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ABSTRACT

The theoretical study of one-dimensional-infinite systems of elastically coupled parallel waveguides has established the existence of band
structures with pseudo-spin characteristics. Those systems, which are named f-bits, have been shown to exhibit a spinor character associ-
ated with directional degrees of freedom, which makes them potential quantum mechanical analogs. The realization of such systems is chal-
lenged by the three-dimensional and finite nature of physical elastic waveguides. We address this problem, and with it the design of f-bits
in general, by developing finite elements models based on COMSOL Multiphysics®. We model systems of one or more coupled finite length
Al rods. The analysis of their dispersion relations, transmission spectra, and amplitudes establishes their f-bit character. For three coupled
finite length Al rods, the elastic field is associated with wavefunctions, tensor products of a spinor part related to the directional degrees of
freedom, and an orbital angular momentum part representing the phase of the coupled waveguides. We demonstrate the possibility of creat-
ing non-separable states between these degrees of freedom.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5127207

I. INTRODUCTION

The investigation of harmonic vibrational properties of materi-
als across spatiotemporal scales is going through a renascence,
driven by the similarity of the underlying mathematical structure as
compared with that of quantum wave mechanics.1 A perspective
showing that phenomena such as, for example, topological effects,
non-reciprocal propagation of waves, coherence of wave amplitudes,
and nonseparability are not unique to the quantum realm,2–7 there-
fore opening the possibility of finding similar applications to those
of quantum mechanical nature, but without the drawbacks of the
fragile coherence and statistical constraints of the quantum field.

However, perhaps one of the most exciting ideas is to find
quantum analogs to those phenomena of quantum coherence and
entanglement or nonseparability, driving the foreseen second
quantum revolution.8 This would mean the potential for the devel-
opment of quantum computing analogs based on classical physics.
In fact, coherent waves can be formed in classical physics in
general, and the concept of classical nonseparability has been estab-
lished in classical optics.3–5,9–19

Furthermore, coherence and nonseparability of elastic vibra-
tions and sound waves have been analytically predicted.1,6 However,

the investigation of these potential quantum analog phenomena relies
on simplified theoretical models that are unidimensional and infinite
in extension, raising questions about the practical realizations of such
phenomena, due to their intrinsic three-dimensional and finite
nature. The theoretical analysis of feasibility and design of realistic
quantum analog devices is then underpinned on the solution of
three-dimensional equations, which are usually out of reach of analyt-
ical methods, forcing us to resort to numerical procedures.

Pseudo-spin characteristics in acoustic20,21 and elastic22–26

systems of topological nature have been investigated. Here, we
focus on f-bit systems,1,27 that is, systems with elastic displacement
fields akin to wavefunctions, which exhibit a spinor character associ-
ated with directional degrees of freedom. In Ref. 27, we experimen-
tally demonstrated the realization of a f-bit in an acoustic waveguide.
In the case of coupled f-bit systems, the elastic field is also described
by the eigenvectors of the coupling matrix, which are, in turn,
analogs to the Orbital Angular Momentum (OAM) eigenvectors in
relativistic quantum mechanics. The elastic spinor and OAMs
form a tensor product basis whose linear combinations describe
waves in the elastic field and provide the framework for the analy-
sis of nonseparability.7,28
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We describe modeling techniques and their results, which
have been successfully used for the exploration and design of f-bit
systems,29 made of elastically coupled parallel waveguides in three
dimensions and of finite lengths. The techniques are based on finite
elements computational models and have been implemented in
COMSOL Multiphysics®. We proceed in Sec. II with the analysis of
practical feasibility and the computational design of f-bit systems,
starting with a review of the one-dimensional-infinite models defining
it and continuing with the introduction of the three-dimensional-finite
model of a f-bit based on a single Al rod. Afterward, in Sec. III,
we proceed to investigate two f-bit systems, providing first a dis-
cussion of the corresponding one-dimensional-infinite models and
the notion of nonseparability, followed by the analysis of two f-bit
systems, made of three coupled Al rods of finite length, including
the investigation of non-separable vibrational modes. Conclusions
are drawn in Sec. IV.

II. REALIZATION OF A f-BIT USING FINITE ELASTIC
COMPONENTS

A. Simple model

The simplest f-bit1 is made by an infinite linear chain of
masses, coupled by massless springs, with each mass also
attached to its own side spring. The other end of the side springs
is itself attached to fixed positions or very heavy masses. The
equation of motion governing that system is

@2
ttun ¼

k0
m
(unþ1 � 2un þ un�1)� kI

m
un, (1)

where un is the displacement of the nth mass in the chain, k0 is
the elastic constant of the coupling springs, and kI is the elastic
constant of the side springs.

The normal mode solutions are given by

un(t) ¼ Aeikna eiωt , (2)

with A being the maximum amplitude of the oscillations, a the dis-
tance between masses, k the wave vector, and ω the angular fre-
quency. Such solutions lead to the dispersion relation

ω(k) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
k0
m
(1� cos(ka))þ kI

m

r
, (3)

which has a cutoff frequency at k ¼ 0 of
ffiffiffiffiffiffiffiffiffiffi
kI=m

p
.

B. Klein–Gordon equation of a waveguide with side
elastic coupling

Taking the small k (long-wave) limit for the equation of the dis-
crete f-bit [Eq. (1)], we have the Klein–Gordon (KG) like equation,

@2
ttu(x, t)� a2

k0
m
@2
xxu(x, t)þ

kI
m
u(x, t) ¼ 0, (4)

as the equation of motion for the displacement u(x, t) of a
one-dimensional and infinity string along the x axis. The KG
equation is used to describe relativistic particles in quantum
mechanics.

The normal modes of the KG equation has the form

u(x, t) ¼ Aeikx eiωt , (5)

which is straightforward to prove that it yields the dispersion
relation

ω ¼ +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

k0
m
k2 þ kI

m

r
, (6)

proving that, as in the case of the discrete system, the dispersion
branch is parabolic with a cutoff frequency at k ¼ 0 of

ffiffiffiffiffiffiffiffiffiffi
kI=m

p
.

As for the amplitude A, it can take any values in principle, but
for the eigensolutions, it is taken as a normalization factor. In
any case, A is independent of k and ω.

C. Dirac equation of a waveguide with side elastic
coupling

The KG equation [Eq. (4)] admits a Dirac-like factorization
into two sets, one for each sign of the α term, of first-order differ-
ential equations,

0 1
1 0

� �
@t þ β

0 1
�1 0

� �
@x + α

0 1
1 0

� �� �
Ψ2�1(x, t) ¼ 0, (7)

where Ψ2�1(x, t) is a two-component vector, each component
being a solution of the KG equation. Dirac factorized the KG equa-
tion and established the theoretical foundation for the positron.30

The mathematical formulation of the Dirac equation naturally
reveals the spin of relativistic particles.

The normal modes of the Dirac system of equations [Eq. (7)]
would be

Ψ2�1(x, t) ¼ a2�1e
ikx eiωt , (8)

which leads to the same dispersion relation as that of the KG equa-
tion [Eq. (8)] and to the amplitudes,

a+2�1 ¼ s0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωþ βk

p
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω� βk

p
� �

, (9)

with s0 being the normalization constant.
Notice that the amplitude vector has components that depend

on k and ω in a relative way, and they correspond to the spinor
components in Dirac’s relativistic quantum mechanics.
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D. Three-dimensional one f-bit system

1. General approach

Real systems are neither infinite nor one-dimensional, but we
use the results for the discrete and continuum f-bits to help the
exploration of the practical realization of such systems.

The specific systems of interest are single or coupled Al rods,
with the coupling provided by epoxy glue and with or without
fixed boundary sections. For a three-dimensional and finite system
of that nature, we turn to solve numerically the three-dimensional
version of the driven elastic wave equations, for homogeneous and
isotropic solid objects labeled with m, given by

ρm@
2
ttUm(r, t) ¼ Cm � (∇Um(r, t)þ (∇Um(r, t))

T)
2

� η @tUm(r, t)þ f m(r, t), (10)

where Um(r, t) is the elastic displacement vector field as a function
of the position r at time t for object m (waveguides, coupling, or
glue regions), ρm is the mass density of object m, Cm is its elastic
constant matrix, fm is the external force acting on it, and η is a
damping coefficient (introduced mainly to avoid singularities in the
solutions). We need to specify also the boundary conditions of the
surfaces of all the objects.

Models of the systems of interest were created in COMSOL
Multiphysics®, and its mechanical module is used to solve Eq. (10).
The Al elastic properties used for the simulations are Young’s
modulus (E) of 60 GPa, the Poisson ratio (μ) of 0.333, and the density
(ρ) of 2660 kg=m3. The elastic properties were determined exper-
imentally using ultrasound waves and the density from mass and
volume measurements. For the epoxy, we use the values
E ¼ 4:08GPa, μ ¼ 0:378, and ρ ¼ 1142 kg=m3.31

In all cases, tests of convergence of eigen-frequencies with
COMSOL Multiphysics® grid size were performed. The COMSOL
Multiphysics® grids usually providing convergence are those pre-
defined as extra-fine, which yields a number of grid points in the
order of millions.

2. Eigen solutions

The plane wave ansatz reduces the space of solutions to a spe-
cific subset function of wave vectors and frequencies, with the
k-vectors defined by boundary conditions. However, given the
complexity of the boundaries in the models, it is advisable to resort
to solve the three-dimensional equations in the (r, ω) space instead
of the (k, ω) space. For that, we assume eigenmodes of the form

Um(r, t) ¼ e�iωtum(r, ω), (11)

which leads to the eigenmode equation

ρm(ω
2 � iηω)um(r, ω) ¼ Cm � (∇um(r, ω)þ (∇um(r, ω))T)

2
: (12)

We solve this equation numerically for given geometries, prop-
erties, and boundary conditions via finite elements using COMSOL
Multiphysics®.

3. Driven 3D finite systems

We restrict ourselves to forces of the form

fm(r, t) ¼ e�iωt Fm δr[Smd
, (13)

where Fm is the force applied on the object m at the surface Smd ,
which is a section of the area at one end of the rods of around 25%
of the total area. The solutions in the form of Eq. (11) allow one to
write the equations of motion as

�ρm(ω
2 � iηω)um(r, ω) ¼ Cm � (∇um(r, ω)þ (∇um(r, ω))T)

2
þ Fm δr[Smd

, (14)

which are then solved under the same displacement conditions at
the surface joining objects and free boundary conditions in the rest
of the surfaces that are neither joining objects nor being driven.

4. Measure of transmission

As a measure of the transmission, we calculate the root mean
squared (RMS) of the z-component of the displacement (uz or u3),
over an area on the free end faces of the rod of the same magnitude
as the driven area Sd ,

RMS(u3) ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Sd

ð
Sd

dsju3(r)j2
s

, (15)

to mimic the RMS of the voltage generated by transducers in the
experiments. We then generate plots of driving frequencies (ω or f )
vs RMS(u3) to analyze the potential f-bit characteristics.

This approach has been implemented in COMSOL Multiphysics®
and also the classification of modes described next.

5. Classification of vibrational modes

It is also useful for the investigation to classify the vibrational
modes into longitudinal, transversal, or mixed according to some
measure. With that goal, we first define and calculate the velocity V
of the elastic field displacements assuming that its shape is constant
in time. For that, we choose an arbitrary value of the displacement
field, let us say c, and follow the time evolution rc(t) of such iso-
displacement through the equation

uq(rc(t), t) ¼ c; (16)

taking the time derivative, we get the equations for the velocity
[V ¼ drc(t)=dt]

X3
p¼1

@uq(r, t)

@xp
Vp(r) ¼ � @uq(r, t)

@t
, with q ¼ 1, 2, 3, (17)
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where q and p label the Cartesian components, @uq(x, t)
@t is the

q-component of the displacement velocity at position r, and @up(r, t)
@xq

is

the q component of the gradient of the p-component of the displace-
ment. Equation (17) forms a system of three linear equations and
three unknowns, which are the components of the velocity Vp(r).

Using Eq. (17), we then define and calculate the RMS of the pro-
jection of the velocity on the displacement direction, RMS(cos(θ)),

along the longitudinal central line of the rods as

RMS(cos(θ)) ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
L

ð
L
dl

V(r) � u(r)
jV(r)ku(r)j
����

����
2

s
, cos(θ) ¼ V(r) � u(r)

jV(r)ku(r)j : (18)

This quantity is finally used to classify the modes according to

Mode(RMS(cos(θ))) ¼
Longitudinal Mode or LM if RMS(cos(θ)) � 0:9,
Transversal Mode or TM if RMS(cos(θ)) � 0:1,
Mixed Mode or MM if 0:1 , cos(θ) , 0:9:

8<
: (19)

Notice that in the case of modes with mainly a longitudinal
character, the velocity will be parallel to the displacement field along
the central line, and therefore, the RMS(cos(θ)) values will be close
to one. In the case of transversal modes, the velocity will be perpen-
dicular to the displacement field, and therefore, the RMS(cos(θ))
values will be close to zero. Mixed modes and modes of other nature
(e.g., torsion) will give RMS(cos(θ)) values farther from zero or one.

6. Long rod with free and fixed boundaries

The simplest approximation to a real system close to a f-bit
should be a long rod with a fixed boundary condition on all the
rod surfaces except at the end faces. We will refer to such a surface
as a “cylindrical surface” and to the boundary condition as a “fixed
cylindrical surface.” The large length compared to the diameter
resembles the one-dimensionality, while the fixed boundary condi-
tion mimics the effect of the fixed side springs.

For comparison, and validation of the approach, we first cal-
culate the modes of an Al rod of diameter D ¼ 0:01m and length
L ¼ 1m with a free boundary condition. Figure 1 shows the results
for that system. Figure 1(a) provides the classification of the vibra-
tional modes according to the values RMS(cos(θ)) and the response
RMS(u3). It shows that the system supports a large variety of vibra-
tional modes all across the range of frequencies, signaling the pres-
ence of several dispersion branches. Nevertheless, the agreement
between the longitudinal mode classification and the mode shapes
shown in Figs. 1(c) and 1(d) points to the validity of the mode clas-
sification approach. From the classification of mode results, we plot
the frequencies of the longitudinal ones in Fig. 1(b) as a function of
kz ¼ n=2L, with n being the number of nodes, that is, the disper-
sion relation along the kz or axial direction. As expected, it is a
straight line with a slope or speed of sound of 5007 m/s, in good
agreement with our measured experimental value.

Fixing or immobilizing the entire cylindrical surface of the Al
rod, with the same geometrical parameters (D and L) as for the rod
with a free boundary condition, leads to the results shown in Fig. 2.
That is, as anticipated in Sec. III B, the system shows only the char-
acteristic f-bit like behavior of the dispersion relation [Fig. 2(b),
blue squares]. Also, comparing Figs. 1(a) and 2(a), it is clear that

the fixed cylindrical surface induces a separation of the longitudinal
and mixed normal modes in frequency and eliminates the purely
transversal modes. However, at frequencies higher than 320 kHz,
there are mixed modes and modes that may have other characters
showing up attesting the three-dimensional nature of the rod.

It is also interesting to explore the behavior of the dispersion
relation with changes in the diameter of the rod. Figure 3 shows
the result of decreasing the diameter by a factor of two in contrast
with increasing the length by the same factor. It shows that the
reduction in the diameter shifts the entire dispersion relation by a
factor of around two higher in frequency, conserving the shape of
the curve. That is, the diameter of the rod also controls the fre-
quency cutoff by modifying the effective value of the stiffness of
the side coupling media α. This is an important design element for
the f-bits.

7. Long rod with two fixed boundary lines

Fixing all the cylindrical surfaces of the rod is harder to imple-
ment in practice than just fixing lines on the cylindrical surface
along the rod axis (Fig. 4). In experiments, the fixed two line condi-
tion can be achieved by sandwiching the rod between heavy steel
plates and applying pressure on the plates, which will create the
fixed boundary condition along the lines of the Hertzian contact
between the rods and the plates.27

More in tune with material dimensions available for experi-
ments,27 we examine next the vibrational modes and transmission
properties of an Al rod of length L ¼ 0:6096m and diameter
D ¼ 12:7mm, with two lines fixed on the cylindrical surface and
opposite to each other across the diameter (Fig. 4). From the analy-
sis of the eigen and driven mode nodes and shapes, we extract the
longitudinal f-bit frequencies as a function of the number of
nodes. Using those frequencies and knowing that kz ¼ n=2L, n
being the number of nodes, due to the free boundary condition at
the end of the rod, we reconstructed the f-bit dispersion branch.
The main results of such an examination are shown in Fig. 5.

As in the case of a fixed cylindrical boundary, the acoustic linear
branch is also converted to a f-bit branch [Fig. 5(a)] with a cutoff fre-
quency of around 54 kHz, which can also be seen in the transmission
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spectrum in Fig. 5(b). The mode shapes conserved a longitudinal
main character as can be noticed from Figs. 5(c) and 5(d).

III. REALIZATION OF TWO f-BITS USING FINITE
ELASTIC COMPONENTS

In Secs. I and II, we have theoretically established, using
simple models, that f-bits and coupled f-bits can be realized by
fixing boundary lines on single and coupled waveguides. We have
numerically verified using a three-dimensional finite model the the-
oretical results for the single rod as a waveguide. Next, we extend
our approach to the design of two f-bit three-dimensional systems
taking the form of multiple coupled waveguides.

A. Generalized Klein–Gordon equation for multiple
coupled waveguides

Equation (4) is the Klein–Gordon (KG) equation for a f-bit,
which we proceed to extend to more than one coupled waveguide,
including damping. The system is a set of N parallel

unidimensional waveguides coupled along sides to neighbor wave-
guides by a massless elastic unidimensional media. The equations
of motion governing such a system are given in a compact form by

@2
ttu(x, t)� β2@2

xxu(x, t)þ η@tu(x, t)þ α2Mu(x, t) ¼ f (x, t), (20)

with u(x, t) is a vector whose components are the displacement fields
along x for each waveguide, β is the speed of sound in the waveguide,
η is the damping term divided by the density, α represents the
strength of the coupling between the waveguides divided by the
density, M is the N � N coupling matrix, and f (x, t) is the force
acting on each rod at position x and time t divided by the density.

Equation (20) has the mathematical form of a generalized KG
equation,1 if the damping coefficient η is set to zero. Its normal
modes have the usual ansatz

u(x, t) ¼ A ei(kx�ωt), (21)

FIG. 1. Vibrational properties of an Al rod of length L ¼ 1m and diameter D ¼ 0:01 m with a free boundary condition: (a) RMS(cos(θ)) vs frequency and mode classifica-
tion according to Eq. (19) (red squares: transversal modes, green squares: mixed modes, and blue squares: longitudinal modes). Amplitude (RMS(u3)) vs frequency (blue
vertical lines). (b) Dispersion relation (frequency vs kz wave vector) extracted from the longitudinal modes in Fig. 1(a) under 125 kHz (blue squares). It follows a straight
line as a function of the index. The red line corresponds to the least square fitting of a line to the linear branch to extract the speed of sound. (c) Mode shape of the
one-node longitudinal eigenstate (2545 Hz) represented by the module of the displacement vector as a function of position (blue regions are nodes and red regions are
antinodes). (d) As in (c) but for the four-node eigenstate (10 182 Hz).

Journal of
Applied Physics ARTICLE scitation.org/journal/jap

J. Appl. Phys. 128, 045110 (2020); doi: 10.1063/1.5127207 128, 045110-5

© Author(s) 2020

https://aip.scitation.org/journal/jap


which reduces Eq. (20) from its differential form to the algebraic
eigen-problem for the vector amplitude A,

(�ω2 þ β2k2)I þ α2M
� 	

A ¼ 0, (22)

where I is the N � N unitary matrix.
The matrix M is real and symmetric, which means that it has

N real eigenvalues λm, each corresponding to an eigenvector êm,

whose components are all real. Projecting Eq. (22) along the eigen-
vector êm and taking into account that it is an eigenvector of M
with the eigenvalue λm, we get

�ω2 þ β2k2 þ α2λm
� 	

êm � A ¼ 0, (23)

which has solutions only if ω takes the values as a function of k,

ωom(k) ¼ +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2k2 þ λmα2

q
: (24)

Therefore, the dispersion relations [Eq. (24)] of this system
have a quadratic character with a cutoff frequency

ffiffiffiffiffiffi
λm

p
α if

λm = 0, providing conditions for having multiple f-bit branches.

B. Generalized Dirac equation for multiple coupled
waveguides

The generalized KG equation, Eq. (20) with η ¼ 0, admits a
Dirac factorization,1,6 which generates the two equations

�IN�N � σ1@t þ β�IN�N � (� iσ2)@x + α�I2N�2N
ffiffiffiffiffiffiffiffiffiffiffiffiffi
MN�N

p � σ1

 �

�Ψ2N�1(x, t) ¼ 0, (25)

where �IN�N and �I2N�2N are antidiagonal matrices with unit ele-
ments, Ψ2N�1 is a 2N dimensional vector that represents the modes
of vibration of the N waveguides projected in the two possible
directions of propagation along the x-axis,

ffiffiffiffiffiffiffiffiffiffiffiffiffi
MN�N

p
is the square

root of the coupling matrix, and σ1 and σ2 are the Pauli matrices

σ1 ¼ 0 1
1 0

� �
and σ2 ¼ 0 i

�i 0

� �
.

FIG. 2. Vibrational properties of an Al rod of diameter D ¼ 0:01 m and length L ¼ 1 m with a fixed cylindrical surface as a boundary condition: (a) RMS(cos(θ)) vs fre-
quency and mode classification according to Eq. (19) [red squares: transversal modes (not present), blue squares: longitudinal modes, and green squares: mixed modes].
Also, amplitude (RMS(u3)) vs frequency (blue vertical lines). (b) Dispersion relations (frequency vs k vector index n): extracted from the longitudinal modes in Fig. 2(a)
(blue squares) and the frequency cutoff at 239.5 kHz.

FIG. 3. Dispersion relations (frequency vs k vector index n) of Al rods with
fixed cylindrical boundaries for a ratio of length L to diameter D fixed to
L=D ¼ 200: for D ¼ 0:01 m and L ¼ 2m (black circles) and for D ¼ 0:005m
and L ¼ 1 m (red crosses).
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C. One-dimensional infinite systems with two f-bit
branches and nonseparability

Systems with more than one f-bit branch open the possibility
of realizing acoustic nonseparable states. In the case of three elastic
unidimensional parallel waveguides coupled along their lengths, the
coupling matrix has the form

M ¼
1 �1 0
�1 2 �1
0 �1 1

0
@

1
A, (26)

and choosing the components of Ψ6�1 as the plane waves along the

basis of the eigenvectors em,3�1 of the matrix
ffiffiffiffiffiffiffiffiffiffiffi
M3�3

p
,

Ψmj(x, t) ¼ amje
ikx eiωt , m ¼ 1, . . . , 3, j ¼ 1, . . . , 6, (27)

the amplitudes have the form

am,6�1 ¼ em,3�1 � sm,2�1, (28)

where sm,2�1 is given by

sm,2�1 ¼ s0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωm þ βk

p
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωm � βk

p
� �

, (29)

FIG. 4. Single waveguide made of an Al rod of length L and diameter D. The blue longitudinal line and its image on the opposite side of the rod (blue dot) represent the
boundary lines fixed on the cylindrical surface (Sec. II D 7).

FIG. 5. Vibrational properties of an Al rod (D ¼ 12:7 mm, L ¼ 0:6096m) with two fixed surface longitudinal line boundary conditions: (a) RMS(cos(θ)) vs frequency and
mode classification according to Eq. (19) (red squares: transversal modes, blue squares: mixed modes, and green squares: longitudinal modes). Also, amplitude
(RMS(u3)) vs frequency (blue drop lines). (b) Transmission spectrum. (c) Longitudinal eigenmode shape for the three-node mode (55 238 Hz) generated by plotting the
module of the displacement field as a function of position (blue region are nodes and red are antinodes). (d) As in (c) but for the four-node eigenmodes (56 181 Hz).
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with s0 being a complex constant and em,3�1 are the eigenvectors of
the coupling matrix M,

e1,3�1 ¼ 1ffiffiffi
3

p
1
1
1

0
@

1
A, e2,3�1 ¼ 1ffiffiffi

2
p

1
0
1

0
@

1
A, e3,3�1 ¼ 1ffiffiffi

6
p

1
�2
1

0
@

1
A, (30)

each corresponding to the eigenvalues λ1 ¼ 0, λ2 ¼ 1, and λ3 ¼ 3
and the dispersion relations

ω2
1 ¼ β2k2, ω2

2 ¼ β2k2 þ α2, ω2
2 ¼ β2k2 þ 3α2: (31)

Equation (28) has the same form as a Dirac spinor of relativistic
quantum mechanics, for which the amplitudes are defined by the
product of the orbital angular momentum (OAM) eigenvectors and
the spinor vector amplitudes. In this case of coupled long waveguides,

the OAM part is the eigenvectors êm of the coupling matrix M. The
spinors amount to the two possible amplitudes for the longitudinal
elastic waves sm,2�1. From there, we name the êm eigenvectors as
OAM vectors, or just OAMs, and the sm,2�1 two-vectors as spinor or
spinor-like terms. The elastic spinor components depend on the
eigen-frequencies and k vectors and their ratio is fixed, which gives
their a coherent character in the sense that if we know one of the
spinor components, then we also know the second one.

Equation (25) is linear; hence, a linear combination of solu-
tions of the form given by Eq. (27) is also a solutions. A linear
superposition for a given frequency ω ¼ ω2 ¼ ω3 of the form

Ψ6�1(x, t) ¼ C2e2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωþ βk2

p
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω� βk2

p
� �

eik2x eiωt þ C3e3

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωþ βk3

p
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω� βk3

p
� �

eik3x eiωt (32)

FIG. 6. Vibrational properties of three coupled (epoxy glued) Al rods with a free boundary condition: (a) Scheme of the system: the length is L ¼ 0:6096m, the diameter
is D ¼ 12:7mm, the length of the epoxy glued region is Le ¼ L, its width is We ¼ 6:35 mm, and the gap between rods is h ¼ 2mm. (b) Dispersion relations of the three
branches. (c) Example of a mode shape for the branch (1, �2, 1) at f ¼ 31 kHz. (d) Example of a mode shape for the branch (1, 0, �1) at f ¼ 21 kHz. (e) Example of a
mode shape for the branch (1, 1, 1) at f ¼ 7:3 kHz.
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will be nonseparable given that the spinor and spatial plane waves
cannot be extracted as a common factor, as it is possible in the case
where both frequencies and k vectors are the same, yielding a
tensor product of a linear combination of the coupling matrix
eigenvectors (or the OAM part) with the spinor-like part.

So far, we have examined idealized one-dimensional infinite
systems. We turn our attention next to the design of real systems
exhibiting two f-bit branches and nonseparable states.

D. Three-dimensional two f-bit system

1. Normal modes, dispersion curves, and mode shapes

The three coupled Al rod system with free boundaries [Fig. 6(a)]
has a large number of eigenmodes and dispersion branches, which

make the analysis difficult. To overcome the difficulties, we compare
eigenmode shapes and driven-mode shapes, which are generated by
driving the three rod system at one of their same side ends, with a
harmonic force, along the theoretical OAMs. Observing the eigen-
and driven-mode shapes, we select those that are mainly longitudinal
in character for each OAM branch [Fig. 6(b)]. In some cases, at low
and high k values, it was not possible to separate the mode shapes.
Examples of selected mode shapes for each OAM branch are shown
in Figs. 6(c)–6(e).

As expected, Fig. 6(b) shows the presence of one linear dis-
persion branch and two f-bit branches. The example of mode
shapes generated by a color contour plot of the module of the
elastic field vector clearly exhibits the OAM dependency and their
mainly longitudinal character. In the case of the ê1 ¼ (1, 1, 1)

FIG. 7. Displacement fields (mode shapes) of the system made of three glued Al rods described in Fig. 6(a) driven according to Eq. (33) as a function of the C2 constant.
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branch at f ¼ 7:3 kHz, Fig. 6(e) demonstrates that there are two
node regions across the three rods (dark blue) and they are vibrat-
ing longitudinally along their axes with the same amplitudes. For
the ê1 ¼ (1, 0, �1) branch at f ¼ 21 kHz, Fig. 6(d) depicts the
characteristic low excitation expected for the middle rod as well as
four nodes going across the rods, attesting the longitudinal charac-
ter of the oscillations. Similarly, for the ê1 ¼ (1, �2, 1) branch at
f ¼ 31 kHz [Fig. 6(c)], we see that the central oscillations are
wider as compared with the side rods and the presence of four
nodes across the rods.

2. Observation of nonseparability in a two f-bit system

Let us turn our attention to the equally important question of
the realization of a nonseparable linear combination of eigenmode
vibrations. We start by choosing a frequency at which the modes
for the (1, 0, �1) and (1, �2, 1) OAM branches can be excited, but
the (1, 1, 1) cannot. From the dispersion relations in Fig. 6(b), we
determined that such a frequency is at 32 960 Hz. Then, we drive
the system with an external harmonic force of frequency 32 960 Hz,
applied to all three same side ends of the rods. Such a force ampli-
tude in the OAM basis has the form

F ¼ 15:6C2
1ffiffiffi
2

p (1, 0, �1)þ C3
1ffiffiffi
6

p (1, �2, 1), C3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C2

2

q
,

(33)

where C2 and C3 are constants and the 15.6 factor accounts for dif-
ferences in the strength of the excitation. Such a factor was found
by driving the system first with C2 ¼ 0 and C2 ¼ 1 and scaling the
(1, 0, �1) OAM until the maximum displacements for both cases
become the same.

The module of the displacement vector fields for each value of
the C2 constant is shown in Fig. 7. We see how we go from the
(1,�2,1) mode shape for C2 ¼ 0 to the (1,0,�1) mode shape for
C2 ¼ 1. Any of the states in between are non-separable because
they correspond to linear combinations of waves having different
wave vectors [Eq. (32)] and OAM.

The footprint of the OAM effect is seen in the displacement
field relation of the three rods. The side rods displace less than the
central one for the (1, �2, 1) OAM (C2 ¼ 0) and it transitions with
increasing C2 to a state where the central rod does not vibrate, but
the side rods do vibrate with the same maximum amplitude of the
displacement.

The spinor signature is in the interference pattern created by
the forward and backward waves generated by the driving force
and the free boundary condition on each rod. The signature is
modulated by the OAMs so that even when the spinors themselves
are the same for each rod, the interference pattern changes.

IV. CONCLUSIONS

The theoretical investigation of one-dimensional-infinite
models has predicted the existence of f-bit systems, which have a
parabolic band structure with a finite cutoff frequency in the long
wavelength limit. The f-bits usually are described by KG-like equa-
tions, which admits a Dirac-like factorization, leading to amplitudes

of the displacement field with pseudo-spin characteristics. In
systems with more than one f-bit branch, such a dependency
allows generating nonseparable states. However, physical or practi-
cal realization of such systems relies on the persistence of such
properties in three-dimensional and finite systems and that is not
guaranteed, in principle. Therefore, to design and investigate the
feasibility of practical realization of f-bit systems, we have devel-
oped finite elements computational models based on COMSOL
Multiphysics®, which allow us to solve the corresponding wave
equations numerically as well as to drive the systems as needed.

We have applied the devised approach to extract dispersion rela-
tions, displacement fields, and transmission spectra of rods of finite
lengths made of Al, either acting alone or coupled to other rods by
epoxy glue along their longitudinal directions. We found that single
rod systems with fixed cylindrical surfaces, or fixed boundary lines on
that surface, have only a dispersion relation branch and it is of a
f-bit character. Therefore, in these three-dimensional-finite systems
with fixed boundaries, we observe the general theoretical tendency,
predicted by one-dimensional-infinite models of single or coupled
rods with fixed boundary lines, of behaving like pure f-bit systems.

We also found that nonseparability is a characteristic also
present in three-dimensional-finite systems with at least two f-bit
branches. More specifically, by driving a system of three coupled Al
rods, we demonstrate that we are able to create elastic displacement
fields that are nonseparable as a tensor product of an OAM part
and a spinor-like term.

Hence, the f-bit characteristics predicted by one-dimensional-
infinite theoretical models persist in three-dimensional-finite systems
according to the computational models, which, therefore, confirm the
feasibility of the physical realization of f-bit systems and provide
insights for their design. The approach and its results have been suc-
cessfully used for the experimental design of such systems and could
be adapted to the investigation of other quantum analog phenomena.
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