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ABSTRACT

We introduce a model system composed of elastically coupled one-dimensional chains of elastic rotators. The chains of rotators are analo-
gous to elastic Su-Schrieffer–Heeger models. The coupled chain system is shown analytically and numerically to support an unusual
number of topological properties such as Dirac degeneracies, band inversion and topological transition as a function of the strength of the
parameter coupling the chains, nonseparability of the modes’ degrees of freedom along and across the coupled chains that are analogous to
entangled Bell states in a multipartite quantum system. Finally, we reveal the formation of a synthetic dimension by allowing the coupling
parameter to vary with time, which has the potential to create higher-dimensional synthetic space.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0041256

I. INTRODUCTION

Recent advances in understanding the fundamental principles
underlying the field of topological acoustics (TA) are beginning to
nucleate a coherent body of knowledge. Simple one-dimensional
(1D) phononic structures, analogous to the condensed matter
Su-Schrieffer–Heeger (SSH) model, have revealed many of the fun-
damental properties of TA waves, such as topological invariance,
edge states, and bulk-boundary correspondence.1–5 In the SSH
model, parity (P) symmetry is broken intrinsically through the
system’s structure. Spatiotemporal modulations of the elastic prop-
erties of 1D phononic structures can break time-reversal (T) and P
symmetry.6–10 However, numerous aspects of topological phenom-
ena remain elusive including the notions of classical entanglement
of TA waves and synthetic dimensions. Entangled states possess the
two distinct attributes of nonlocality and nonseparability, whereas
nonlocality is a unique feature of quantum mechanics, nonsepar-
ability is not. TA enables classical entanglement. Nonseparable
elastic states, such as Bell states, have very recently been con-
structed in externally driven elastic systems as superpositions of
elastic product states of two independent degrees of freedom.11 In
these driven systems, to complete the analogy with quantum Bell
states (i.e., complexation of amplitudes), one exploits the dissipative

nature (loss) of the constitutive materials. By tuning the complex
amplitudes through the external drivers, one can experimentally
navigate the Bell-state Hilbert space and execute quantum-like
gates.12 The dimension of the Hilbert space can increase through
synthetic means (see below) or by exploiting nonlinearities. In the
latter case, nonseparable inelastic modes can span exponentially
complex Hilbert spaces.13

Topological properties have usually been demonstrated on
spatial lattices with specifically engineered structural and geometri-
cal features. Two- (2D) or three-dimensional (3D) TA systems
exploit analogies with the quantum Hall effect (QHE),14 quantum
spin Hall effect (QSHE),15 or quantum valley Hall effect
(QVHE).16 2D TA systems use triangular lattice or graphene-like
structures that exhibit Dirac point degeneracies in their band struc-
ture. Symmetry breaking then opens a gap associated with a non-
trivial topology. Breaking symmetry intrinsically (e.g., P symmetry)
leads to acoustic analogs of the QSHE or QVHE. Extrinsically
breaking T symmetry results in acoustic analogs of the QHE. More
recently, 3D acoustic and mechanical metamaterials have demon-
strated Weyl points and Fermi arc-like surface states in Refs. 17–20.
The propagation of edge states along sharp and curved
interfaces (or surfaces) without backscattering has relied on the
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bulk-boundary correspondence principle, a key characteristic of
topologically ordered phases.21 This correspondence states that the
number of edge modes equals the difference in the Chern number
between the abutting phases sharing the interface.

These prior studies focused onto topologically robust edge
modes with higher-dimensional spatial lattices (e.g., to confine
vibrations in a 1D guide, one must design 2D domains).
Alternatively, nonspatial synthetic degrees of freedom offer a path
to increase system dimensionality. Several approaches for creating
such synthetic space dimensions have been explored in photon-
ics.22,23 Dynamic modulations of the optical properties of materials
can be used to create modes at different frequencies and form an
additional one-dimensional lattice in a synthetic frequency dimen-
sion. Furthermore, for systems described by a Hamiltonian depen-
dent on some physical parameters, one can exploit the physical
parameters as extra synthetic dimensions. The basic idea is to con-
figure synthetic dimensions, and to combine such synthetic dimen-
sions with the geometric dimensions to form a higher-dimensional
synthetic space. Therefore, in contrast to traditional topological
insulators with a spatial lattice, transport for topological waves in
synthetic dimensions may occur at the edges of the synthetic
space—not just a system’s spatial edges.

In this paper, we consider a quasi-1D mechanical system for
which there is extent in more than 1D. We introduce a model
elastic system inspired by the electronic coupled SSH model. The
topological phase diagram of two coupled SSH chains has been
shown to be richer than that of a single SSH chain.24 It exhibits a
variety of trivial and nontrivial topological phases depending on
the strength of the interchain and intrachain coupling. The applica-
tion of the bulk boundary correspondence to predicting edge
modes in the coupled SSH chain system has also been investi-
gated.25 The topological phase diagram of the coupled SSH system
also shows fractal characteristics for quasiperiodic variation of
couplings.26

Quasi-1D mechanical systems composed of periodic arrays of
dimers coupled via springs have been shown to exhibit nontrivial
topological characteristics, which can be generated by tuning the
gyration radius of the dimer.27 Topological band transition has
been achieved in chains of cylindrical granular particles.28 There,
the transition is achieved by exploiting the tunability of Hertzian
contact between particles. Finally, a 1-D system constituted of alter-
nating unit cells composed of different 3D chiral micropolar meta-
materials supports coupled longitudinal and rotational degrees of
freedom reminiscent of a coupled SSH system.29

The present system is composed of two elastically coupled
micromechanics SSH-like chains supporting rotational degrees of
freedom. The two identical individual chains are translated with
respect to each other by half their spatial period and elastically
coupled along their length. The elastic stiffnesses of the two
coupled chains are therefore out of registry spatially and the
coupled system is built from two topologically distinct chains.3

This system exhibits an unusual number of topological properties
such as Dirac degeneracy, band inversion and topological transi-
tion, nonseparability of the modes degrees of freedom along and
across the coupled chains and synthetic dimension in the form of
the parameter coupling the chains. One of the novelties of this
system resides in the possibility to tune its topological

characteristics by changing the stiffness, which could be done prac-
tically and dynamically via non-contact methods.

We describe the model of coupled one-dimensional chains of
elastic rotators in Sec. 2. Section 3 details the topological transition
that the system undergoes upon changes in the strength of the
elastic coupling. In Sec. 4, the nonseparability of the modes in the
out of registry coupled system is contrasted with the separable
modes of a model system where the chains are in registry. We show
how the topological transition can be used to create quantum-like
logic gates that operate on the nonseparable modes. Section 5
addresses analytically and numerically the use of the strength of
the stiffness providing coupling between the chains as a parameter
to form a higher-dimensional synthetic space and navigate the
space of eigenmodes. Finally, conclusions are drawn in Sec. 6.

II. MODEL OF ELASTICALLY COUPLED CHAINS OF
ROTATORS

In Fig. 1, we illustrate schematically the discrete linear one-
dimensional (1D) micromechanics model that includes rotational
degrees of freedom. This model is inspired by Cosserat-like lattice
models.30–32 It consists of two infinite chains of identical square
block elements (rotator elements) connected with multiple har-
monic springs. Positions along the chains are labeled as 2n−1, 2n,
2n+1, 2n+2, etc. The rotational axes of adjacent blocks are sepa-
rated by the distance a. This system is periodic with a unit cell
composed of four block elements (two in each chain). The period
of the system along the chains is, therefore, L ¼ 2a. Each block
element has one rotational degree of freedom (rotation about an
axis perpendicular to the plane of the figure). The rotational angles
of elements in the top chain and bottom chain are labeled as, ui
and vi with i=…, 2n−1, 2n, 2n+1, 2n+2, …, respectively. All block
elements are identical with positive moment of inertia, m.

The elements are connected to each other by their corners via
linear springs. Within a given chain, the corners of even elements
are elastically linked to the opposite corners of odd elements to
their left, thus, forming X-shaped connections. The corners of even
elements are linked to the corresponding corners of odd elements
to their right, forming a set of two horizontal parallel connections.
Between the two chains, elements are coupled elastically via vertical

FIG. 1. Schematic illustration of two one-dimensional chains of rotators coupled
elastically along their length. The figure shows the 2n blocks undergoing rota-
tions with the corresponding rotational degrees of freedom. See the text for
details and meaning of symbols.
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parallel connections. The stiffness of the vertical parallel connec-
tions is α.

The X-shaped connections in the top and bottom chains have
different stiffnesses, β2 and β1. The parallel connections in the top
and bottom chains have also different stiffnesses, namely, β1 and
β2. The alternating stiffnesses of the two chains are out of registry
along the chains, i.e., a connection with a stiffness β1 in the upper
chains sees a connection with stiffness β2 in the lower chain.
Similar to SSH models, the uncoupled individual chains with stiff-
nesses out of registry are topologically distinct.3 The Berry phase of
two individual chains translated by half a spatial period relative to
each other differs by π.3

In the limit of small rotational angles and hence for linear elastic-
ity (i.e., β1 β2 fixed), the potential energy associated with the X connec-
tions in the upper chain is given by E2n�1,2n ¼ 1/2β2(u2n�1 þ u2n)

2.
In the lower chain, the potential energy of X-shaped connections is
expressed in a similar form as E2n�1,2n ¼ 1/2β1(v2n�1 þ v2n)

2.
The elastic energy of horizontal parallel connections in the
upper and lower chains are E2n,2nþ1 ¼ 1/2β2(u2n � u2nþ1)

2 and
E2n,2nþ1 ¼ 1/2β2(v2n � v2nþ1)

2. Finally, the elastic energy of vertical
parallel connections between elements of the two chains is expressed as
E2n,2n ¼ 1/2α(u2n � v2n)

2.
The rotational equations of motion of the coupled chains of

rotators take the form

m
@2u2n
@t2

¼ �β2(u2n�1 þ u2n)� β1(u2n � u2nþ1)

þ α(v2n � u2n), (1a)

m
@2u2nþ1

@t2
¼ β1(u2n � u2nþ1)� β2(u2nþ1 þ u2nþ2)

þ α(v2nþ1 � u2nþ1), (1b)

m
@2v2n
@t2

¼ �β1(v2n�1 þ v2n)� β2(v2n � v2nþ1)

� α(v2n � u2n), (1c)

m
@2v2nþ1

@t2
¼ β2(v2n � v2nþ1)� β1(v2nþ1 þ v2nþ2)

� α(v2nþ1 � u2nþ1): (1d)

We choose the following Ansatz to solve these equations:
u2n ¼ A1eik2naeiωt , u2nþ1 ¼ A2eik(2nþ1)aeiωt , v2n ¼ B1eik2naeiωt , and
v2nþ1 ¼ B2eik(2nþ1)aeiωt , where k and ω are the wave vector and
angular frequency, respectively. With this, Eqs. (1a), (1b), (1c),
and (1d) reduce to an eigenproblem of the form

D
$
~A ¼ 0, (2)

where

D
$ ¼

γ �δ �α 0
�δ* γ 0 �α
�α 0 γ δ*

0 �α δ γ

0BB@
1CCA and ~A ¼

A1

A2

B1

B2

0BB@
1CCA,

with γ ¼ �mω2 þ β1 þ β2 þ α and δ ¼ β1e
þika � β2e

�ika. δ* is the
complex conjugate of δ.

Equation (2) has non-trivial solutions if the determinant of
the dynamical matrix is equal to zero. This condition gives the sol-

utions of a quadratic equation γ2 � δδ*¼α2 + α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�(δ � δ*)

2
q

with

δ � δ*¼2i(β1 þ β2) sin ka and δδ*¼β21 þ β22 � 2β1β2 cos 2ka. The
four dispersion relations (corresponding to the different combina-
tions of signs, + in front of the square root and possible sign offfiffiffiffiffi

γ2
p

, [+]) are then obtained in the form

mω2 ¼ β1þβ2

þα[+]
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β21þβ22�2β1β2 cos 2kaþα2+2α(β1þβ2)jsin kaj

q
:

(3)

Here, we have used the symbol [+] to differentiate the two +
in Eq. (3). Bands and modes will subsequently be differentiated by
the couple in the parenthesis ([+], +). When α ¼ 0, this disper-
sion relation reduces to that of uncoupled chains. These chains are
the rotator equivalent of the 1D SSH model reported in Ref. 3 with
the band structure translated in wave number space by π/2.

Since the periodicity of the coupled chain system is L ¼ 2a,
The Brillouin zone (BZ) extends over the range k [ [�π/L, π/L],
i.e., ka [ [�π/2, π/2]. Equation (3) is indeed π periodic. However,
in that representation, the dispersion relations are not representa-
tive of the eigenmodes across the origin ka ¼ 0 as the group veloc-
ity (@ω/@k) given by Eq. (3) is not continuous across the origin
ka ¼ 0. To calculate the eigenvectors, we reformulate the dispersion
relations as the extended relations

mω2 ¼ β1þβ2

þα[+]
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β21þβ22�2β1β2 cos 2kaþα2+2α(β1þβ2)sin ka

q
:

(4)

Bands intersect two by two at the origin forming two Dirac
points were the dispersion relations cross linearly in the vicinity of
the origin.

Individual extended dispersion relations given by Eq. (4)
exhibit periodicity over the interval ka [ [�π, π] and are continu-
ously representative of the eigenmodes. To solve for the eigenvec-
tors, we rewrite Eq. (2) as the set of two coupled equations

γ �δ
�δ* γ

� �
A1

A2

� �
¼ α I

$ B1

B2

� �
, (5a)
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γ δ*

δ γ

� �
B1

B2

� �
¼ α I

$ A1

A2

� �
, (5b)

where I
$
is the 2� 2 identity matrix.

Combining these two equations, we obtain the following equa-

tion for
A1

A2

� �
:

γ2 � δ*2 � α2 �γ(δ � δ*)
γ(δ � δ*) γ2 � δ2 � α2

� �
A1

A2

� �
¼ 0: (6)

Choosing A2 ¼ A*
1 shows that the two equations forming

Eq. (6) are complex conjugate of each other and are therefore
equivalent. Thus, Eq. (6) reduces to the single linear relation

(γ2 � δ*2 � α2)A1 ¼ γ(δ � δ*)A2: (7)

We have, γ2 � δ*2 � α2 ¼ δ*(δ � δ*)+ α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�(δ � δ*)

2
q

.

Using the extended dispersion relation where
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�(δ � δ*)

2
q

is
taken as 2(β1 þ β2) sin ka (i.e., without the absolute value), Eq. (7)
becomes Z*2(β1 þ β2) sin kaA1 ¼ γ2i(β1 þ β2) sin kaA2 where
Z*¼iδ*+α. We can simplify this equation for all ka = 0, leading
to the relation

Z*A1 ¼ iγA2: (8)

If ka ¼ 0, the bands cross and form a degenerate point. The
solution to the eigenvector problem is not a single mode but a
superposition of degenerate eigenmodes.

We also note that in the extended dispersion relation
representation γ2 ¼ δδ*þα2 + (�i)α(δ � δ*) ¼ ZZ*, i.e.,
γ ¼ [+]

ffiffiffi
Z

p ffiffiffiffiffi
Z*

p
. We have used [+] introduced earlier. Finally, we

can simplify Eq. (8) to a form involving two complex conjugate
coefficients, ffiffiffiffiffi�i

p ffiffiffiffiffi
Z*

p
A1 ¼ [+]

ffiffi
i

p ffiffiffi
Z

p
A2: (9)

We, therefore, take to within a complex constant:
A1 ¼ [+]

ffiffi
i

p ffiffiffi
Z

p
and A2 ¼

ffiffiffiffiffi�i
p ffiffiffiffiffi

Z*
p

. Inserting these expressions in
Eq. (5a), we obtain to within the same constant B1 ¼ +

ffiffi
i

p ffiffiffiffiffi
Z*

p
and B2 ¼ +[+]

ffiffiffiffiffi�i
p ffiffiffi

Z
p

.
We can now obtain the normalized eigenvector Â

!
,

Â
!

¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z

p ffiffiffiffiffi
Z*

pp [+]
ffiffi
i

p ffiffiffi
Z

pffiffiffiffiffi�i
p ffiffiffiffiffi

Z*
p

+
ffiffi
i

p ffiffiffiffiffi
Z*

p
+[+]

ffiffiffiffiffi�i
p ffiffiffi

Z
p

0BB@
1CCA: (10)

The complete normalized displacement vector Ansatz is,
therefore,

û
!¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z

p ffiffiffiffiffi
Z*

pp [+]
ffiffi
i

p ffiffiffi
Z

p
eik2naffiffiffiffiffi�i

p ffiffiffiffiffi
Z*

p
eik(2nþ1)a

+
ffiffi
i

p ffiffiffiffiffi
Z*

p
eik2na

+[+]
ffiffiffiffiffi�i

p ffiffiffi
Z

p
eik(2nþ1)a

0BB@
1CCAeiωt :

The topological characteristics of these eigenvectors are dis-
cussed in subsequent sections.

III. BAND INVERSION AND TOPOLOGICAL TRANSITION

In Fig. 2, we have plotted the four individual extended
dispersion relations given by Eq. (4) over the interval
ka [ [�π, π]. At the positive edge of the BZ, the dispersion rela-
tion simplifies to

mω2 ¼ β1 þ β2 þ α[+](β1 þ β2 + α):

For the sake of illustration, choosing the bands ([+], �), mω2

takes on two values, 2(β1 þ β2) for the mode ([þ ], �) or 2α for
the mode ([� ], �). We also remark that as α ¼ β1 þ β2, the two
bands corresponding to these two modes touch at the BZ edges.
When α , β1 þ β2, the lower band corresponds to the mode
([� ], �), and the upper band corresponds to the modes
([þ ], �). For α . β1 þ β2, the lower band is now a representative
of the mode ([þ ], �) and the upper band corresponds to the
mode ([� ], �). A similar behavior occurs for the other two bands
at the negative edge of the BZ. The band structure exhibits a band
inversion. As we will see when considering the eigenmodes, the
band inversion between upper and lower bands leads to a topologi-
cal transition.

In Fig. 3, we have plotted the complex quantities in

the normalized eigenvectors, y1 ¼
ffiffi
i

p ffiffiffi
Z

p
/2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z

p ffiffiffiffiffi
Z*

pp
,

y2 ¼
ffiffiffiffiffi�i

p ffiffiffiffiffi
Z*

p
/2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z

p ffiffiffiffiffi
Z*

pp
, y3 ¼

ffiffi
i

p ffiffiffiffiffi
Z*

p
/2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z

p ffiffiffiffiffi
Z*

pp
, and

y4 ¼
ffiffiffiffiffi�i

p ffiffiffi
Z

p
/2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z

p ffiffiffiffiffi
Z*

pp
corresponding to Z*¼iδ*�α and

Z¼�iδ�α¼ (β1þβ2)sin x�αþ i(β1�β2)cos x as functions of
x¼ ka. We are considering two values of the parameter α below
and above β1þβ2, respectively. When α, β1þβ2, we note that the
real and imaginary parts of all the components exhibit a disconti-
nuity at the lower edge of the BZ (x¼�π/2). At the upper edge of
the BZ, both real and imaginary parts are varying continuously. In
contrast, for α. β1þβ2, the real and imaginary parts of the four
components show two discontinuities at both edges of the BZ
x¼�π

2 , þ π
2

� �
. These features are indicative of a topological transi-

tion. Since the coupled chain system studied here is infinite, to
quantify the topology of the eigenmodes, we calculate the Berry
connection and Berry phase of the normalized eigenvector, û

!
, cor-

responding to a particular band in the band structure.33 The geo-
metric phase that characterizes the property of bulk bands in
periodic systems is also known as the Zak phase.34 The displace-
ment unit vector evolves along some parametric curve as x is
varied. The Berry connection characterizes the variation in orienta-
tion of the unit vector along some path in the complex space of
amplitudes parametrized by x. The evolution of the normalized
amplitude vector in the multidimensional space parametrized by
the wave number k (or x¼ ka) generates a manifold. The Berry
phase is the net phase accumulated by the amplitude unit vector
over the entire manifold for a closed path. That is to say, the Berry
phase characterizes the topology of the manifold.
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The Berry connection, BC, is calculated in the case of continu-
ous displacement vectors as BC(x) ¼ �i û

!y
@ û
!
/@x, which leads to

BC(x) ¼ �i Â
!y @ Â

!

@x
þ const: (11)

The constant term comes from the x ¼ ka dependency of the
terms eik2na and eik(2nþ1)a. This term only adds the same constant
phase to the geometric phase of the different bands.

In the first term of Eq. (11), Â
!y

, is the Hermitian conjugate

of Â
!
. Application of Eq. (11) to the normalized eigenamplitude

vector of Eq. (10) implies the calculation of the following terms:

T1 ¼ @f (x)/@x and T2 ¼ @f *(x)/@x, where f (x) ¼ ffiffiffi
Z

p
/2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z

p ffiffiffiffiffi
Z*

pp
.

The continuous form of the Berry connection becomes:
BC(x) ¼ 2( f *(x)@f (x)/@x þ f (x)*(x)/@x), which can be shown to
vanish. This is true irrespective of the sign [+]. The continuous
parts of the normalized amplitude vector do not contribute to the
Berry connection.

The contribution to the Berry phase of the discontinuities of
the normalized eigenmodes at the edge of the BZ, can be calculated
as follows:

fBC ¼ �Im ln lim
ε!0

Â
!y

(xdis � ε) Â
!
(xdis þ ε)

� �	 

: (12)

In Eq. (12), Im takes the imaginary part of its argument, xdis is
the location of the discontinuity. The argument of the ln function

in Eq. (12) takes the form

lim
ε!0

Â
!y

(xdis � ε) Â
!
(xdis þ ε) ¼ lim

ε!0

X4
j¼1

y*j (xdis � ε)yj(xdis þ ε)

( )
,

where yj’s were defined earlier. This expression does not depend
on the sign [+] since the product [+][+] is always positive. As
seen in Fig. 3, for each discontinuity at an edge of the BZ, the
imaginary part of a yj is of opposite sign compared to the real
part, so we define lim

ε!0
yj(xdis þ ε) ¼ aj � ibj. On the other side

of the discontinuity, the signs of the real and imaginary
parts are inverted, so lim

ε!0
yj(xdis � ε) ¼ �aj þ ibj, and therefore,

lim
ε!0

y*j (xdis � ε) ¼ �aj � ibj. With this,

lim
ε!0

X4
j¼1

y*j (xdis � ε)yj(xdis þ ε)

( )
¼ �

X4
j¼1

(a2j þ b2j ),

which is always a negative real quantity. Inserting this expression in
Eq. (12) results in

fBC ¼ �Im ln �
X4
j¼1

(a2j þ b2j )

" #( )

¼ �Im ln (�1)þ ln
X4
j¼1

(a2j þ b2j )

" #( )
:

FIG. 2. Evolution of the band structure as a function of the coupling stiffness α. Here, we have chosen β1 ¼ 1, β2 ¼ 0:5, m ¼ 1. Black and gray lines are used to repre-
sent the different bands ([+], +) given by Eq. (4) to highlight the band inversion at α ¼ β1 þ β2 ¼ 1:5. The dispersion relations are plotted over the interval
ka [ [�π, π]. The Brillouin zone extends over the range ka [ [�π/2, π/2] and is delimited by vertical lines.

Journal of
Applied Physics ARTICLE scitation.org/journal/jap

J. Appl. Phys. 129, 084903 (2021); doi: 10.1063/5.0041256 129, 084903-5

Published under license by AIP Publishing.

https://aip.scitation.org/journal/jap


Since ln (�1) ¼ ln (e+iπ) ¼ +iπ, the Berry connection associ-
ated with one discontinuity of the amplitude unit vector is
fBC ¼ +π. When α , β1 þ β2, the components of the amplitude
unit vector exhibit a single discontinuity. The Berry phase in that
case is +π. When α . β1 þ β2, the components of the amplitude
unit vector show two discontinuities. Each discontinuity contrib-
utes +π to the Berry phase. The total Berry phase is therefore 0 or
2π. A topological transition is taking place at α ¼ β1 þ β2, with
two topologically different eigenmodes on both sides of this transi-
tion point. The modes corresponding to the lower and upper bands
in the band structure undergo this topological transition
simultaneously.

IV. NONSEPARABILITY OF EIGENMODES

The system composed of the two chains with stiffnesses out of
registry investigated in Secs. 2 and 3, exhibit eigenmodes that are

not separable. That is, the 4� 1 eigenvector cannot be written as a
single tensor product of two 2� 1 vectors. This is in contrast with
a related system whereby the stiffnesses along the two chains are in
registry (see the Appendix). Let us repeat the normalize amplitude
vector of Eq. (10),

Â
!

¼
[+]y1
y2
+y3

+[+]y4

0BB@
1CCA:

This vector cannot be written as a single tensor product but as
a linear combination of tensor products,

Â
!

¼ [+]y1
1
0

� �
u

� 1
0

� �
c

þy2
0
1

� �
u

� 1
0

� �
c

+y3
1
0

� �
u

� 0
1

� �
c

+[+]y4
0
1

� �
u

� 0
1

� �
c

: (13)

In Eq. (13),
1
0

� �
p

,
0
1

� �
p

( )
forms a basis in the two-

dimensional (2D) Hilbert space, P, of position along a chain within

the unit cell.
1
0

� �
c

,
0
1

� �
c

	 

forms a basis in the 2D Hilbert

space, C, of the chains (top or bottom). Products of the form

0
1

� �
p

� 1
0

� �
c

constitute a basis in the four-dimensional (4D)

product Hilbert space P � C. The amplitude vector, Â
!
, is not sepa-

rable in that space, a classical attribute of entangled states.
Below we illustrate how the parameter α can be used to navi-

gate the 4D Hilbert space. Let us choose a mode corresponding to
a defined band inside the BZ but at its positive edge, i.e., x ¼ π�/2.

From Fig. 3, we note that for α ¼ 1:45, to within the same real
constant 1/2

ffiffiffi
2

p� �
, y1 ¼

ffiffi
i

p
, y2 ¼

ffiffiffiffiffi�i
p

, y3 ¼
ffiffi
i

p
, and y4 ¼

ffiffiffiffiffi�i
p

.
For α ¼ 1:55, we have to within the same real constant,
y01 ¼ � ffiffiffiffiffi�i

p
, y02 ¼ � ffiffi

i
p

, y03 ¼
ffiffiffiffiffi�i

p
, and y04 ¼

ffiffi
i

p
: So upon a

transition from α ¼ 1:45 to 1.55, the unit amplitude vectors

change from: Â
!

¼ 1/2
ffiffiffi
2

p
[+]

ffiffi
i

p ffiffiffiffiffi�i
p

+
ffiffi
i

p
+[+]

ffiffiffiffiffi�i
p� �

tobA0
!

¼ 1/2
ffiffiffi
2

p
[+](�1)

ffiffiffiffiffi�i
p � ffiffi

i
p

+
ffiffiffiffiffi�i

p
+[+]

ffiffi
i

p� �
. The [+]

in the expression for bA0
!

comes from the effect of band inversion;
the sign changes for the mode to remain on the same band (see
Sec. 3). This is an intraband transition. These two vectors are

related to each other by the unitary transformation, U
$
: bA0
!

¼ U
$
Â
!

which can be defined as

1

2
ffiffiffi
2

p
[+](�1)

ffiffiffiffiffi�i
p

� ffiffi
i

p
+

ffiffiffiffiffi�i
p

+[+]
ffiffi
i

p

0BB@
1CCA ¼

0 [+]1 0 0
�[+]1 0 0 0

0 0 0 [+]1
0 0 �[+]1 0

0BB@
1CCA 1

2
ffiffiffi
2

p
[+]

ffiffi
i

pffiffiffiffiffi�i
p
+

ffiffi
i

p
+[+]

ffiffiffiffiffi�i
p

0BB@
1CCA:

We rewrite U
$ ¼ [+]σy � i I

$ ¼ [+]
0 �i
i 0

� �
� i

1 0
0 1

� �
,

where σy is one of the three Pauli matrices. The topological transi-
tion is equivalent to an operation that enables us to navigate the
4D product Hilbert space of amplitudes. U

$
is isomorphic to apply-

ing a Pauli-Y quantum logic gate, following the application of a
general phase shift of π/2. The Pauli-Y gate is equivalent to a rota-
tion about the Y axis of the Bloch sphere by π.

Now if we allow a transition between bands from mode Â
!

to a

mode Â
!00

¼ 1/2
ffiffiffi
2

p
[+](�1)

ffiffiffiffiffi�i
p � ffiffi

i
p

+
ffiffiffiffiffi�i

p
+[+]

ffiffi
i

p
:

� �
.

The interband transition conserves [+]. These two vectors are
now related to each other by the unitary transformation

U
$ ¼ �σx � σz ¼ � 0 1

1 0

� �
� 1 0

0 �1

� �
, where σx and σz are

the Pauli-X and Pauli-Z matrices. Note that the variation from one
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value of α to another across the topological transition value
α ¼ β1 þ β2 would, in general, require a change of frequency at a
fixed wave number. This point is further discussed in the next section.

Finally, we also remark that away from the edges of the
BZ (i.e., in the vicinity of the center of the BZ where modes
do not exhibit discontinuities), as can be seen in Fig. 3,
transitioning α across the topological transition does not
change significantly the y0is. An intraband transition would

convert the vector Â
!

¼ [+]y1 y2 +y3 +[+]y4ð Þ into bA0
!

¼
[+]y1 y2 +y3 +[+]y4ð Þ with a unitary transformation

U
$ ¼ �σz � σz . An interband transition produces Â

!00
¼ Â

!
with

the identity matrix as the transformation matrix.

V. SYNTHETIC DIMENSION

A common method to create a synthetic space is to utilize the
parameter degrees of freedom of a system. The physical parameter α

can serve as such a degree of freedom. The equations of motion
[Eqs. (1a), (1b), (1c), and (1d)] are parametrically dependent on α,
which can be treated as a continuous variable. The dependency of the
system can then be described in a synthetic space with a α axis playing
the role of an extra synthetic dimension in addition to time (or ω) and
position (or x ¼ ka). Topological effects such as the topological transi-
tion presented earlier naturally arise in such a synthetic space.

Complex components of the normalized eigenvectors, y, as
functions of x ¼ ka. We have chosen β1 ¼ 1, β2 ¼ 0:5 (i.e.,
β1 þ β2 ¼ 1:5), and m ¼ 1. α ¼ 1:45 , 1:5 and α ¼ 1:55 . 1:5.
The blue lines are the real part of the complex components. The
red lines are the imaginary part.

In Fig. 4, for the sake of illustration, we plot

y1 ¼
ffiffi
i

p ffiffiffi
Z

p
/2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z

p ffiffiffiffiffi
Z*

pp
as a function of x and α. Since + in

Z*¼iδ*+α and Z ¼ �iδ + α correspond to two different bands
(either the lower two or upper two bands), in Fig. 4, a negative α
corresponds to one band, ([+], �), and a positive α to the other
one, ([+], þ). Choosing α , �1:5, the figure shows two disconti-
nuities as a function of x. For 1:5 . α . �1:5, y1 exhibits only one
discontinuity as a function of x. This is identical to Fig. 3.
Considering, the other band in the case of positive α, if
1:5 . α . 0, y1(x) shows only one discontinuity. For α . 1:5,
there is no discontinuity. This is again the signature of a topological
transition with a change of Berry phase of π.

We observe that there is no discontinuity in y1 as a function
of α but at the edges of the BZ. Considering only the ([+], �)
bands, that is, α , 0, at x ¼ π�/2, there is a discontinuity in y1 at
α ¼ �1:5. Across that discontinuity y1 changes from 1/2

ffiffiffi
2

p ffiffi
i

p
to

1/2
ffiffiffi
2

p ffiffiffiffiffi�i
p

as was shown in Sec. 4. Therefore, the amplitude unit
vectors within the same band are related to each other through the
unitary transformation U

$ ¼ σy � i I
$
, as was seen earlier.

On one hand, we may consider the coupled one-dimensional
chains of elastic rotators with varying values of the coupling
parameter as an ensemble of different physical systems. On the
other hand, by allowing the coupling parameter to vary as a func-
tion of time, we can navigate the two-dimensional synthetic space
with one single physical system. The ability to dynamically tune the
stiffness of the coupling between the chains of rotators is key to
enabling the exploration of the synthetic dimension. Non-contact
experimental methods shown to induce changes in elastic stiffness
can leverage various forms of electromagnetic-elastic coupling.35–38

In addition to magneto-elastic effects and piezoelectric effects, fast
and reversible changes in elastic stiffness can also be achieved by
applying light-induced thermal stimulation of phase change materi-
als (PCMs) used in modern information technologies.39

To illustrate the properties of the chain of rotators with time
varying coupling, we simulate the effect of a rapid change of the
coupling parameter α. This is analogous to scattering by a time dis-
continuity or time interface.40–42 Scattering by a time interface
transforms the wave prior to the change into two waves possessing
different but opposite frequencies while conserving the wave
number. We develop a numerical model based on coupled chains
of elastic rotators as shown in Fig. 1. We use Born–von Karman
periodic boundary conditions for which eikNcL ¼ 1; Nc is the total
number of unit cells along the chains. As mentioned above, in the
first BZ, ka is limited to the interval �π/2 to π/2 with a spacing of

FIG. 3. Complex components of the normalized eigenvectors, y1, y2, y3, and y4
(top to bottom), as functions of x ¼ ka. We have chosen β1 ¼ 1, β2 ¼ 0:5
(i.e., β1 þ β2 ¼ 1:5), and m ¼ 1. α ¼ 1:45 , 1:5 and α ¼ 1:55 . 1:5. The
blue curves are the real part of the complex components. The red curves are
the imaginary part. x extends beyond the first BZ to clearly display the nature of
the discontinuities.
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2π/Nc. A vectorized fourth order Runge–Kutta time integration
scheme is used to numerically calculate the dynamics of system.

Using the computational tool for the spectral analysis of
amplitudes and phases (SAAP) of elastic waves,3 we excite a single
eigenmode of the second branch at the positive side of the BZ (that
is, band ([� ], �)) by introducing local phase values as part of the
initial condition. We investigate the effect of the time varying cou-
pling for two wave numbers: (i) at ka ¼ π/4, value away from the
edge of the BZ, and (ii) at ka ¼ π/2 on the edge of the BZ.
Furthermore, we run the numerical simulation a total of 218 time
steps, while keeping the initial coupling parameter αi for the first
217 time steps and then rapidly changing α to the final value, αf ,

and maintaining this value during the next 217 time steps. We
record and Fourier transform the time dependency of the displace-
ment of a representative rotator in the top chain during this second
time interval. We consider two time interfaces, one that crosses the
band inversion value, β1 þ β2, and another one whereby αi, αf

remain both below the inversion value. In Fig. 5, we show the
power spectral density of the representative block element’s ampli-
tude calculated over the 217 time steps after the rapid change in
coupling stiffness.

From Fig. 5(a), it is clear that by choosing a wave number,
ka ¼ π/4, away from the edge of the BZ, scattering by a time inter-
face transforms an earlier wave of frequency ωi ¼ 1:156 into a

FIG. 4. Contour plots and 3D plots of the real and imaginary parts of y1 ¼
ffiffi
i

p ffiffiffi
Z

p
/2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z

p ffiffiffiffiffi
Z�

pp
as a function of x and α. The darker colors correspond to negative values

and the lighter colors to positive values. We have chosen β1 ¼ 1, β2 ¼ 0:5 (i.e., β1 þ β2 ¼ 1:5), and m ¼ 1.
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superposition of two sets of waves with corresponding final fre-
quency (ωf ) values of ω f ,1 ¼ 1:587 (corresponding to an intraband
transition) and ω f ,2 ¼ 2:342 (corresponding to an interband transi-
tion). These two sets of waves have the same wave number as that
of the earlier wave. We note that because of the finite size of the
simulated systems as well as of the periodic boundary conditions, it
is not possible numerically to differentiate between positive and
negative frequency waves. On the other hand, if we choose ka ¼
π/2 at the edge of the BZ [as shown in Fig. 5(b)], scattering by a
time interface only transforms an earlier wave of frequency ωi ¼
1:0 to a later single mode of frequency ωf ¼ 2:236. This transition
takes place between two different bands. These transitions are illus-
trated graphically in Fig. 6. If we take αf to be 1.0, Fig. 5(c) shows
that the scattered wave (with frequency ωf ¼ 1:414) corresponds to
the same band as that of the early wave. Hence, choosing a wave
number value at the edge of the BZ allows us to achieve a single
mode conversion via scattering by a time interface.

To shed additional light on these numerical results, let us con-
sider analytically the scattering of a wave by a time interface. First
of all, in the more usual case of a spatial interface, an incident wave
is partially reflected and transmitted. The incident, reflected, and
transmitted waves have the same frequency but different wave
numbers (wave vector in higher dimension). In the case of a single
mode (i.e., a single band), scattering by a time interface transforms
an earlier wave (mode prior to the change in parameter) into a
later-backward and later-forward wave (mode after the change in
parameter). The later waves have the same wave number (vector) as
that of the earlier wave. The frequency is, however, not conserved.
The frequencies of the later-forward and later-backward waves
differ by their sign. Here, the normalized eigenvector of an early
wave, for the initial coupling stiffness, αi is given by

û
!¼

[+]y1(αi)eik2na

y2(αi)eik(2nþ1)a

+y3(αi)eik2na

+[+]y4(αi)eik(2nþ1)a

0BB@
1CCAeiωt : (14)

We now consider the possibility of conversion into two modes
(i.e., intraband and interband scattering involving two different
bands), for the final coupling stiffness, αf , namely,

û
!0

{+} ¼

[+]y1(αf )eik2na

y2(αf )eik(2nþ1)a

+y3(αf )eik2na

+[+]y4(αf )eik(2nþ1)a

0BBB@
1CCCAei{+}ω0t and

û
!
{+} ¼

[+]y1(αf )eik2na

y2(αf )eik(2nþ1)a

+y3(αf )eik2na

+[+]y4(αf )eik(2nþ1)a

0BBB@
1CCCAei{+}ωt :

(15)

In Eq. (14) we have used {+} to label the later-backward {� }
and later-forward {þ } waves. Note also the different bands associ-
ated with the [+] and [+].

The scattering process imposes continuity for the displace-
ments of the four blocks in the unit cell [Eq. (16a)] as well as the
continuity of the time derivative of the displacements [Eq. (16b)],

û
!
(t ¼ 0) ¼ ζ 0 û

!0
{þ }(t ¼ 0)þ ξ0 û

!0
{� }(t ¼ 0)

þ ζ 00 û
!

{þ }(t ¼ 0)þ ξ00 û
!

{� }(t ¼ 0), (16a)

ω û
!
(t ¼ 0) ¼ ω0ζ 0 û

!0
{þ }(t ¼ 0)� ω0ξ0 û

!0
{� }(t ¼ 0)

þ ωζ 00 û
!
{þ }(t ¼ 0)� ωξ00 û

!
{� }(t ¼ 0): (16b)

Since y3 is proportional to y2 and y4 to y1, Eq. (16a) reduces
to two equations involving only y1’s and y2’s. Similarly, Eq. (16b)
reduced to two equations in y1’s and y2’s. We have therefore, four
equations and four unknowns ζ 0, ξ0, ζ 00, and ξ00. The continuity
conditions for this scattering problem can be written in the

FIG. 5. Power spectral density of the displacement of a representative rotator in the top chain, showing the eigenfrequencies. Arrows indicate the initial excitation frequency
(ωi ) of the input eigenmode: (a) ωi ¼ 1:156 and (αi , αf ) ¼ (0:5, 2:5), (b) ωi ¼ 1:0 and (αi , αf ) ¼ (0:5, 2:5), (c) ωi ¼ 1:0 and (αi , αf ) ¼ (0:5, 1:0). System parameters
Nc ¼ 12, Nm ¼ 2, β1 ¼ 0:5, β2 ¼ 1:0.
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following matrix form:

[+]y1(αf ) [+]y1(αf ) [+]y1(αf ) [+]y1(αf )

y2(αf ) y2(αf ) y2(αf ) y2(αf )

[+]y1(αf )ω0 �[+]y1(αf )ω0 [+]y1(αf )ω00 �[+]y1(αf )ω00

y2(αf )ω0 �y2(αf )ω0 y2(αf )ω00 �y2(αf )ω00

0BBB@
1CCCA

ζ 0

ξ0

ζ 00

ξ00

0BBB@
1CCCA ¼

[+]y1(αi)

y2(αi)

[+]y1(αi)ω

y2(αi)ω

0BBB@
1CCCA: (17)

This equation is applicable when both αi and αf are less or
greater than β1 þ β2 as well as when αi or αf are less or equal to
β1 þ β2. The definition of the bands corresponding to the

eigenmodes given by Eqs. (14) and (15) involved in the scattering
process depend on these conditions.

As long as yi(αf )
0s are complex numbers different from

yi(αi)’s, scattering processes by a time interface involving simulta-
neously intraband and interband transitions are allowed. This is
what is observed in Fig. 5(a) when ka ¼ π/4. Near the edge of the
positive side of the BZ, at ka ¼ π/2, we noted in Sec. 4 that yi(αi)’s
and yi(αf )’s are independent of αi and αf . Let us consider the early
mode with ([� ], �) and αi , β1 þ β2. We treat the problem of a
sudden change of the coupling stiffness to a value αf . β1 þ β2.
This is the case of Fig. 3 as well as the numerical simulation of
Fig. 5(b). We have y1(αi) ¼ 1/2

ffiffiffi
2

p ffiffi
i

p
and y2(αi) ¼ 1/2

ffiffiffi
2

p ffiffiffiffiffi�i
p

;
y1(αf ) ¼ �1/2

ffiffiffi
2

p ffiffiffiffiffi�i
p

and y2(αf ) ¼ �1/2
ffiffiffi
2

p ffiffi
i

p
. Under these con-

ditions, after some algebraic manipulations, Eq. (17) reduces to
1 1 �1 �1
1 1 1 1
r0 �r0 �r00 r00

r0 �r0 r00 �r00

0BB@
1CCA

ζ 0

ξ0

ζ 00

ξ00

0BB@
1CCA ¼ i

1
1
1
1

0BB@
1CCA, where r0 ¼ ω0/ω and

r00 ¼ ω0/ω. This system of equations leads to the solution
ζ 0

ξ0

ζ 00

ξ00

0BB@
1CCA ¼ i/2

1þ 1/r0

1� 1/r0

0
0

0BB@
1CCA. Since the early state was for the band

with [� ], and the only single later state corresponds also to [� ],
and since the time interface considered here involved band inver-
sion (αi , β1 þ β2 and αf . β1 þ β2), the scattering process cor-
responds to an interband transition. This phenomenon was
reported in Fig. 5(b). A similar argument can be utilized to explain
the result of Fig. 5(c).

These striking results motivated us to carry out another set of
numerical simulations, where instead of keeping the final coupling
parameter αf constant throughout the remaining 217 time steps of
the simulation, the coupling stiffness is changed again back to the
initial value αi. This corresponds to two subsequent time interfaces.
With this process, αf is localized in time, realizing a time defect
equivalent to a Fabry–Pérot cavity in time. The time duration over
which the coupling stiffness retains the value αf is chosen to be a
single cycle of the early wave. Simulations with time defects lasting
5 and 10 cycles showed the same behavior as that for one cycle. We
have recorded the displacement field of a representative block
element in the top chain and calculated the power spectral density
via a temporal Fourier transform. We investigate the same three
combinations of ka, and (αi, αf ) as in the case of a single time
interface. Results of the scattering by the localized time defect are
presented in Fig. 7. At the wave number, ka ¼ π/4, the first time
interface scatters the earlier wave of frequency ωi ¼ 1:156 (second
band in the positive sector of the BZ) into the superposition of two
waves with frequencies ω f ,1 ¼ 1:587 and ω f ,2 ¼ 2:342 (second and
third bands in the positive half of the BZ) as was shown in
Fig. 5(a). Scattering by the second interface converts these two
waves back into the earlier wave (second band in the positive half
of the band structure) but also now a wave with a frequency of
1.632 corresponding to the third band (in the positive half of the
BZ) when the coupling stiffness is αi. Figure 6 also includes illustra-
tions of these scattering processes. For ka ¼ π/2, the initial single
mode is preserved and remains insensitive to the presence of the

FIG. 6. Band structure of the simulated system for α ¼ 0:5 (solid lines) and
α ¼ 2:5 (dashed lines). The ascending black arrows show the transitions result-
ing from scattering by a single time interface at the two wave numbers studied,
ka ¼ π/4 and π/2. ωi and ωf correspond to the initial (pre-scattering) and final
(post-scattering) frequency. An additional index 1 or 2 is used when scattering
excites two different modes. The descending grey arrows show the transitions
due to scattering by a second time interface, which is part of a time defect.
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time defect. Such robustness occurs regardless of the magnitude of
the variation of coupling stiffness forming the time defect [from
αi ¼ 0:5 to αf ¼ 1:0 (Fig. 6(b)] or from αi ¼ 0:5 to αf ¼ 2:5
[Fig. 5(c)], that is, with or without band inversion).

The phenomenon of scattering by a time interface or a time
defect observed here for ka = π/2 could be realized in any general
two band system as long as the eigenvectors depend on a physical
parameter such as stiffness. However, the unique nature of the
eigenvector of the coupled chains system at ka ¼ π/2 leads to the
observed transition restriction preserving the initial single mode.

While, we have considered discrete time interfaces by sudden
changes in the strength of the coupling parameter, other temporal
and/or spatial variations in the coupling parameter such as periodic
spatiotemporal modulation of the stiffness7 could lead to other
forms of synthetic dimensions. Such dynamic periodic modulations
of stiffness could be used to create modes at different frequencies
and realize an additional one-dimensional lattice in a synthetic fre-
quency dimension.

VI. CONCLUSION

We have introduced a model system composed of elastically
coupled one-dimensional chains of elastic rotators. The two chains
forming the coupled system are analogous to SSH models. We
demonstrate analytically and numerically that this system supports
an exceptional number of topological properties such as Dirac
degeneracies, band inversion, and topological transition as the
strength of the coupling parameter is varied, nonseparability of the
modes’ degrees of freedom along and across the coupled chains
and synthetic dimension via tuning of the parameter coupling the
chains. When coupling two topologically distinct SSH-like rotator
chains (i.e., the chains are translated by half a spatial period), the
elastic band structure exhibits two Dirac degeneracies at the origin
of the BZ. The band structure undergoes band inversion upon var-
iations in the strength of the stiffness of the springs coupling the
chains. Band inversion leads to a discrete change in the Berry
phase associated with the individual dispersion relations. The
coupled system with topologically distinct chains supports elastic

modes that are nonseparable in the 4D Hilbert space product of
the 2D Hilbert space of the position of the rotators within the
unit cell of individual chains and the 2D Hilbert space of the
chains. This characteristic is in contrast with a coupled system
with topologically identical chains (the chains are in perfect regis-
try along their length) for which there are no Dirac points and
the degrees of freedom along and across the coupled chains are
separable. By varying the strength of the stiffness of the coupling
parameter in a cyclic manner43 or discontinuous manner44 may
extend the system with a synthetic dimension possibly enabling
the exploration the topological properties of the systems within a
higher-dimensional synthetic space. Varying the coupling param-
eter in time, leads to scattering by time interfaces, enabling transi-
tions between eigenmodes.

This work shows that by exploiting the analogies between TA
and quantum mechanics, one can harness mode quantization (via
discrete changes in Berry phase), coherent nonseparable modes
reminiscent of entangled states to overcome stability and scalabil-
ity challenges of true quantum systems in massive data informa-
tion processing—within the context of the second quantum
revolution. Furthermore, by combining synthetic dimensions with
the geometric dimensions to form higher-dimensional synthetic
space one can access arbitrary geometries and potentials that are
unavailable in real space lattices. Coupling between degrees of
freedom in geometric and synthetic spaces may lead to even more
exotic features than the one described herein. These properties
may include non-local long range order characteristic of topologi-
cal phases of matter.45

APPENDIX: COUPLED CHAINS IN REGISTRY

Here, we consider a slight variation of the system of Fig. 1,
where now the stiffnesses β1 and β2 for both coupled chains are in
registry (i.e., the same stiffnesses face each other between the two
chains). In contrast to the model of Fig. 1, the coupled chains in
registry are topologically equivalent. The Berry phase of two indi-
vidual chains in registry differs by 0 or 2π.3 The rotational

FIG. 7. Power spectral density of the displacement of a representative rotator in the top chain, showing the eigenfrequencies. Arrows indicate the initial excitation frequency
(ωi ) of the input eigenmode: (a) ωi ¼ 1:156 and (αi , αf ) ¼ (0:5, 2:5), (b) ωi ¼ 1:0 and (αi , αf ) ¼ (0:5, 2:5), and (c) ωi ¼ 1:0 and (αi , αf ) ¼ (0:5, 2:5). System parame-
ters: Nc ¼ 12, Nm ¼ 2, β1 ¼ 0:5, β2 ¼ 1:0.
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equations of motion of this new system take the form

m
@2u2n
@t2

¼ �β2(u2n�1 þ u2n)� β1(u2n � u2nþ1)

þ α(v2n � u2n), (A1a)

m
@2u2nþ1

@t2
¼ β1(u2n � u2nþ1)� β2(u2nþ1 þ u2nþ2)

þ α(v2nþ1 � u2nþ1), (A1b)

m
@2v2n
@t2

¼ �β2(v2n�1 þ v2n)� β1(v2n � v2nþ1)

� α(v2n � u2n), (A1c)

m
@2v2nþ1

@t2
¼ β1(v2n � v2nþ1)� β2(v2nþ1 þ v2nþ2)

� α(v2nþ1 � u2nþ1): (A1d)

Similarly to Sec. 2, we choose an Ansatz to solve these equa-
tions in the form u2n ¼ A0

1e
ik2naeiωt , u2nþ1 ¼ A0

2e
ik(2nþ1)aeiωt ,

v2n ¼ B0
1e

ik2naeiωt , and v2nþ1 ¼ B0
2e

ik(2nþ1)aeiωt . Equations (A1a),
(A1b), (A1c), and (A1d) reduce to an eigenproblem of the form

D
$0
~A0 ¼ 0, (A2)

where

D
$0

¼
γ �δ �α 0

�δ* γ 0 �α
�α 0 γ �δ
0 �α �δ* γ

0BB@
1CCA and ~A0 ¼

A0
1

A0
2

B0
1

B0
2

0BB@
1CCA,

with γ ¼ �mω2 þ β1 þ β2 þ α and δ ¼ β1e
þika � β2e

�ika. Again,
δ* is the complex conjugate of δ. Equation (A2) can be rewritten as

(M
$ þ αC

$
)~A0 ¼ 0, (A3)

where we have introduced the matrices

M
$ ¼

γ0 �δ 0 0

�δ* γ0 0 0

0 0 γ0 �δ

0 0 �δ* γ0

0BBB@
1CCCA and

C
$ ¼

1 0 �1 0

0 1 0 �1

�1 0 1 0

0 �1 0 1

0BBB@
1CCCA:

Here, γ0 ¼ �mω2 þ β1 þ β2. We note that these 4� 4 matri-
ces can be expressed as a tensor product of two 2� 2 matrices,
such that

M
$ ¼ N

$ � I
$

with N
$ ¼ γ0 �δ

�δ* γ0

� �
and C

$ ¼ I
$ � c

$
with

c
$ ¼ 1 �1

�1 0

� �
. Equation (A3) is then replaced by

(N
$ � I

$ þ α I
$ � c

$
)~A0 ¼ 0: (A4)

The form of Eq. (A4) enables us to seek solutions for the
amplitude vector expressed as tensor products of two 2� 1 vectors,
namely, ~A0 ¼~s�~e. With this type of solution, Eq. (A4) becomes

(N
$
~s)� ( I

$
~e)þ α( I

$
~s)� ( c

$
~e) ¼ 0: (A5)

If we choose ~e to be an eigenvector of the matrix c
$
, that is,

~e1 ¼ 1/
ffiffiffi
2

p 1
1

� �
(with eigenvalue λ1 ¼ 0) and ~e2 ¼ 1/

ffiffiffi
2

p 1
�1

� �
(with eigenvalue λ2 ¼ 2), then Eq. (A5) can be separated as

[(N
$ þ αλn I

$
)~s]� ( I

$
~en) ¼ 0: (A6)

Since I
$
~en = 0, ~s is a solution of (N

$ þ αλn I
$
)~s ¼ 0:

The dispersion relations are given by

mω2 ¼ β1 þ β2 þ λnα[+]
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β21 þ β22 þ 2β1β2 cos 2ka

q
. The four

bands do not cross anywhere within the BZ.
The amplitude vector for the system with β1 and β2 in registry

between the two coupled chains is in the form of the tensor
product ~A0 ¼~s�~e. In the language of quantum mechanics, this
amplitude vector is separable. The 2� 1 vector~s spans the Hilbert
space of the position of the two rotator block elements in a unit
cell. The 2� 1 vector~e spans the Hilbert space of the chains.~e sets
the relative phase between blocks in the same unit cell belonging to
the different chains.
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