elastic structures are determined by the geometric phase

of waves and, more specifically, by the Berry phase, as a characterization of the global vibrational

behavior of the system. A computational procedure for the numerical determination of the geomet-

rical phase characteristics of a general elastic structure is introduced: the spectral analysis of

amplitudes and phases method. Molecular dynamics simulation is employed to computationally

generate the band structure, traveling modes’ amplitudes and phases, and subsequently the Berry

phase associated with each band of periodic superlattices. In an innovative procedure, the phase

information is used to selectively excite a particular mode in the band structure. It is shown analyti-

cally and numerically, in the case of one-dimensional elastic superlattices composed of various

numbers of masses and spring stiffness, how the Berry phase varies as a function of the spatial

arrangement of the springs. A symmetry condition on the arrangement of springs is established,

which leads to bands with Berry phase taking the values of 0 or p. Finally, it is shown how the

Berry phase may vary upon application of unitary operations that mathematically describe transfor-

mations of the structural arrangement of masses and springs within the unit cells.
VC 2019 Acoustical Society of America. https://doi.org/10.1121/1.5114911

[MRH] Pages: 748–766

I. INTRODUCTION

The paradigm of the plane wave has served as the foun-

dation of our understanding of sound and elastic waves. The

four wave characteristics of frequency (x), wave vector (k),

amplitude (A), and phase (/) undergird this paradigm. For

the last 20 years or so, the manipulation of spectral and

refractive properties of elastic waves using host materials

that exploit frequency and wave vectors has led to significant

advances in the fields of phononic crystals and acoustic

metamaterials (Deymier, 2013). Elastic waves’ spectral

properties include the formation of stop bands caused by

either Bragg-like scattering or resonant processes, and the

capacity to achieve narrow band spectral filtering by intro-

ducing structural defects in the wave supporting material.

Negative refraction, zero-angle refraction, and other unusual

refractive properties arise from the manipulation of the full

range of the dispersion relations for elastic waves over both

frequency and wave vector through changes in the structure.

The amplitude and phase characteristics of elastic waves

have garnered more attention recently. When sound waves

propagate in media that exhibit symmetry breaking conditions,

they may exhibit amplitudes with a geometric phase leading to

non-conventional topologies (Deymier and Runge, 2017) and,

under certain conditions, to non-reciprocal wave propagation.

Examples for the breaking of symmetries, including time-

reversal symmetry, chiral symmetry, and particle-hole symme-

try, have been discussed elsewhere (Deymier and Runge,

2017). An alternative realization of intrinsic parity symmetry

breaking, which is comprised of a one-dimensional (1D)

harmonic crystal with masses attached to a rigid substrate

through harmonic springs, has been shown to possess a spin-

like topology that can be described by a Dirac-like equation

(Deymier et al., 2014, 2015). Complementing intrinsic sym-

metry breaking are extrinsic topological phononic structures,

which have been created using a periodic spatial modulation

of the stiffness of a 1D elastic medium such that its directed

temporal evolution breaks both time-reversal and parity sym-

metries (Cro€enne et al., 2017; Deymier et al., 2017; Deymier

and Runge, 2016; Nassar et al., 2017b; Nassar et al., 2017a;

Swinteck et al., 2015; Trainiti and Ruzzene, 2016). As the

phase of these amplitudes plays a central role in the explora-

tion of the topological characteristic of elastic structures, we

present here a computational tool for the calculation of

these phases for a general elastic structure. While in the

current manuscript we test the computational tool on sim-

ple mass and spring models, the method can be applied to

continuous systems, including rods, beams, and plates. The

method is employed for a number of examples that may

intrinsically break parity symmetry to assess the geometric

phase of these elastic systems. Though trivial and non-

trivial topologies are typically associated with integral

multiples of p, the examples considered here demonstrate

the full range of geometric phases attainable showing the

flexibility of the method.

In Sec. II, we illustrate the computational tool for the

spectral analysis of amplitudes and phases (SAAP) of elastic

waves in the 1D case. In Sec. III, we address the calculation

of the Berry connection and the Berry phase as a characteri-

zation of the global vibrational behavior of an elastic system

and its topological character. In Sec. IV, we present results

of SAAP calculations for a variety of 1D mass-springa)Electronic mail: mdhasan@email.arizona.edu
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systems with varying spring constant arrangements, discuss

them in comparison with analytical results, and also analyze

the behavior of the Berry connection and Berry phase with

the change of Ansatz and origin of the system of reference.

Finally, we draw conclusions in Sec. V.

II. SAAP OF ELASTIC WAVES

Normal modes are synchronous time-periodic motions

during which all coordinates of the system vibrate in a syn-

chronous fashion, reaching their maximum and minimum

values at the same time. Consider an elastic system com-

posed of masses connected by harmonic springs, when we

apply a set of initial conditions in the form of random dis-

placements and/or velocities of the masses, after an initial

transient response, a steady state is reached. In the case of a

1D periodic system composed of an arrangement of Nc iden-

tical unit cells, each containing some number of masses Nm,

we define un;Ni
ðtÞ as the displacement from equilibrium as a

function of time t of the nth mass in the Nith unit cell of the

chain. In general, multiple frequencies can be supported for

a single wave number k, we denote the frequencies as xjðkÞ,
which refers to the jth lowest frequency the system supports

for wave number k. The j labels the bands in the elastic band

structure of the system. Therefore, the complex amplitude

An;jðkÞ of the oscillation of the nth mass on the jth band is

defined as the following projection of un;Ni
ðtÞ onto a plane

wave with wave vector k and frequency xjðkÞ:

An;j kð Þ ¼ 1

Nc

XNc

Ni¼1

1

s0

ðs0

0

un;Ni
tð Þe�ikNiLe�ixjðkÞtdt; (1)

where s0 is the total time over which the elastic waves are

sampled, and L is the unit cell length. The phase of the com-

plex amplitude is given by

/n;j kð Þ ¼ angle An;j kð Þ
� �

; (2)

where

angle zð Þ ¼
atan

Im zð Þ
Re zð Þ

� �
þ p; if sign Re zð Þð Þ < 0 and sign Im zð Þð Þ > 0;

atan
Im zð Þ
Re zð Þ

� �
� p; if sign Re zð Þð Þ < 0 and sign Im zð Þð Þ < 0:

8>>>><
>>>>:

Note that the phase of z is defined on the interval �p to p.

The outlined procedure is general for any displacement

pattern. For the sake of illustration and testing, this paper

focuses on the application of this procedure to discrete 1D har-

monic elastic systems. To calculate the traveling modes’ ampli-

tudes and phases, we introduce a procedure that is illustrated in

the workflow in Fig. 1. The dispersion relation is first calcu-

lated by finding the unknown frequencies ½xjðkÞ� for a given

wave number k. Employing molecular dynamics (MD) simula-

tion with the chosen initial conditions un;Ni
ð0Þ ¼ cosðkNiLÞ

and _un;Ni
ð0Þ ¼ 0 and Born-von Karman periodic boundary

conditions for which eikLNc ¼ 1, the elastic equations of motion

are solved with the Runge-Kutta (4,5) formula, which engages

all the springs. In the first Brillouin zone, kL is limited to the

interval �p to p with a spacing of 2p=Nc. After each MD run

for a specific wave number, the frequency spectrum is found

by the temporal integral of the displacement un;Ni
ðtÞ,

~un;Ni
xð Þ ¼ 1

s0

ðs0

0

un;Ni
tð Þ e�ixtdt: (3)

Equation (3) is like a Fourier transform whose peak positions

define the frequencies for the given value of k, labeled xjðkÞ.
The elastic band structure is fully generated by applying this

procedure to all available values of k for the finite system

within the first Brillouin zone.

Once the band structure xjðkÞ is known, we calculate the

elastic wave amplitudes and phases using another set of MD

simulations with new initial conditions un;Ni
ð0Þ ¼ cosðkNiLÞ

and _un;Ni
ð0Þ ¼ �xjðkÞsinðkNiLÞ. This new set of initial con-

ditions now sets the values of the velocity to those prescribed

by the computed band structure. We emphasize here that one

has to use specific traveling elastic wave initial conditions

instead of random initial conditions to obtain the phases since

random initial conditions add or subtract a constant value to

the phase. This is a distinction between the SAAP method

and other eigenvalue/vector approaches. After each set of

MD simulations, we project the calculated displacement

un;Ni
ðtÞ onto plane waves to calculate the complex amplitude

of the nth mass, An;jðkÞ, following Eq. (1). The phase of the

displacement is calculated using Eq. (2). We have imple-

mented SAAP in MATLAB (The MathWorks, Natick, MA) and

tested it for several systems. As we have seen above, in the

SAAP method Newton’s equations of motion are solved as a

function of time via a MD approach, and the solutions are

projected onto plane waves, which allows the extraction of

the amplitudes, including their phases.

III. BERRY CONNECTION AND BERRY OR ZAK PHASE

A further characterization of the behavior of the ampli-

tudes is realized by the Berry connection for a particular

band of the band structure. When the system contains a finite

number of unit cells, NC, the Brillouin zone is discretized

and the Berry connection is given by (Resta, 2000)

J. Acoust. Soc. Am. 146 (1), July 2019 Hasan et al. 749



BCj kð Þ ¼
XNm

n¼1

~A
�
n;j kð Þ ~An;j k þ Dkð Þ; (4)

where Nm is the number of masses per unit cell, DkL ¼ 2p=NC,

and ~An;jðkÞ is the normalized complex amplitude for the nth

mass in a unit cell on band j, and is calculated as

~An;j kð Þ ¼ An;j kð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNm

n¼1

jAn;j kð Þj2
vuut

: (5)

The ~An;jðkÞ with n 2 ½1;Nm� represent the complex nth com-

ponents of a unit vector in a Nm-dimensional complex space.

This normalized amplitude unit vector (n.b., the normaliza-

tion is for the full vector) can be defined as

~~A ¼ ~A1;j kð Þ; ~A2;j kð Þ;…; ~ANm;j kð Þ
� �

: (6)

This amplitude unit vector evolves along some parametric

curve as k is varied. The Berry connection characterizes the

variation in orientation of the unit vector along some path in

the complex space of amplitudes parametrized by k.
Summing the Berry connection for the possible k values of

some specific band over the closed path in k-space defined

by the first Brillouin zone gives the Berry or Zak phase

(Berry, 1984; Zak, 1989). The geometric phase that charac-

terizes the property of bulk bands in periodic systems is

known as the Zak phase (Zak, 1989), whereas Berry intro-

duced the general concept of geometric phase earlier (Berry,

1984). Several recent works have been done to correlate the

bulk properties of a crystal through the geometrical phases

of the bulk bands (Atala et al., 2013; Chen et al., 2018;

FIG. 1. Workflow of the method of SAAP of elastic waves.
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Pal and Ruzzene, 2017; Wang et al., 2015; Wang et al.,
2018; Xiao et al., 2014). The importance of finding the topo-

logical structures through geometric phases is that according

to the bulk edge correspondence principle, at an interface

between topologically different crystals, a localized state

forms (Trainiti and Ruzzene, 2016). Topological interface

states have prospects for realization of disorder-robust one-

way transport of information. The Berry’s phase /B of each

band is then defined as (Resta, 2000)

/B;j ¼ �Im ln
YNc�1

i¼1

BCj kið Þ
" #( )

mod 2p: (7)

In Eq. (7), Im takes the imaginary part of its argument. For infi-

nite systems or continuous k, a differential form of the above

expression is used (Berry, 1984). The evolution of the ampli-

tude unit vector in the Nm-dimensional space parametrized by

the wave number k generates a manifold. The Berry phase is

the net phase accumulated by the amplitude unit vector over

the entire manifold for a closed path. That is to say, the Berry

phase characterizes the topology of the manifold.

Notice that the calculation of the Berry phase is condi-

tioned by the existence of a closed path in the k-space with

the amplitudes or projections ~An;jðkÞ being periodic in recip-

rocal space, but this periodicity may be affected by the

Ansatz used to describe the dynamics of the system. In fact,

the spectrum ½xjðkÞ� is invariant under unitary transforma-

tions, and therefore to calculate it there is a freedom of

choosing a particular Ansatz. In what follows we will use a

compact Ansatz for computational convenience, but also

illustrate how using a general Ansatz will impact the Berry

phase. We show in the Appendix that these two Ans€atze

possess the same Berry connection and Berry phase.

IV. RESULTS AND DISCUSSION

We proceed to do the spectral analysis of elastic wave

amplitudes and phases of 1D mass-spring systems with iden-

tical masses but variable spatial modulations of the spring

stiffness. The unit cell length parameter L is given by the

number of masses per unit cell Nm times the inter-mass

spacing a, that is, L ¼ Nma. Again, the system contains Nc

unit cells of Nm masses each.

A. Two mass unit cell

We first consider a system of two identical masses per

unit cell with spring constants modulation for which the ana-

lytical solutions of the eigen-problem are available and can

be compared with numerical results obtained via SAAP. The

equations of motion for masses 1 and 2 of the Ni th unit cell

interacting with spring constants b1 and b2 in an infinite 1D

system are (see Fig. 2)

m€u1;Ni
tð Þ ¼ b2 u2;Ni�1 tð Þ � u1;Ni

tð Þ
� �

� b1 u1;Ni
tð Þ � u2;Ni

tð Þ
� �

;

m€u2;Ni
tð Þ ¼ b1 u1;Ni

tð Þ � u2;Ni
tð Þ

� �
� b2 u2;Ni

tð Þ � u1;Niþ1 tð Þ
� �

: (8)

In Eq. (8), m is the mass, b1 and b2 are the force constants of

the spring, and t is time. The dots denote differentiation with

respect to time.

1. Analytical solution

We seek traveling wave solutions of Eq. (8) using the

following compact Ansatz:

u1;Ni
tð Þ ¼ A1eikNiLþixt and u2;Ni

tð Þ ¼ A2eikNiLþixt;

(9)

which, as anticipated in connection to the Berry phase calcu-

lation, have amplitudes An that are periodic in reciprocal

space. That is also in contrast to the Ansatz of the general

form un;Ni
ðtÞ ¼ A0neikxn eikNiLeixt, where A0neikxn is periodic in

reciprocal space. We note that both Ans€atze are related by a

unitary transformation that yields the same spectrum, Berry

connection, and Berry phases (as is shown in the Appendix),

however, the compact Ansatz of Eq. (9) is computationally

more convenient.

Substituting Eq. (9) into Eq. (8) leads to

a �c
�c� a

� �
A1

A2

� �
¼ 0

0

� �
; (10)

with ðb1 þ b2 e�ikLÞ ¼ c and ðb1 þ b2 � mx2Þ ¼ a. Taking

the complex conjugate of Eq. (10) and exchanging rows and

columns, we have

a �c

�c� a

 !
A�2
A�1

 !
¼

0

0

 !
: (11)

Comparing Eqs. (10) and (11) we find that each is satisfied if

A1 ¼ A�2: (12)

Further, from Eq. (10) we obtain the dispersion relation

x2
k ¼

1

m
b1 þ b2 7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb1 þ b2Þ2 � 4b1b2 sin2 kL

2

� �s0
@

1
A;

(13)

where the first sign corresponds to the acoustic branch and

the second sign corresponds to the optical branch in the band

structure. Choosing these solutions for the frequencies, we

have for the amplitudes

A1

A2

¼ 6

ffiffiffi
c
pffiffiffiffiffi
c�
p : (14)

FIG. 2. Schematic illustration of a 1D chain comprised of two mass unit

cells and springs with spatial stiffness modulations.
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Taking into account Eq. (12) leads to the following selection

for the amplitudes of the acoustic branch:

A1;1 ¼
ffiffiffi
c
p
; A2;1 ¼

ffiffiffiffiffi
c�
p

; (15)

since for the acoustic branch A1;1=A2;1 ¼
ffiffiffi
c
p
=
ffiffiffiffiffi
c�
p

: For the

optical branch

A1;2 ¼
ffiffiffiffiffiffiffiffiffiffi
e�ipc

p
; A2;2 ¼

ffiffiffiffiffiffiffiffiffiffi
eipc�

p
; (16)

which satisfies Eq. (14) taking the minus sign.

In Fig. 3, we plot the real and imaginary components of

the normalized complex amplitude, ~An;jðkÞ, where the nor-

malization constant is chosen as in Eq. (5). Figure 3(a)

shows the real and imaginary components of the normalized

FIG. 3. For the two mass unit cell, analytically calculated normalized complex amplitudes of each mass n and band j, ~An;jðkÞ (R and I stand for real and imagi-

nary components, respectively) when (a) b1=b2 ¼ 0:5 and (b) b1=b2 ¼ 2 cases. The system is composed of 36 unit cells.
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amplitudes for both masses and both the acoustic and optical

branches when the ratio of the spring constants is b1=b2 ¼ 0:5.

Note that, for our compact Ansatz, the real component of the

amplitude is an even function of k and the imaginary compo-

nent is an odd function, the change in sign of the imaginary

component leads to a discontinuity in the optical branch ampli-

tudes. Figure 3(b) displays the same information about the real

and imaginary components of the amplitude when the spring

constant ratio is b1=b2 ¼ 2. Again, we note the discontinuity

in the imaginary component of the optical branch amplitude.

From Figs. 3(a) and 3(b), we observe that although the real

components of the complex amplitudes are equal for masses 1

and 2, the magnitude of the imaginary components are equal

but of opposite signs. As a result, from Figs. 4(a) and 4(b) it

can be seen that each mass attains a phase value both in the

acoustic and optical branches to sustain the traveling wave, and

the magnitudes of the phases of masses 1 and 2 are the same

but of opposite signs. We note that this relationship likely

FIG. 4. For the two mass unit cell, analytically calculated phase values of each mass n and band j, /n;jðkÞ, in radians when (a) b1=b2 ¼ 0:5 and (b) b1=b2 ¼ 2

cases. The system is composed of 36 unit cells.
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arises due to the symmetry of the system as mass 1 is con-

nected with springs b1 and b2 to its right and left, respectively,

and mass 2 is connected with springs b2 and b1 to its right and

left, respectively. Further, the phase value is an odd function of

the wave number, i.e., /n;jðkÞ ¼ �/n;jð�kÞ.
In Fig. 5, we plot a representation of the manifold

spanned by the real and imaginary parts of the amplitude unit

vector,
~~A , within the Brillouin zone. At each k point, mapped

onto the angle to form a ring, we have an arrow pointing in

the
~~A direction (thin red arrow: k varies from �p=L to 0;

thick blue arrow: k varies from 0 to p=L). We take ~A2;jðkÞ
along the normal to the ring plane and ~A1;jðkÞ along the

radius with the positive direction pointing away from the cen-

ter of the ring. As A1 ¼ A�2, the
~~A ¼ ð ~A1;jðkÞ; ~A2;jðkÞÞ vectors

form a 45� angle with the normal to the ring plane, and hence

there exists only twists but not a change in the direction

of ~~A . Moreover, the amplitude unit vector in Fig. 3(a)

(b1=b2 ¼ 0:5) generates a manifold with the imaginary part

taking the form of a closed ribbon with a single twist at k¼ 0

[see Fig. 5(b)]. The total accumulated geometric phase over

the Brillouin zone is therefore p. In contrast, the amplitude

unit vector in Fig. 3(b) (b1=b2 ¼ 2) generates a manifold

with the imaginary part taking the form of a closed ribbon

with two twists at k¼ 0 and at the boundaries of the Brillouin

zone [see Fig. 5(a)]. The total accumulated geometric phase

over the Brillouin zone is therefore zero. These two mani-

folds differ in their topology by one twist.

We now characterize the behavior of the amplitudes for

each band as the wave number spans the Brillouin zone.

Using Eq. (4), defining the Berry connection, we have

BCj kð Þ¼ ~A
�
1;j kð Þ ~A1;j kþDkð Þþ ~A

�
2;j kð Þ ~A2;j kþDkð Þ

¼ ~A
�
1;j kð Þ ~A1;j kþDkð Þ

� �
þ ~A

�
1;j kð Þ ~A1;j kþDkð Þ

� ��
:

(17)

BCjðkÞ given by Eq. (17) is purely real with either positive or

negative values and therefore a Berry phase of either 0 or p. As

an example, in Fig. 6 we plot the Berry connection for the two

mass unit cell with b1=b2 ¼ 2 and b1=b2 ¼ 0:5; for both the

acoustic [BC1ðkÞ] and optical [BC2ðkÞ] branches. As we see,

the Berry connections are all real. Using Eq. (7), we find that

the Berry phase is 0 for each branch when b1=b2 ¼ 2 and p
when b1=b2 ¼ 0:5; as anticipated. Therefore, the topology of

the elastic waves (Fig. 5) supported by these configurations are

characterized by dissimilar Berry phases.

One important point to realize is that the two mass

unit cell has inversion symmetry, and we have found that

its Berry phase is always either 0 or p. It will be shown

later in Sec. IV B 1 that in the case of unit cells with more

than two masses, inversion symmetry (as imposed by the

values of the spring constants) also leads to a multiple of p
(either 0 or p) Berry phase. However, multiple of p Berry

phase values, including zero, are also conditioned by the

selection of the origin of the unit cell. That is similar to

what Zak found for electron systems with inversion sym-

metry, except that for electrons there is no dependency of

the Berry phase on the choice of origin (Zak, 1989), i.e.,

for centrosymmetric crystals, when the origin is at a center

of inversion, the only allowed values are either 0 or p
(mod 2p) for electrons.

The arrangements of the spring constants b1=b2 ¼ 2 to

b1=b2 ¼ 0:5 can be related to each other by a change in

origin of the unit cell from mass 1 to mass 2, i.e., by shifting

the origin to the left by an inter-mass spacing, as shown in

Fig. 7.

Prior to translating the origin, the dynamical problem is

described by Eq. (10), which can be written in the compact

form M
$

k
~Ak ¼ 0; where ~Ak ¼ ½A1;A2�T . The dynamical

matrix is defined by

FIG. 5. (Color online) Analytical results for the real (Re) and imaginary (Im) representation of the manifold generated by the evolution of the amplitude unit

vector ~~A along the path in the Brillouin zone from k ¼ �p=L to 0 (thin red arrow) and from k ¼ 0 to p=L (thick blue arrow). Two cases are shown: (a) with

b1=b2 ¼ 2 and (b) with b1=b2 ¼ 0:5. The scale represents the magnitude of the amplitude unit vector ~~A. The vertical elevation of the viewpoint of the mani-

fold is 45 deg. The system is composed of 36 unit cells.
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M
$

k ¼
a �c
�c� a

� �

¼ b1þb2 �mx2 � b1þb2 e�ikL
	 


� b1þb2 e�ikL
	 
�

b1þb2 �mx2

 !
: (18)

After the shift in origin, the dynamical equations take the

form M
$ 0

k
~A
0
k ¼ 0; where

M
$ 0

k ¼
b1 þ b2 � mx2 � b1e�ikL þ b2

	 

� b1e�ikL þ b2

	 
�
b1 þ b2 � mx2

 !
; (19)

and ~A
0
k ¼ ½A01;A02�T with A0n being the amplitudes of the com-

pact Ansatz un;Ni
ðtÞ ¼ A0neikNiLþixt; n ¼ 1; 2.

The general and compact Ans€atze are related by the uni-

tary transformation ~A
0
k ¼ S

$

k
~Ak with

S
$

k ¼ 0 e�ikL

1 0

� �
; (20)

and correspondingly the dynamical matrices M
$

k and M
$ 0

k

transform as M
$

k ¼ S
$

†
kM
$ 0

k S
$

k: The unitary matrix has the fol-

lowing properties: S
$

�k ¼ S
$�

k and

DS
$

�k ¼
@S
$

�k

@k
Dk ¼ 0 �iLeikL

0 0

 !
Dk

¼ � @S
$�

k

@k
Dk ¼ �DS

$�
k : (21)

The Berry connection of the system after the shift of the

origin is given by

~A
0†
k
~A
0
kþDk ¼ ~Sk

~Ak

	 
†
S
$

kþDkAkþDk

� �
’ ~A

†

kS
$

†
k S
$

k þ DS
$

k

� �
~Ak þ D~Ak

	 

’ ~A

†

k 1þ S
$

†
kDS

$

k

� �
~Ak þ D~Ak

	 

’ ~A

†

k
~Ak þ D~Ak þ S

$
†
kDS

$

k
~Ak

� �
’ ~A

†

k AkþDk þ ~A
†

k S
$

†
kDS

$

k
~Ak: (22)

Using Eqs. (20) and (21) we find S
$

†
kDS

$

k ¼ Dk
0 0

0 �iL

� �
.

Therefore, Eq. (22) yields

BCshifted ’ BCoriginal � iLDkjA1j2 ’ BCoriginal � iLDk=2;

(23)

where we have used the fact that for the system with a two

mass unit cell, jA1j2 ¼ jA2j2 ¼ 1=2. After summing over the

first Brillouin zone we get that the Berry phase ð/BÞ trans-

forms upon the shift in origin according to

/B;shifted ’ /B;original þ p: (24)

It is clear that if the Berry phase for the original system is 0

(or p) then the Berry phase for the system with the shifted

origin will be p (or pþ p ¼ 2p ¼ 0; since the Berry phase is

defined mod 2p). These findings are consistent with the

Berry phase values previously obtained [see Eq. (17) and

Fig. 6].

2. Numerical study

In order to numerically calculate the complex amplitude

An;jðkÞ of each mass in the unit cell, we first calculate the fre-

quency spectrum xjðkÞ for corresponding wave number k

FIG. 6. Analytical results for the Berry connection and Berry phase values of the two mass unit cell for (a) b1=b2 ¼ 0:5, and (b) b1=b2 ¼ 2. The system is

composed of 36 unit cells, hence, the wave number spacing is Dk ¼ p=36. R and I stand for real and imaginary components of the Berry connection.

FIG. 7. Schematic diagram of a two mass unit cell of the 1D chain created

by shifting the origin to the left by an inter-mass spacing.
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using the initial conditions as un;Ni
ð0Þ ¼ cosðkNiL Þ and

_un;Ni
ð0Þ ¼ 0 (as mentioned in Sec. II).

Figure 8(a) shows the power spectrum of the amplitudes

for two different wave numbers for the two mass system with

b1 ¼ 2b2: For each specific k value we clearly obtain two fre-

quencies for the acoustic branch [j ¼ 1; smaller xjðkÞ] and the

optical branch [j ¼ 2; larger xjðkÞ]. Figure 8(b) shows the

resultant dispersion relations obtained numerically. As is well

known, Fig. 8 depicts the presence of a band gap due to spatially

varying stiffness. The width of the gap depends on the relative

values of b1 and b2 (when b1 ¼ b2 there is no gap). In Fig.

8(b), we also compare the dispersion relations obtained theoreti-

cally using Eq. (13) (*, asterisk). The results are in excellent

agreement. The dynamical trajectories generated by the MD

simulation can also be analyzed within the framework of the

spectral energy density (SED) method (Thomas et al., 2010) for

analyzing the elastic band structure of superlattices. However,

the SED method is computationally very expensive (because one

must scan for all possible frequency values) and does not cap-

ture the information on the phases of the amplitudes, whereas

using the SAAP method we can easily calculate the elastic band

structure since the frequency spectrum xjðkÞ for corresponding

wave number k is known, while also extracting the phases.

Numerical simulations of Eqs. (1), (2), and (8) for the

two mass unit cell produce the normalized complex ampli-

tudes and phases predicted theoretically, validating our

SAAP procedure and numerical implementation.

Let us now focus on two different unit cells with

b1=b2 ¼ 1=2 and b1=b2 ¼ 1=8 spatial variation of the stiff-

ness. In Fig. 9, we plot the normalized complex amplitudes

both for b1=b2 ¼ 1=2 and b1=b2 ¼ 1=8, and observe that

both the real and imaginary values at the boundary of the

Brillouin zone (i.e., at kL ¼ 6p) remain constant regardless

of the spatial variation of the stiffness, though the magnitude

of the real and imaginary values are different for different

wave numbers. This indicates that regardless of the spatial vari-

ation of the elastic stiffness, if b1=b2 < 1, the Berry phase

under these conditions is invariant and takes on the value p.

Similarly, if b1=b2 > 1, the Berry phase is always 0.

Another important aspect of calculating the phase value

is that the phase can be used to selectively excite the acoustic

or optical branch. As shown before in Fig. 8(a), for a particu-

lar wave number both acoustic and optical branches are

excited. However, if we introduce the phase value as part of

the initial condition, we only excite one of the branches

depending on the chosen phase. For example, if we use

the initial condition corresponding to the acoustic branch,

i.e., un;Ni
ð0Þ ¼ cos½kNiLþ /Ac

n �, _un;Ni
ð0Þ ¼ �x1ðkÞsin½kNiL

þ/Ac
n �, then we are able to excite only the acoustic branch as

shown in Fig. 10, and vice versa.

We note that for a superlattice of two identical masses per

unit cell with no spring constants modulation, i.e., b1

¼ b2 ¼ b0, there is no bandgap and the band structure consists

of two folded bands. The dispersion relations for the two

bands are x1 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffi
b0=m

p
j sin ðkL=2Þj and x2 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffi
b0=m

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� sin2ðkL=2Þ

q
, where kL ¼ ½�p; p�, and the subscript j

indicates the branch order. The complex amplitudes are

A1

A2

¼ 6

ffiffiffi
c
pffiffiffiffiffi
c�
p ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e�ikLð Þ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ eþikLð Þ

p :

Hence, the equation for Berry connection is

BCj kð Þ¼ ~A
�
1;j kð Þ ~A1;j kþDkð Þþ ~A

�
2;j kð Þ ~A2;j kþDkð Þ

¼ ~A
�
1;j kð Þ ~A1;j kþDkð Þ

� �
þ ~A

�
1;j kð Þ ~A1;j kþDkð Þ

� ��
;

which is purely real with positive value and therefore a triv-

ial Berry phase of 0.

FIG. 8. (a) Discrete Fourier transform power spectrum for two values of wave number k, (b) comparisons of the dispersion relation of the numerical simulation

of Eqs. (3) and (8) (�, circle) with the theory obtained using Eq. (13) (*, asterisk), for two mass unit cell with b1 ¼ 2b2. System parameters:

Nc ¼ 36; m ¼ 1 kg, b1 ¼ 1 N=m. MD Simulation parameters: unit step ¼ 0:1 s, Total time steps ¼ 218. Here, both axes are in units of radians.
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B. System with Nm unit cell

After validating the SAAP method by calculating the

elastic wave band structure and the phases for the two mass

unit cell, both analytically and numerically, we now explore

it further by analyzing more complicated systems with

Nm > 2 with spatial variation of linear stiffness defined by

b1, b2; …; bNm
.

1. Analytical study

The equations of motion for Nm masses in unit cell Ni

interacting with spring constants b1; b2;…; bNm
forming an

infinite 1D chain are

m€u1;Ni
tð Þ ¼ bNm

uNm;Ni�1
tð Þ�u1;Ni

tð Þ
� �

�b1 u1;Ni
tð Þ�u2;Ni

tð Þ
� �

m€u2;Ni
tð Þ ¼ b1 u1;Ni

tð Þ�u2;Ni
tð Þ

� �
�b2 u2;Ni

tð Þ�u3;Ni
tð Þ

� �
..
.

m€uNm�1;Ni
tð Þ ¼ bNm�2 uNm�2;Ni

tð Þ�uNm�1;Ni
tð Þ

� �
�bNm�1 uNm�1;Ni tð Þ�uNm;Ni tð Þ

� �
m€uNm;Ni

tð Þ ¼ bNm�1 uNm�1;Ni
tð Þ�uNm;Ni

tð Þ
� �

�bNm
uNm;Ni

tð Þ�u1;Niþ1
tð Þ

� �
: (25)

From Eq. (25) we note that the system preserves time rever-

sal symmetry, i.e., t! �t; however, by choosing the values

FIG. 9. Comparisons of the numerical complex amplitudes for two different spatial stiffness ratios. The system is composed of 36 unit cells.

FIG. 10. Normalized power spectrum of the two mass unit cell chain with b1=b2 ¼ 0:5.
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of bn;Ni
, the inversion symmetry can be broken. Hence, we

will study the traveling waves in this infinite system of

masses under different conditions, including broken inver-

sion symmetry.

The traveling wave solutions of Eq. (25) of the compact

form un;Ni
ðtÞ ¼ AneikNiLeixt; n ¼ 1; 2;…; Nm lead to the sys-

tem of equations

M
$

k
~Ak ¼ 0; (26)

where ~Ak ¼ ½A1;A2;…;ANm
�T ,

M
$

k¼

a1Nm

b1

� � �
0

bNm
eikL

b1

a12

� � �
0

0

0

b2

� � �
bNm�2

0

0

0

� � �
a Nm�1ð Þ Nm�2ð Þ

bNm�1

bNm
e�ikL

0

� � �
bNm�1

aNm Nm�1ð Þ

0
BBBBBBB@

1
CCCCCCCA
;

and apq ¼ �bp � bq þ mx2. Taking the complex conjugate

of Eq. (26) and rearranging the rows and columns, we have

~M
$

k
~~Ak ¼ 0; (27)

where
~~Ak ¼ ½A�Nm

;A�Nm�1;…;A�1�
T

and

~M
$

k¼

aNm Nm�1ð Þ

bNm�1

� � �
0

bNm
eikL

bNm�1

a Nm�1ð Þ Nm�2ð Þ

� � �
0

0

0

bNm�2

� � �
b2

0

0

0
� � �
a12

b1

bNm
e�ikL

0
� � �
b1

a1Nm

0
BBBBBBB@

1
CCCCCCCA
:

By comparing Eq. (27) with Eq. (26) we see that if bi ¼ bNm�i,

then M
$

k ¼ ~M
$

k and hence we have Ai ¼ A�Nm�iþ1; i ¼ 1;

2; ::;Nm=2. Using Eq. (4) of the Berry connection, the discrete

representation of the Berry connection for the system with Nm

mass unit cell is

BCj kð Þ ¼
XNm

n¼1

~An;j
� kð Þ ~An;j k þ Dkð Þ

� �

¼ ~A1;j
� kð Þ ~A1;j k þ Dkð Þ

� �
þ ~A1;j

� kð Þ ~A1;j k þ Dkð Þ
� ��

þ ~A2;j
� kð Þ ~A2;j k þ Dkð Þ

� �
þ ~A2;j

� kð Þ ~A2;j k þ Dkð Þ
� ��

þ � � � ; (28)

which is purely real with either positive or negative value.

Therefore, the Berry phase should be either 0 or p if bi

¼ bNm�i ; i ¼ 1; 2; ::;Nm=2. However, if bi 6¼ bNm�i, then

comparison between Eqs. (27) and (26) does not lead to an

explicit relation between the amplitudes of the traveling

waves. Therefore, the Berry phase can take values, including

those different from 0 or p, as was seen from Eqs. (4) and

(7). Note that the conditions leading to a Berry phase 0 or p
define systems with inversion symmetry.

2. Numerical study

We consider elastic superlattices containing three and

four masses per unit cell with different combinations of var-

iations in the spatial stiffness. The dynamical trajectories

generated by the MD simulation are analyzed using the

SAAP method.

a. Three mass unit cell. From the general analysis, we

see that if bi ¼ bNm�i; where i ¼ 1; 2;…; Nm=2, the Berry

phase is always either 0 or p. An arrangement for which the

three mass unit cell will have either 0 or p Berry phase is

that b1 equal b2. In the numerical simulation of the system

with a three mass unit cell, we first explore two contrasting

combinations of elastic stiffness coefficients: (i)

b1 ¼ b2 ; b3 > b1, and (ii) b1 ¼ b2 ; b3 < b1. We show sub-

sequently that when the Berry phase of case (i) is p, then the

Berry phase of case (ii) is 0.

In Figs. 11 and 12, we plot the normalized complex

amplitude and phase (in radians) for three mass unit cell

with b1 ¼ b2 ; b3 ¼ 2b1 and b1 ¼ b2 ; b3 ¼ 0:5b1. From

Figs. 11(a) and 12(a), we observe that although the real com-

ponents of the complex amplitudes are equal for masses 1

and 3, the magnitude of the imaginary components are equal

but of opposite signs. As a result, from Figs. 11(b) and 12(b)

we note that the magnitude of the phases of masses 1 and 3

are the same but opposite in sign. This relationship likely

arises due to the symmetry of the system as mass 1 is con-

nected with springs b1 and b3 to its right and left, respec-

tively, and mass 3 is connected with springs b3 and b1 to its

right and left, respectively.

Figures 13 and 14 show the Berry connection values and

manifolds both for b1 ¼ b2 ; b3 ¼ 2b1 and b1 ¼ b2 ; b3

¼ 0:5b1 cases. Using Eq. (4) of Berry connection, it is clear

from the Berry connection plot that the Berry phase value is

p; 0; p for acoustic, first optical, and second optical branches,

respectively, for b1 ¼ b2 ; b3 ¼ 2b1 [Fig. 13(a)], and 0 for all

branches in the case b1 ¼ b2 ; b3 ¼ 0:5b1[Fig. 14(a)]. This

likely marks a topological transition point where a gap clos-

ing and reopening process could be seen if b3 is tuned con-

tinuously from 0:5b1 to 2b1. A previous study has shown

this sort of change in the Zak phase of bands with system

parameters in a superlattice composed of pipes with chang-

ing diameters (Xiao et al., 2015). Figures 13(b) and 14(b)

show real and imaginary representations of the manifold

generated by the evolution of the amplitude unit vector,
~~A ,

along the Brillouin zone. We take ~A3;jðkÞ along the normal

to the plane of the k-space ring, ~A2;jðkÞ along the radius, and
~A1;jðkÞ along the tangent. The A1 ¼ A�3 constraint leads to

the Reð~~AÞ vectors forming a 45� angle with the normal to

the ring plane, and hence there are only twists but not a

change in the direction of
~~A . Similar to two mass unit cell,

the three mass unit cell’s amplitude unit vector in Fig. 11(a)

(for b1 ¼ b2 ; b3 ¼ 2b1) and Fig. 12(a) (for b1 ¼ b2 ; b3

¼ 0:5b1) generates a manifold with the imaginary part tak-

ing the form of a closed ribbon with either: (i) a single twist
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at k¼ 0 [see Fig. 13(b)] or (ii) two twists, one at k¼ 0

and the other at the boundaries of the Brillouin zone [see

Fig. 14(b)]. The total accumulated geometric phase over the

Brillouin zone is therefore either p (for b1 ¼ b2 ; b3 ¼ 2b1)

or 0 (for b1 ¼ b2 ; b3 ¼ 0:5b1).

Now we focus on the case when bi 6¼ bNm�i; e.g.,

b1 ¼ 2b2 ; b2 ¼ b3. Under the conditions described in Sec.

IV B 1, we can conclude that the Berry phase need not be

restricted to either 0 or p. Figure 15 shows the normalized

complex amplitudes and phases, and Fig. 16 shows the Berry

connection and manifolds for such a case. From Figs. 15(a)

and 15(b) we observe that the amplitudes, and hence the

phases, of each mass do not appear to have any explicit

relation among them. As a result, as is seen from the Berry

connection plot [Fig. 16(a)], the Berry phase for each branch

does not take on values that are multiples of p. However,

though the Berry phase for any individual band may not be a

multiple of p, we find that the sum of the Berry phases over all

bands is an integer multiple of 2p (similar to Rudner et al.,
2016), i.e., �0:83þ 1:09� 0:25 ffi 0ð2pÞ. Furthermore, in

contrast to the cases of b1 ¼ b2 ; b3 ¼ 2b1 or b1 ¼ b2 ; b3

¼ 0:5b1, for three mass unit cell with b2 ¼ b3 ; b1 ¼ 2b2, the

amplitude Reð~~AÞ vectors do not always form a 45� angle with

the normal to the Brillouin zone ring plane. Hence, in addition

to twists, there is also a change in the direction of ~~A [see Fig.

16(b)]. Therefore, although the amplitude unit vector generates

a manifold with the imaginary part taking the form of a closed

FIG. 11. Numerical results for the (a) normalized complex amplitude (R and I stand for real and imaginary components, respectively), and (b) phase value (in

radians) of masses 1, 2, and 3 when b1 ¼ b2 ; b3 ¼ 2b1.
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ribbon with two twists at k¼ 0 and at the boundaries of the

Brillouin zone [see Fig. 16(b)], the real part now also forms a

closed ribbon with a warp (partial twist). This manifold results

in a Berry phase with an arbitrary value.

The two arrangements of the spring constants ðb1; b2; b3Þ
¼ ð1; 1; 2Þ and ðb1; b2; b3Þ ¼ ð2; 1; 1Þ are related by a shift in

origin. Starting with the three mass unit cell with the sequence

of spring constants ðb1; b2; b3Þ ¼ ð1; 1; 2Þ, if one moves the

origin from mass 1 in one unit cell to mass 3 in a neighboring

unit cell to the left of the original cell, one obtains a unit cell

with the sequence ðb1; b2; b3Þ ¼ ð2; 1; 1Þ. This transformation

is represented mathematically by the unitary matrix

S
$

k ¼
0 0 e�ikL

1 0 0

0 1 0

0
B@

1
CA:

The Berry connection for the ðb1; b2; b3Þ ¼ ð2; 1; 1Þ unit cell,

BCð2;1;1Þ, relates to that of the original unit cell, BCð1;1;2Þ,

through the relationship: BCð2;1;1Þ ’ BCð1;1;2Þ � iLDkjA1j2.

FIG. 12. Numerical results for the (a) normalized complex amplitude (R and I stand for real and imaginary components, respectively), and (b) phase value (in

radians) of masses 1, 2, and 3 when b1 ¼ b2 ; b3 ¼ 0:5b1.
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Finally, after summing over the Brillouin zone, the Berry

phase becomes, /B;ð2;1;1Þ ’ /B;ð1;1;2Þ þ LDk
PNc

k¼1 jA1ðkÞj2:
Starting with the (1,1,2) system and after calculating numeri-

cally
PNc

k¼1 jA1ðkÞj2 for all three branches, we can predict the

Berry phase calculated numerically using the SAAP method

for the (2,1,1) system reported in Fig. 16(a).

b. Four mass unit cells. The analytical study above has

shown that if bi ¼ bNm�i; where i ¼ 1; 2;…; Nm=2, the

Berry phase is always either 0 or p. Hence, in the numerical

calculations for the four mass unit cell, we use both b1 ¼ b3

and b1 6¼ b3 cases. Calculated values of the Berry phase for

a representative number of four mass unit cell are shown in

Table I. From Table I, we see that depending on the varia-

tions in the spatial stiffness, different topologies can be seen

based on the different values of the Berry phase.

The evolution of the arrangement of the spring constants

starting from ðb1; b2; b3; b4Þ ¼ ð1; 1; 1; 1=2Þ to (1,1,1/2,1)

can again be understood as an effect of a change in origin.

Similar to three mass unit cell, if we move the origin from

mass 1 to mass 4 by shifting the origin to the left by an inter-

mass spacing, we obtain ðb1; b2; b3; b4Þ ¼ ð1=2; 1; 1; 1Þ con-

figuration unit cell. Such a change of origin is described by

the unitary matrix ~Sk,

FIG. 13. (Color online) Numerical results for the (a) Berry connections and Berry phase versus wave number, and (b) real (Re) and imaginary (Im) representa-

tion of the manifold generated by the evolution of amplitude unit vector ~~A along the path in the Brillouin zone from k ¼ �p=L to 0 (thin red arrow) and from

k ¼ 0 to p=L (thick blue arrow; the scale represents magnitude of the amplitude unit vector ~~A and vertical elevation of the viewpoint is 45 deg), when

b1 ¼ b2 ; b3 ¼ 2b1.

J. Acoust. Soc. Am. 146 (1), July 2019 Hasan et al. 761



~Sk ¼

0

1

0

0

0

0

1

0

0

0

0

1

e�ikL

0

0

0

0
BBBB@

1
CCCCA:

Upon this translation, the Berry connection becomes

BCð1=2;1;1;1Þ ’ BCð1;1;1;1=2Þ � iLDkjA1j2, and Berry phase

transforms as /B;ð1=2;1;1;1Þ ’/B;ð1;1;1;1=2Þ þLDk
PNc

k¼1 jA1ðkÞj2.

For ðb1;b2;b3;b4Þ¼ ð1;1;1;1=2Þ spring arrangement, we

find numerically jA1ðkÞj2¼ 5:3; 8:5; 7:4; and 2:6 for

acoustic, first optical, second optical, and third optical

braches, respectively. With LDk¼ p=12 and /B;ð1;1;1;1=2Þ ¼ 0

for all branches (as shown in Table I, row 1), we find

/B;ð1=2;1;1;1Þ ’ 1:39; 2:23; 1:94; and 0:68 for the acoustic, first

optical, second optical, and third optical branches, respec-

tively. These predicted values match the numerical values

reported in Table I, row 2, up to numerical errors.

Now, if we move the origin from mass 1 to mass 3 by

shifting the origin to the left by two inter-mass spacings, we

obtain the arrangement ðb1; b2; b3; b4Þ ¼ ð1; 1=2; 1; 1Þ. The

unitary matrix corresponding to this translation is

FIG. 14. (Color online) Numerical results for the (a) Berry connections and Berry phase versus wave number, and (b) real (Re) and imaginary (Im) representa-

tion of the manifold generated by the evolution of amplitude unit vector ~~A along the path in the Brillouin zone from k ¼ �p=L to 0 (thin red arrow) and from

k ¼ 0 to p=L (thick blue arrow; the scale represents magnitude of the amplitude unit vector ~~A and vertical elevation of the viewpoint is 45 deg), when

b1 ¼ b2 ; b3 ¼ 0:5b1.
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~Sk ¼

0

1

0

0

0

0

1

0

0

0

0

1

e�ikL

0

0

0

0
BBBB@

1
CCCCA

0

1

0

0

0

0

1

0

0

0

0

1

e�ikL

0

0

0

0
BBBB@

1
CCCCA ¼

0

0

1

0

0

0

0

1

e�ikL

0

0

0

0

e�ikL

0

0

0
BBBB@

1
CCCCA:

The Berry connections are related via the relationship

BCð1;1=2;1;1Þ ’ BCð1;1;1;1=2Þ � iLDkðjA3j2 þ jA4j2Þ: From the

analytical study we observed that if b1 ¼ b3, then A1 ¼ A�4
and A2 ¼ A�3, therefore jA3j2 þ jA4j2 ¼ 1=2. Hence, the

Berry phase becomes /B;ð1;1=2;1;1Þ ’ /B;ð1;1;1;1=2Þ þ p: Since

/B;ð1;1;1;1=2Þ ¼ 0 for all branches, hence, /B;ð1;1=2;1;1Þ should

be p for all branches, as is verified numerically in Table I,

row 3.

FIG. 15. Numerical results for the (a) normalized complex amplitude (R and I stand for real and imaginary components, respectively), and (b) phase value (in

radians) of masses 1, 2, and 3 when b1 ¼ 2b2 ; b2 ¼ b3.
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FIG. 16. (Color online) Numerical results for the (a) Berry connections and Berry phase versus wave number, and (b) real (Re) and imaginary (Im) represen-

tation of the manifold generated by the evolution of amplitude unit vector ~~A along the path in the Brillouin zone from k ¼ �p=L to 0 (thin red arrow) and

from k ¼ 0 to p=L (thick blue arrow; the scale represents magnitude of the amplitude unit vector ~~A and vertical elevation of the viewpoint is 45 deg), when

b1 ¼ 2b2 ; b2 ¼ b3.

TABLE I. Berry phase values of four mass unit cells with different elastic stiffness values calculated using SAAP.

ðb1; b2;b3;b4Þ

Berry phase

Acoustic branch First optical branch Second optical branch Third optical branch Summation

(1,1,1,1/2) 0 0 0 0 0

(1/2,1,1,1) 1.41 2.15 1.92 0.69 6:17 ffi 2p
(1,1/2,1,1) p p p p 4p
(1,1,1/2,1) �1.41 �2.15 �1.92 �0.69 �6:17 ffi �2p
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Finally, translating the origin from mass 1 to mass 2 by

shifting the origin to the left by three inter-mass spacings,

we obtain the ðb1; b2; b3; b4Þ ¼ ð1; 1; 1=2; 1Þ unit cell. The

unitary matrix is now

~Sk ¼

0

1

0

0

0

0
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0

0

0

0
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e�ikL
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1
CCCCCA:

The Berry connection transforms according to BCð1;1;1=2;1Þ

’ BCð1;1;1;1=2Þ � iLDkð jA2j2 þ jA3j2 þ jA4 j2 Þ ’ BCð1;1;1;1=2Þ

�iLDk þ iLDkjA1j2. Hence, the relation between the

Berry phases becomes /B;ð1;1;1=2;1Þ ’ /B;ð1;1;1;1=2Þ � LDkPNc

k¼1 jA1ðkÞj2 ¼ �/B;ð1=2;1;1;1Þ. Therefore, the Berry phase

values for the ð1=2; 1; 1; 1Þ unit cell and the ð1; 1; 1=2; 1Þ
unit cell should be the same but opposite in sign, as is

shown in Table I, rows 2 and 4. Finally, in the case of rows

2 and 4, since b1 6¼ b3, we obtain Berry phase values which

are not multiples of p, however, the summation of Berry

phases equals a multiple of 2p.

V. CONCLUSIONS

In this paper, we have introduced the SAAP method for

the calculation of the amplitudes and phases of elastic waves

in general elastic structures. Although tested here for 1D

superlattice systems, it is easily generalizable to two-

dimensional (2 D) and three-dimensional (3 D) systems. The

method entails the use of MD twice with differing initial

conditions to allow for the extraction of the band structure,

complex amplitudes, and the Berry phase of all the bands in

the elastic band structure. We have tested and applied the

method to 1D harmonic chains with periodically repeating

unit cells containing Nm ¼ 2; 3; and 4 elastically coupled

masses. The masses are coupled via elastic springs of various

stiffness bi. We focused on the dependence of the Berry

phase of the various elastic bands upon variation of the

arrangement and symmetry of the spring stiffness within the

unit cell of the superlattice. Various configurations of the

unit cell lead to different Berry phases. From our analytical

and numerical study, we found that there is inversion sym-

metry for Nm ¼ 2 mass unit cell and Nm > 2 if bi ¼ bNm�i;
where i ¼ 1; 2;…; Nm=2. In those cases, the Berry phase is

either 0 or p. We also observe that for Nm > 2 if bi 6¼ bNn�i,

the Berry phase of each band is no longer a multiple of p,

however, the summation of the Berry phase over all bands is

an integer multiple of 2p. We also show that unit cells that

may be related by a translation of the origin may possess

different values of the Berry phase. However, those phases

can be related through straightforward operations involving

unitary transformations. The eigenvalues of the dynamical

problem, i.e., the band structure, are independent of these

unitary transformations. All possible normalized eigenvectors

related by unitary transformations form a hypersphere in the

Nm-dimensional complex space of the amplitudes. The eigen-

vectors of a given choice of Ansatz describe a k-parametric

trajectory on top of the hypersphere. These eigenvectors

generate a manifold, which may or may not be conserved

under unitary transformations. In the case of the general

and compact Ans€atze, the manifold is conserved, which

explains the Berry connection and Berry phase invariance. In

contrast, Ans€atze connected by a unitary transformation rep-

resenting a change of the origin of coordinates in real space,

define different trajectories on the hypersphere as parametric

functions of k, yielding different Berry connections and

Berry phases.

In summary, the SAAP method is a useful tool to

explore the topological characteristics of elastic waves in

elastic structures, including continuum systems such as rods,

beams, and plates. Indeed, topological elastic structures are

the subject of very active exploration currently and the

ability to calculate the phases of various band structures for

arbitrary configuration will accelerate the pace at which

these explorations can be undertaken. The phase of ampli-

tudes for elastic systems is intimately related to topological

characteristics, including non-reciprocal wave propagation,

pseudospins, and phonons that possess fermionic and

“imaginary masses” (Deymier et al., 2018). We anticipate

that the SAAP method will serve as a practical tool for the

computational investigation of the phase characteristics of

general elastic structures. In fact, we will apply it next to the

investigation of systems with spatio-temporal modulations in

the stiffness as well as continuous rods.
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APPENDIX

1. Ans€atze invariance of the Berry connection and
Berry phase

The traveling wave solutions of Eq. (25) for the Ansatz of

the general form un;Ni
¼ A0neikxn eikNiLeixt; n ¼ 1; 2;…; Nm

lead to the system of equations

M
$ 0

k
~A
0
k ¼ 0; (A1)

where ~A
0
k ¼ ½A01;A02;…;A0Nm

�T and
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M
$ 0

k ¼

a1Nm

b1eikx12

� � �
0

bNm
eikLeikx1Nm

b1eikx21

a12

� � �
0

0

0

b2eikx32

� � �
bNm�2 eikxðNm�2ÞðNm�1Þ

0

0

0
� � �

a Nm�1ð Þ Nm�2ð Þ

bNm�1 eikxðNm�1ÞNm

bNm
eikxNm1 e�ikL

0
� � �

bNm�1eikxNmðNm�1Þ

aNm Nm�1ð Þ

0
BBBBBB@

1
CCCCCCA
: (A2)

Here xpq ¼ xp � xq and apq ¼ �bp � bq þ mx2 as defined

before. The transformation linking the amplitudes, and there-

fore Eqs. (26) and (A1), is given by the unitary matrix

S
$

k ¼

e�ikx1

0
� � �
0

0

0

e�ikx2

� � �
0

0

0

0
� � �
0

0

0

0
� � �

e�ikxNm�1

0

0

0
� � �
0

e�ikxNm

0
BBBB@

1
CCCCA (A3)

as it verifies the identities S
$†

kM
$ 0

kS
$

k ¼ M
$

k and ~A
0
k ¼ S

$

k
~Ak.

Based on the two Ans€atze, we can either use the ampli-

tudes An of the compact Ansatz un;Ni
ðtÞ ¼ AneikNiLeixt or

A0neikxn of the general Ansatz un;Ni
¼ A0neikxn eikNiLeixt to cal-

culate the Berry connection and the Berry phase. If we use

A0neikxn or in the general form S
$

†
k
~A
0
k; S

$†

k ¼ diagonal

ðeikx1 ; eikx2 ;…; eikxNm Þ; to calculate the Berry connection, then

in virtue of the unitary character of S
$

k, we have

S
$

†
k
~A
0
k

� �†

S
$

kþDk
~A
0
kþDk

� �
¼ S

$
†
kS
$

k
~Ak

� �†

S
$

†
kþDkS

$

kþDkAkþDk

� �
¼ ~A

†

kAkþDk: (A4)

Therefore, the Berry connections and hence Berry phases are

the same regardless of the choice of Ansatz.
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