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a b s t r a c t

Externally driven arrays of coupled elastic waveguides have been shown to support
nonseparable elastic superpositions of states that are analogous to entangled Bell states
in a multipartite quantum system. Here, the ‘‘subsystems’’ correspond to spatial eigen
modes characterized by the amplitude and phase difference between the waveguides.
We show experimentally that the driving frequency, the relative amplitudes, and phases
of the drivers applied to the waveguides, are critical parameters for exploring the
elastic Bell states’ Hilbert space. We also demonstrate experimentally the capability of
tuning the degree of nonseparability of the superpositions of elastic states. The degree
of nonseparability is quantified by calculating the entropy of entanglement. Finally, in
support of the experimental observations, we show theoretically that nonlinearity in the
elastic behavior of the coupling medium (epoxy) and heterogeneities in the coupling
along the waveguides can serve as design parameters in extending the range of the
elastic Bell states’ Hilbert space that can be explored.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Quantum entanglement, the nonclassical correlation between quantum systems, is an essential ingredient for ap-
lications in quantum information science [1]. One of the properties of quantum entangled states is nonseparability,
hich is however not limited to quantum systems. Nonseparable states of classical waves [2] are sometimes referred
o as classically or nonquantum entangled [2–14]. While such classical nonseparable waves do not exhibit the uniquely
uantum property of nonlocality, they manifest all other properties of locally entangled states [15], such as nonseparable
inear combinations of tensor product states between different degrees of freedom of the same physical manifestation
imilar to the degree of freedom of a single quantum particle [16]. They have found applications in quantum information
cience [4,17,18] and metrology [4,19]. Another rather important application is in quantum computing since quantum
omputing harnesses the nonseparability of entangled states [20]. To date, the study of local nonseparable superpositions
f states has essentially focused on the area of optics [7,19,21–30], and much less attention has been paid to other
lassical waves such as elastic waves; yet, remarkable quantum analogous behaviors of sound are emerging, such as
he notions of elastic pseudospin [31–33] and Zak/Berry phase [34–36]. Recently, we have shown that parallel arrays of
ne-dimensional (1D) elastic waveguides composed of aluminum rods that are coupled along their length with epoxy and
re driven externally, can capture the characteristic of nonseparability (classical entanglement) between different degrees
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f freedom of the same physical manifestation [12–14]. These nonseparable superpositions of elastic states, analogous to
ell states, are constructed as a superposition of elastic waves, each a product of a spatial eigen mode part and a plane
ave. The plane wave part describes the elastic wave along the length of the waveguides and the spatial eigen modes
haracterize the amplitude and phase difference between waveguides i.e., across the array of waveguides. These states
ie in the tensor product Hilbert space of the two-dimensional subspaces associated with the degrees of freedom along
nd across the waveguide array. Experimentally we demonstrated that the amplitude coefficients of these nonseparable
tates are complex due to the dissipative nature of the coupling medium. Navigating portions of the elastic Bell states’
ilbert space necessitated means of tuning these complex amplitudes [12–14]. In the area of optics, the generation of
ell states and the tuning of their amplitudes is well established [37–41]. In optics, the phase of the entangled states
re commonly used to create a wide range of quantum states with controllable degrees of entanglement [40,42]. The
hase of the entangled states are selected by changing the half-wave plate and quarter-wave plate orientation [40,42].
owever, to the best of our knowledge, no similar work has been done in elastic systems. It is the objective of the
resent study to experimentally demonstrate the possibility of not only generating elastic Bell states but also tuning
heir amplitude over a broad region of the Bell states’ Hilbert space. More specifically, we show experimentally that the
requency, relative amplitudes and phases of the external drivers applied to the waveguides, are critical parameters for
avigating the elastic Bell states’ Hilbert space. To explain the experimental observations, we have developed a theoretical
odel, which in addition to dissipation, accounts for the weak elastic nonlinearity of the medium (epoxy) coupling the
ssentially linear waveguides, as well as for heterogeneities in the coupling medium along the waveguides. Nonlinear
lasticity and heterogeneity of the coupling medium are shown to be potential design parameters in extending the range
f the elastic Bell states’ Hilbert space that can be explored via the external drivers.

. Background

We briefly review the theory behind the behavior of nonseparable elastic states in parallel arrays of coupled 1D elastic
aveguides. The experimental realization of nonseparable superposition of elastic states requires a mechanical system in
hich elastic wave behavior is effectively described by:{

H.IN×N + k2cMN×N
}
UN = 0, (1)

where H
(
=

∂2

∂t2
− β2 ∂2

∂x2

)
is the dynamical differential operator that models the propagation of elastic waves along the

waveguides (in x−direction) and β is proportional to sound speed in the waveguides. In Eq. (1), kc is the coupling stiffness
etween the waveguides, UN is a vector and Ui, i = 1, 2, . . . ,N , represent the displacement of the ith waveguide. IN×N

is the N × N identity matrix and the coupling matrix operator MN×N describes the elastic coupling between waveguides.
The experimental system can be modeled as N = 3 mass and spring chains that are elastically coupled with a total of Nm
identical masses in each chain. The discrete elastic equations of motion are then given by:

mün − knn (un+1 − 2un + un−1) − kc′ (vn − un) = 0,
mv̈n − knn (vn+1 − 2vn + vn−1) − kc′ (un − vn) − kc (wn − vn) = 0,

mẅn − knn (wn+1 − 2wn + wn−1) − kc′ (vn − wn) = 0,

In the above equation, un, vn, andwn are the displacements of nth mass of chain 1, 2, and 3, respectively, and n =

2, . . . ,Nm −1. The term knn describes the coupling constant of the nearest-neighbor interaction, kc′ describes the stiffness
of the springs that couples the chains, and m is the mass. In the limit of long wavelength compared to the inter-mass
spacing a, the equations of motion of the three coupled linear harmonic chains of masses and springs become:

∂2u
∂t2

− β2 ∂2u
∂x2

− k2c (v − u) = 0,

∂2v

∂t2
− β2 ∂2v

∂x2
− k2c (u − v) − α2 (w − v) = 0,

∂2w

∂t2
− β2 ∂2w

∂x2
− k2c (v − w) = 0,

where β2
= knna2/m and k2c = kc′/m. In a simple form:(

∂2

∂t2
− β2 ∂2

∂x2

)
.

( 1 0 0
0 1 0
0 0 1

)( u
v

w

)
+ k2c

( 1 −1 0
−1 2 −1
0 −1 1

)( u
v

w

)
= 0.

y comparing the above equation with Eq. (1), we obtain the coupling matrix as

M3×3 =

( 1 −1 0
−1 2 −1

)
.

0 −1 1
2
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herefore, for the case of three coupled waveguides (N = 3), the coupling matrix takes the form M3×3 =

( 1 −1 0
−1 2 −1
0 −1 1

)
and the three spatial eigen vectors corresponding to the eigen values λ1 = 0, λ1 = 1, and λ3 = 3, are: E1 =

1
√
3

( 1
1
1

)
, E2 =

1
√
2

( 1
0

−1

)
, E3 =

1
√
6

( 1
−2
1

)
[13]. E1 corresponds to a linear band passing through the origin of

wave numbers, E2 and E3 correspond to two parabolic bands with non-zero spatial eigen values [12,43,44]. The spatial
modes represent the displacement across the array of waveguides. In addition, the plane waves degrees of freedom along
the waveguides can be represented by eikx, where k is a wave number. Solution to Eq. (1) are therefore product of a plane
wave part and a spatial eigen mode. Subsequently, since Eq. (1) is linear, it supports superposition of elastic states, each
a product of a plane wave part and a spatial eigen mode. By selecting plane wave parts with different wave numbers
and different spatial eigen modes, these superpositions of elastic waves can be chosen to be non-factorizable i.e., they
cannot be written as a single product of a plane wave and a spatial mode. These acoustic nonseparable superpositions
are analogous to Bell states [12–14].

2.1. Creation of a nonseparable Bell state

By driving the array of coupled waveguides with an external driver, F⃗ eiωt , where the components of the vector F⃗
represent the driving force acting on each waveguide and ω is the driving frequency, one can excite a nonseparable
superposition of states whose characteristics are given by

UN (t) =

(∑
k′

A1E1eik
′x

+

∑
k′′

A2E2eik
′′x

+

∑
k′′′

A3E3eik
′′′x

)
eiωt . (2)

Except for special choices of A1, A2, and A3, the above superposition cannot be factored as a single product, and thus is
nonseparable. The k′, k′′, k′′′ are the wavenumbers associated with the dispersion relations of each spatial eigen mode
E1, E2, E3. In Eq. (2) a discrete summation is used over the wave numbers, since in the case of a finite number of finite
length waveguides, the plane wave and spatial parts are both discrete. The Bell state coefficients Ai; i = 1, 2, 3 are complex
amplitudes [12]

Ai (k) =
Ei.F⃗

ω2
0,i (k) − ω2 − iηω

,

here ω0,i; i = 1, 2, 3 are the eigen frequencies corresponding to the bands of the Ei spatial mode eigen vectors and
is the viscous damping coefficient that models the experimental dissipation. We would like to note that though the
issipation term appears on the right side of Eq. (2), to theoretically calculate the eigenvectors (Ei; i = 1, 2, 3) we have

used a conservative system (Eq. (1)). As a result, we assume that the coupled waveguides experimental eigenmodes are
close to the eigenvectors obtained from (1) using the eigenmode analysis. We also note from Eq. (2) that at steady state,
the displacement field, UN , takes the form of a linear combination of all frequency modes [13,45]. However, by exploiting
the orthogonality of E1, E2 and E3, one may employ a driving force that can select specific spatial eigen modes or linear
combinations of spatial modes. For instance, a linear combination of E2 and E3 such that F⃗ = (1 − α) E2 + αE3, with the
parameter α, controls the contribution of the two linear combinations of spatial eigen modes E2 and E3. For α = 0, the
nput driving force F⃗ = E2, will excite a pure E2 spatial mode, and for α = 1, a pure E3 mode. For all other α values, the
tate is a nonseparable superpositions of E2 and E3.
In addition to the particular driving force F⃗ that may be a linear combination of E2 and E3, and since the complex

mplitudes Ai (k) may have narrow bandwidths, it is also possible to choose a particular isofrequency state ωI that will
imit the excitation, predominantly, to a single plane wave state in the bands of the E2 and E3 modes, i.e., k2 for E2 spatial
ode band and k3 for E3 spatial mode band [12,43,44]. In this case, Eq. (2) reduces to,

UN (t) =
(
A1E1eik1x + A2E2eik2x + A3E3eik3x

)
eiωI t . (3)

or the sake of compactness, we use the ket notation of quantum mechanics [14] to represent the plane wave and spatial
odes. For this, we denote the discrete spatial states by |Ei⟩ and the discrete plane wave states by |ki⟩. Eq. (3) becomes:

UN (t) = (A1 |E1⟩ |k1⟩ + A2 |E2⟩ |k2⟩ + A3 |E3⟩ |k3⟩) eiωI t . (4)

Finally, we can also consider driving the system with more complex forms. For instance, we choose F⃗ eiωI t =[
(1 − α) E2 + eiφ0γαE3

]
eiωI t . For a fixed α value i.e., for a particular nonseparable state, by tuning γ it is possible to see

the effect of the nonseparable state on the strength of the input force. We have also introduced a driving phase parameter
φ0. This is the relative phase between the component of the driver that excites the E2 and E3 spatial modes. In this paper,
we investigate experimentally and theoretically how the complex quantities Ai can be tuned via the control parameters

α, γ , φ0, and ωI .

3



M.A. Hasan, T. Lata, P. Lucas et al. Wave Motion 113 (2022) 102966

2

w

W
p

3

M
n
p
a
t

S
o
s

W
α

.2. Bell state complex coefficients

The Bell state complex coefficients can be determined by the expression [12–14]:

A1 |E1⟩ |k1⟩+A2 |E2⟩ |k2⟩+A3 |E3⟩ |k3⟩ =
A1
√
3

( 1
1
1

)
|k1⟩+

A2
√
2

( 1
0

−1

)
|k2⟩+

A3
√
6

( 1
−2
1

)
|k3⟩ =

⎛⎝ C1eiφ1

C2eiφ2

C3eiφ3

⎞⎠ , (5)

here Ci; C1 = max (U1 (t)) , C2 = max (U2 (t)) , C3 = max (U3 (t)), are the maximum amplitudes of each waveguide and
φi; i = 1, 2, 3 are the phases of each waveguide. Since only relative phase is meaningful, the right-hand side of Eq. (5)
can be further simplified in terms of the phase differences, φij; i, j = 1, 2, 3 and i ̸= j, between the transmissions of each
waveguide as:⎛⎝ C1

C2e−iφ12

C3e−iφ13

⎞⎠ , (6)

where φ12 = φ1 −φ2, φ13 = φ1 −φ3, and for the sake of simplicity we assume φ1 = 0. Using Eq. (5), we then can calculate
the complex amplitudes Ai in terms of measured waveguide amplitudes and relative phases.

2.3. Entropy of ‘‘entanglement’’

Let us form an orthonormal basis for the states of the coupled elastic waveguides in the form of the four tensor
products: Φ1 = |E2⟩ |k2⟩ , Φ2 = |E2⟩ |k3⟩ , Φ3 = |E3⟩ |k2⟩ and Φ4 = |E3⟩ |k3⟩. The two vectors |E2⟩ and |E3⟩ form an
orthonormal basis for a two-dimensional Hilbert space, HE . |k2⟩ and |k3⟩ form another orthonormal basis for a two-
dimensional Hilbert space, Hk. Φ1, Φ2, Φ3, and Φ4 form the basis of a four-dimensional Hilbert product space HE,k = HE
⊗ Hk. In that basis, when the drivers are set to excite only isofrequency superpositions of only spatial eigen modes E2
and E3, UN takes the nonseparable form:

UN (t) = (A2Φ1 + A3Φ4) eiωt . (7)

To quantify the level of nonseparability of this superposition of states, we calculate the entropy of classical ‘entangle-
ment’ [12,14,46]. The expression for the entropy of ‘‘entanglement’’, S, can be written as [12,14]:

S = −
1

|A2|
2
+ |A3|

2

(
A2A∗

2ln
A2A∗

2

|A2|
2
+ |A3|

2 + A3A∗

3ln
A3A∗

3

|A2|
2
+ |A3|

2

)
. (8)

e note that if A2 = A3, then S (ρOAM) = ln2, and the state is maximally ‘‘entangled’’. By controlling the amplitude and
hase of A2 and A3, one can control the degree of nonseparability of elastic Bell states.

. Experimental results

The experimental set up is the same as that reported in Refs. [12–14]. Some details are provided in the Supplemental
aterial. To experimentally realize a nonseparable superpositions of E2 and E3 spatial modes, as shown in Eq. (4), we
eed to drive the coupled waveguides at isofrequency state ωI and need to tune that state between the E2 and E3
ure states. We identified two isofrequency states, ωI = 48.8 kHz and ωI = 60 kHz that enable us to overlap E2
nd E3 modes (see [12,13] and the Supplemental Material Note S1). When the system is in a pure E2 spatial mode,
he phase differences between the output transmissions for each pair of rods should be φ

E2
12 = φ

E2
23 =

π
2 , φ

E2
13 = π ,

where φij =
180
π

cos−1
(

Ui(t).Uj(t)
|Ui(t)||Uj(t)|

)
is the phase difference between rods i and j. Similarly, for a pure E3 mode, the phase

differences should be φ
E3
12 = φ

E3
23 = π, φ

E3
13 = 0. From a practical point of view, pure states are an idealization; irrespective

of how carefully a state is prepared, uncertainties in the experimental system and setup make it difficult to experimentally
realize pure states. In our elastic system, uncertainties can arise from material impurity, nonuniformity in the epoxy
coupling, lack of identical responses among different transducers, nonuniform contact pressure between the waveguides
and the ultrasonic couplant. Therefore, in the experiment, to obtain an output of almost pure E2 or E3 spatial mode, we

found that we need to use the driving forces F⃗ =
1

√
2.01

( 1
−0.1
−1

)
= E2′ and F⃗ =

1
√
6.96

( 1
−2
1.4

)
= E3′ , which result

in the phase differences φ
E2′
12 = 0.59π, φ

E2′
23 = 0.46π, φ

E2′
13 = 0.95π and φ

E3′
12 = 0.99π, φ

E3′
23 = 0.95π, φ

E3′
13 = 0.06π (see

upplemental Material Note S2 for details). These states are the closest to pure states that we were able to achieve with
ur experimental setup. We note that because of the small deviation from the pure states 2 and 3, the system must also
upport some small contribution from the E1 mode.
In the subsequent subsections, we will tune the system with a driving force of the form

F⃗ eiωI t =
[
(1 − α) E2′ + eiφ0γαE3′

]
eiωI t . (9)

e will analyze two approaches to navigate the Hilbert space of superpositions of elastic states: (i) fixed φ0 but variable
and γ , and (ii) fixed α and γ but variable φ . Here, the phase φ is introduced simply by using the signal generators.
0 0

4
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Fig. 1. Measured amplitude and phase characteristics of the elastic states in the space of rods (left panels) and calculated amplitudes and
hase of states in the Hilbert space of superpositions of product states (right panels). These states are excited by the external driving force

⃗eiωI t ; F⃗ = (1 − α) E2′ + eiφ0γαE3′ with φ0 = 0. Dependency on α of the (a) maximum amplitudes of each waveguide Ci , (b) phase differences(
φij
)
between pairs of rods, (c) modulus of the complex amplitudes |Ai|, and (d) arguments φAi . In the plots, asterisks correspond to γ = 0.5, circles

correspond to γ = 1.0, and squares corresponds to γ = 2.5. The driving frequency ωI = 48.8 kHz. The amplitudes are in arbitrary units and the
phases are in degrees. Since

(
φA2 − φA3

)
is not well defined close to the pure spatial modes E2′ or E3′ (i.e., at α = 0 amplitude A3 ∼= 0, and at α = 1

amplitude A2 ∼= 0), graph (d) is limited to the range α = [0.2, 0.9].

3.1. Exploring the Hilbert space by tuning the relative driving amplitudes

We first drive the coupled waveguides at isofrequency state of ωI = 48.8 kHz for different values of α and γ , and for
a fixed φ0 = 0. The amplitude and phase characteristics are reported in two spaces, namely the space of the rods (Eq. (6))
and the Hilbert space of superpositions of product states (see Eq. (7)). Fig. 1 shows the measured amplitude and phase
characteristics of the elastic states at each rod. Figs. 1a and 1b show the variations of the maximum amplitudes of each
waveguide Ci and the phase difference

(
φij
)
between the transmissions for each pair of waveguides as functions of α.

From these plots we indeed see that the parameter α can be used to tune the eigen mode superposition, since for α ̸= 0
and α ̸= 1, the output mode is a linear combinations of spatial eigen modes E2, E3 with corresponding k-labeled plane
waves. In the plots, asterisks correspond to γ = 0.5, circles correspond to γ = 1.0, and squares correspond to γ = 2.5.

We now determine the Bell state complex coefficients for the different driving amplitudes. For the case of finite length
waveguides, the wave numbers are integer multiples of 2π/2L, where L is the length of the finite waveguides. Because of
variabilities in the experimental system as well as the setup, we anticipate that the superposition of states that is excited
may include E1 spatial modes in addition to the desired E2 and E3 modes. We therefore seek superpositions in the form

A1k1
√
3

( 1
1
1

)
|k1⟩ +

A1k1′
√
3

( 1
1
1

)
|k1′⟩ +

A2
√
2

( 1
0

−1

)
|k2⟩ +

A3
√
6

( 1
−2
1

)
|k3⟩ =

⎛⎝ C1
C2e−iφ12

C3e−iφ13

⎞⎠ . (10)

e introduce, for the sake of completeness, two E1 modes which wave vectors k1 and k1′ possess corresponding
requencies close to the driving frequency (see Supplemental Material Note S1). Hence, for the case of isofrequency state
5



M.A. Hasan, T. Lata, P. Lucas et al. Wave Motion 113 (2022) 102966

a
x

w
m
a
|

c
p
a
E
s
o
t
p
p

s
A
n
s
t
u

3

t
b
F
u
f

w
f
C
1

t ωI = 48.8 kHz, we find k1 =
2π
2L 12, k1′ =

2π
2L 13, k2 =

2π
2L 13 and k3 =

2π
2L 11 (see Supplemental Material Note S1). At

= L, where the measurements are performed, the plane wave terms are all equal to ±1 and Eq. (10) reduces to:

A1
√
3

( 1
1
1

)
+

A2
√
2

( 1
0

−1

)
+

A3
√
6

( 1
−2
1

)
=

⎛⎝ C1
C2e−iφ12

C3e−iφ13

⎞⎠ , (11)

here A1 = A1k1′
− A1k1

. Using Eq. (11), we calculate the complex amplitudes Ai. Fig. 1c shows the modulus of the
easured complex amplitudes |Ai| as a function of the driving parameter α. From Fig. 1c we observe, as anticipated, that
s the superposition evolves from the E2 pure state (α = 0) to the E3 pure state (α = 1), the value of |A2| decreases and
A3| increases. Moreover, though the amplitude |A1| shows some variation with α, as expected, it remains quite small in
omparison to |A2| and |A3|. We also observe that the variation of |A1| is not linear, which may be the consequence of
resence of nonlinearity in the experimental sample (this point will be discussed in more details below in Eqs. (13)–(14)
nd in the Numerical Section). The elastic state of the system is essentially a nonseparable state of the form given by
q. (7). From Fig. 1d we see that though the absolute values of the arguments of the complex amplitudes i.e., φAi varies
ignificantly with the excitation parameter α, the relative phase between the modes 2 and 3, i.e.,

(
φA2 − φA3

)
varies

nly weakly with α. From Fig. 1d we also observe that for fixed α, the relative phase between the E2 and E3 parts of
he nonseparable superposition of states also varies weakly with γ . In summary, for fixed φ0 = 0, tuning the driving
arameters αandγ leads to significant variations in the modulus of the complex amplitudes of elastic superpositions of
roduct states but affects only weakly the phase of the nonseparable states.
We now calculate the entropy of classical ‘entanglement’ using Eq. (8), to quantify the level of nonseparability of the

uperposition of elastic states. From Fig. 1c we see that the complex coefficient A1 is much smaller in comparison to
2 and A3. Hence, we have neglected the effect of A1 in Eq. (8). We calculate the entropy of ‘entanglement’, S, for the
onseparable states corresponding to γ = 1 and α = 0.5. Using the data of Fig. 1, we determine S = 0.97ln2. This
uperposition of states is only about 3% less than ommlln2, the entropy of two maximally ‘‘entangled’’ elastic states. Note
hat for α = 0 and α = 1, the pure states 2 and 3 possess an entropy of ‘‘entanglement’’ of zero. The parameter α enables
s to control the level of nonseparability of the superpositions of elastic states in a predictable manner.

.2. Exploring the Hilbert space by tuning the relative driving phases

We have seen that the driving amplitude parameters have only a small effect on the relative phase between modes in
he superposition of elastic states. In this subsection, we attempt to achieve more significant control on the relative phase
etween complex amplitudes in the Hilbert space of product states. For this, we are again using the external driving force

⃗eiωI t =
[
(1 − α) E2′ + eiφ0γαE3′

]
eiωI t but with a nonzero phase φ0 between the two spatial amplitudes E2′ and E3′ . We

se two output terminals of each of the three signal generators: one generator for each rod. We then drive the rods as
ollows:

F⃗ sin (ωI t) =

( F1
F2
F3

)
sin (ωI t) =

⎛⎜⎝ (1 − α)
⏐⏐FFG1CH1

⏐⏐ sin (ωI t) + αγ
⏐⏐FFG1CH2

⏐⏐ sin (ωI t + ∆φFG1 + φ0
)

(1 − α)
⏐⏐FFG2CH1

⏐⏐ sin (ωI t) + αγ
⏐⏐FFG2CH2

⏐⏐ sin (ωI t + ∆φFG2 + φ0
)

(1 − α)
⏐⏐FFG3CH1

⏐⏐ sin (ωI t) + αγ
⏐⏐FFG3CH2

⏐⏐ sin (ωI t + ∆φFG3 + φ0
)
⎞⎟⎠ (12)

here F1, F2, F3 are the excitation amplitudes of rod 1, 2 and 3, respectively. In Eq. (12), the sub-script FGi stands for ith
unction generator and CHj stands for jth output channel of the generator, and hence FFGiCHj is the output voltage of channel
Hj of the FGi signal generator. For the current study, we use:

⏐⏐FFG1CH1

⏐⏐ = 1,
⏐⏐FFG1CH1

⏐⏐ = 0.1,
⏐⏐FFG1CH1

⏐⏐ = 1,
⏐⏐FFG1CH2

⏐⏐ =

,
⏐⏐FFG1CH2

⏐⏐ = 2,
⏐⏐FFG1CH2

⏐⏐ = 1.4; ∆φFG1 = 0, ∆φFG2 = 0, ∆φFG3 = 180, where ∆φFGi =
{(

FFGiCH1 × FFGiCH2

)
< 0

}
× 180 in

degree; and φ0 varies from 0 to 360 degree in steps of 10 degrees.
Again, in Fig. 2, we report the measured amplitude and phase characteristics of the elastic states in the space of rods

(Fig. 2a,b) and the calculated amplitudes and phase of these states in the Hilbert space of superpositions of product states
(Fig. 2c,d). Fig. 2 shows the dependency of these amplitudes and phases as a function of the driving phase φ0. We again see
that manipulation of the parameter φ0 can be used to tune the eigen mode superposition characteristics in the space of
the rods (see Figs. 2a and 2b). In the plots, the value of γ equals 1 and asterisks correspond to α = 0.25, circles correspond
to α = 0.50, and squares correspond to α = 0.75. Eq. (11) is again used to convert the representation of the elastic field
from the space of the rods to the Hilbert space of superpositions of product states. Fig. 2c shows the variations of |Ai| as
functions of the driving parameter φ0. In contrast with Fig. 1c, these moduli do not show drastic variations with φ0 for
fixed α and γ values, though they vary nonlinearly with φ0. However, now the phase of the complex amplitudes and the
phase difference between the E2 and E3 parts of the nonseparable superposition of states,

(
φA2 − φA3

)
, varies significantly

with φ0 (see Fig. 2d). The driving phase parameter φ0 provides a mean to significantly tune the phase of the complex
amplitudes of nonseparable elastic states. Moreover, we note that the differences between the complex amplitude phase
difference and input driving phase i.e.,

({
φA2 − φA3

}
+ φ0

)
depends on α, regardless of input frequency values (see Figs. 3a

and 3b). A larger α results in higher deviation of
({

φA2 − φA3

}
+ φ0

)
from the horizontal line (see Figs. 3a). Moreover,

larger α’s create higher magnitudes of both the rods amplitudes (see Fig. 2a) and the complex amplitudes (see Fig. 2c).

This observation suggests that the output phase of the nonseparable states varies nonlinearly with the relative driving

6
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C
a
T

a
a
s

T

Fig. 2. Measured amplitude and phase characteristics of the elastic states in the space of rods (left panels) and calculated amplitudes and phase of
states in the Hilbert space of superpositions of product states (right panels). Dependency on φ0 of (a) the maximum amplitudes of each waveguide
i , (b) the phase differences

(
φij
)
between pairs of rods, (c) the modulus of the complex amplitudes |Ai|, and (d) the arguments φAi . Here, γ = 1

nd asterisks correspond to α = 0.25, circles correspond to α = 0.50, and squares correspond to α = 0.75. The driving frequency ωI = 48.8 kHz.
he amplitudes are in arbitrary units, the phases are in degrees, and φ0 varies from 0 to 360 degrees.

mplitudes and phases applied to the waveguides. We hypothesize that deviations from the ideal model given by Eq. (1)
re at the origin of such experimentally observed nonlinear behavior shown in Figs. 1–3. Let us focus again on the Bell
tate complex coefficients for the particular driving force F⃗ = (1 − α) E2′ + eiφ0γαE3′ :

Ai (k) =
Ei.
[
(1 − α) E2′ + eiφ0γαE3′

]
ω2

0,i (k) − ω2
I − iηωI

=
(1 − α) Ei.E2′ + eiφ0γαEi.E3′

ω2
0,i (k) − ω2

I − iηωI
. (13)

herefore, the Bell state coefficient A3 (k) will be:

A3 (k) = γαE3.E3′

eiφ0

ω2
0,3 (k) − ω2

I − iηωI

= γαE3.E3′eiφ0

[{
ω2

0,3 (k) − ω2
I

}
+ iηωI

]{
ω2

0,3 (k) − ω2
I

}2
+ (ηωI)

2

= γαE3.E3′eiφ0

√{
ω2

0,3 (k) − ω2
I

}2
− (ηωI)

2e
i

{
tan−1

(
ηωI

ω2
0,3(k)−ω2

I

)}

{
ω2

0,3 (k) − ω2
I

}2
+ (ηωI)

2
,

7
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Fig. 3. Dependency on φ0 of
{(

φA2 − φA3

)
+ φ0

}
. The phases are in degrees and φ0 varies from 0 to 360 degrees. System parameter: γ = 1.

hich leads to,

φA3 = φ0 + tan−1

(
ηωI

ω2
0,3 (k) − ω2

I

)
.

Hence, we find:({
φA2 − φA3

}
+ φ0

)
=

[
tan−1

(
ηωI

ω2
0,2 (k) − ω2

I

)
− tan−1

(
ηωI

ω2
0,3 (k) − ω2

I

)]
. (14)

or fixed values of ω0,2 (k) , ω0,3 (k) and ωI , from Eq. (14) it is clear that for the case of (ideal) linearly coupled waveguides,
he phase of the nonseparable states, φA2 − φA3 , should vary linearly with φ0. This is true even in the presence of the
complex amplitude A1 (k), since it has no effect on Eq. (14). However, the deviations of the experimental results of Figs. 1–
3 compared to the ideal system, unambiguously shows a dependency of the nonseparable states with the input driving
amplitudes and phases. These differences suggest that additional phenomena, such as nonlinearity or irregularities, are
at play in the experiment and need to be taken into account to improve the linear model (1). Hence, in the next section
we develop a nonlinear numerical model based on discrete mass–spring waveguides. The model is used to study the
complex behavior of nonseparable states in coupled waveguides. In particular, we are interested in identifying the physical
parameters which lead to the unexpected nonlinear relationship between the phase difference between the complex
amplitudes of a nonseparable superposition of elastic states and the driving phase.

Finally, we note in Fig. 3 that the experimentally measured phase differences
{(

φA2 − φA3

)
+ φ0

}
versus φ0 exhibit

n overall oscillatory structure with a period of 360 degrees. These plots also show some finer features with possibly a
horter period.

. Numerical modeling: Mass-spring waveguides

To numerically model the coupled waveguides, we assume that each rod constituting the experimental waveguide can
e represented by a 1D crystal with harmonic approximation. Each rod consists of finite number of masses and springs
ith no pre-compression. The masses are constrained to move horizontal direction only. Therefore, the experimental
oupled waveguides can be represented as a set of three 1D crystals with longitudinal harmonic springs coupled them
long their length.
The experimental results of Section 3 illustrate that the coupled elastic waveguides does not comprise an ideal linear

ystem. We have also observed that the relative phases and amplitudes of the nonseparable states vary nonlinearly with
he relative driving amplitudes and phases applied to the waveguides. For this, we investigate the effect of nonlinearity
n the elastic behavior of the medium coupling the waveguides. The coupling medium is constituted of epoxy, which
8
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ay exhibits some degree of nonlinearity in its elastic responses. In addition, inspection of the epoxy coupling between
he aluminum rods shows some imperfections and irregularities along the direction of the rods. We therefore must also
ccount for the possibility of a variation of the stiffness of the coupling along the rods. Hence, for a set of three coupled
ass–spring chains with a total of Nm identical masses in each chain, the discrete elastic equations of motion are given
y:

mün − knn (un+1 − 2un + un−1) − k12L,n (vn − un) − kNL (vn − un)
2
+ ηu̇n = 0, (15a)

mv̈n − knn (vn+1 − 2vn + vn−1) − k12L,n (un − vn) − k23L,n (wn − vn) − kNL (un − vn)
2
− kNL (wn − vn)

2
+ ηv̇n = 0, (15b)

mẅn − knn (wn+1 − 2wn + wn−1) − k23L,n (vn − wn) − kNL (vn − wn)
2
+ ηẇn = 0. (15c)

In Eq. (15), un, vn and wn are the displacements of nth mass of waveguides 1, 2, and 3, respectively. These quantities
orm the spatially discrete components of the 3 × 1 vector Un for a continuous system. m denotes mass, η is the viscous
amping coefficient that models the dissipation, and knn is the coupling constant of the nearest-neighbor interaction

along a waveguide. kL and kNL describe the linear and nonlinear stiffness of the springs that couples the masses between
he waveguides organized in a planar array. The effect of nonlinear behavior of the coupling medium is modeled
y incorporating a quadratic nonlinearity, which is common in heterogeneous materials containing microcracks [47].
mperfections and irregularities in the epoxy coupling are modeled by adding a randomly varying stiffness to the coupling
long the waveguides. Hence, in Eq. (13), k12L,n and k23L,n describe the random linear stiffness of the springs that couples

the masses between the waveguides (1,2) and (2,3), respectively. The specific values of the model Eq. (15) physical
constants are Nm = 48, η = 18.24 Ns/m, kL = 33.5 × 106 N/m, kNL = 1.0 × 106 N/m, k12L,n = kL + 0.5 rand (Nm, 1),
k23L,n = kL + 0.5 rand (Nm, 1) and k12L,n ̸= k23L,n (see Supplemental Material Note S3), where rand() function generates
uniformly distributed random numbers between 0 and 1. Here, through the expression kL + 0.5 rand (Nm, 1) we have
modeled the stiffness irregularities in the epoxy coupling between waveguides 1 and 2, and between waveguides 2 and
3.

To computationally generate the band structure, the Spectral Analysis of Amplitudes and Phases method [48] is
employed, which we have recently developed and entails the use of molecular dynamics simulation. From the numerically
obtained band structure plot (see Supplemental Material Note S3), we again identify two isofrequencies (48.1 kHz and
61.2 kHz) corresponding to (nearly) overlapping E2 and E3 modes. We can therefore use these frequencies to numerically
realize a nonseparable superposition of states (including Bell states) and study the exploration of the corresponding Hilbert
space. In the next subsections, we initially calibrate the model (Eq. (15)) by taking into account the nonlinear elastic
behavior in the stiffness of the coupling, before combining nonlinearity and random variations in the stiffness in the last
subsections.

4.1. Nonlinearly coupled waveguides

For the case of nonlinearly coupled mass–spring waveguides with no random variations in the stiffness of the coupling,
we begin the numerical simulation by assuming k12L,n = k23L,n = 0.

4.1.1. Exploring the Hilbert space by tuning the relative driving amplitudes
In accord with the experiment, first we create a nonseparable state by exciting the coupled mass–spring waveguides

at a frequency of 48.1 kHz with variable αandγ but with fixed φ0. Fig. 4 shows the results for the amplitudes and phases
presented in the same format as the experimental results. Fig. 4a shows the variations of the peak amplitudes of the last
mass at the end of each waveguide Ci; C1 = max

(
uNm (t)

)
, C2 = max

(
vNm (t)

)
, C3 = max

(
wNm (t)

)
, and Fig. 4b shows the

phase difference
(
φij
)
between the displacements at the end of the waveguides for each pair of waveguides as functions

of α, where φ12 =
180
π

cos−1
(

uNm (t).vNm (t)
|uNm (t)||vNm (t)|

)
, φ23 =

180
π

cos−1
(

vNm (t).wNm (t)
|vNm (t)||wNm (t)|

)
, φ13 =

180
π

cos−1
(

uNm (t).wNm (t)
|uNm (t)||wNm (t)|

)
. From

igs. 4a and 4b we see that as is observed in the experimental results of Fig. 1, the parameter α can be used to numerically
une the eigen mode superposition. In the plots, asterisks correspond to γ = 0.5, circles correspond to γ = 1.0, and
quares correspond to γ = 2.5. Using Eqs. (5) and (6), we determine the complex coefficients Ai, and report their
espective modulus and phase in Figs. 4c and 4d. Due to the presence of weak nonlinearity, from Fig. 4c we observe
eak nonlinear behavior of the coefficient Ai in the output response, as is observed in the experimental results of Fig. 1c.
oreover, the complex amplitudes are also a nonlinear function of γ , as is also observed in the experiment. Finally, from

he inset of Fig. 4d we see that similarly to the experimental results of Fig. 1d, the phase of the nonseparable states
φA2 − φA3

)
depends only weakly on the driving amplitudes applied to the waveguides (α and γ ). Hence, in accord with

he experimental results of Fig. 1, Fig. 4 also demonstrates that for a fixed φ0, tuning the driving amplitudes (α and γ )
eads to significant variations in the modulus of the complex amplitudes of elastic superpositions of product states but
oes not effect significantly the phase of the nonseparable states. We therefore proceed to the next subsection to achieve
ore significant control on the phase of the nonseparable states by tuning φ .
0

9
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c

Fig. 4. Tuning of nonseparable states by the external driving force F⃗ eiωI t ; F⃗ = (1 − α) E2 + eiφ0γαE3 , and driving frequency ωI . Dependency on α of
the (a) maximum amplitudes of the mass at the end of each waveguide Ci , (b) phase differences of displacement at the end of each waveguide

(
φij
)

between pairs of chains, (c) modulus of the complex amplitudes |Ai|, and (d) arguments φAi . In the plots, asterisks correspond to γ = 0.5, circles
orrespond to γ = 1.0, and squares correspond to γ = 2.5. The driving frequency ωI = 48.1 kHz. The amplitudes are in arbitrary units and the
phases are in degrees.

4.1.2. Exploring the Hilbert space by tuning the relative driving phases
Fig. 5 shows the dependency of the coupled mass–spring waveguides when we tune the input phase of the nonsepa-

rable states φ0. From Figs. 5a and 5b we again observe that manipulation of the parameter φ0 can be used to numerically
tune the eigen mode superposition (in agreement with Fig. 2). In all the plots, the value of γ equals 1 and asterisks
correspond to α = 0.25, circles correspond to α = 0.50, and squares correspond to α = 0.75. From Fig. 5c it is clear that
due to the presence of weak nonlinearity, we see small variations of the complex coefficients |Ai| with the input phase
φ0, as is also observed in the experimental results of Fig. 2c. On the other hand, for the case of (ideal) linearly coupled
waveguide i.e., in the absence of nonlinearity, from Eq. (13) it is clear that the modulus of complex amplitudes |Ai| has
no effect on the variations of φ0. However, due to the presence of nonlinearity, from Fig. 5d we observe that the quantity({

φA2 − φA3

}
+ φ0

)
is not a horizontal line, and depends on α in a way reminiscent of the experimental results of Fig. 3.

This clearly shows the need for nonlinearity in the numerical model since the linear model shown in Eq. (14) predicts
only a linear relationship of

{
φA2 − φA3

}
with φ0, and hence suggests that the experimental system includes nonlinearity.

The aforementioned findings suggest that the coupled elastic waveguides in our experiment functions as a nonlinear
system. One thing to point out from Fig. 5 is that though the nonlinear model can fairly capture the experimental
findings of Fig. 3, however the variations of

({
φA2 − φA3

}
+ φ0

)
with φ0 is not well matched between the experimental

system and the nonlinear numerical model (Figs. 3 and 5d). The experimental results exhibit oscillatory variations of({
φA2 − φA3

}
+ φ0

)
with nearly a full period over the range of φ0 (Fig. 3), whereas the nonlinear model shows almost two

full period over the range of φ0 (Fig. 5d). In addition, as mentioned above, inspection of the epoxy coupling between the
aluminum rods shows some imperfections and irregularities along the direction of the rods. To account for these, in the
next subsection we add random variations of the stiffness of the coupling along the waveguides of the numerical model
to more closely match the variations of

({
φ − φ

}
+ φ

)
with φ as is observed in the experiment.
A2 A3 0 0

10
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Fig. 5. Dependency on φ0 of the (a) maximum amplitudes of the last mass of each waveguide Ci , (b) phase differences
(
φij
)
between pairs of chains,

c) modulus of the complex amplitudes |Ai|, and (d)
({

φA2 − φA3

}
− φ0

)
. In the plots γ = 1 and asterisks correspond to α = 0.25, circles correspond

o α = 0.50, and squares correspond to α = 0.75. The driving frequency ωI = 48.1 kHz. The amplitudes are in arbitrary units and the phases are in
egrees.

.2. Nonlinearly coupled waveguides with random distribution of stiffness

We are now considering the combined effect of two of the phenomena, nonlinearity and randomness in the stiffness,
hich we believe may be playing a role in the observed experimental behavior. Fig. 6a shows the variations of{
φA2 − φA3

}
+ φ0

)
with φ0 for a particular sets of k12L,n and k23L,n. By adding a uniform distribution of stiffness combined with

onlinearity, in Fig. 6a we observe a superposition feature: an almost single period in the variations of
({

φA2 − φA3

}
+ φ0

)
with φ0 that matches well with the experimental result of Fig. 3. Nonlinearity of stiffness is crucial since as can be
seen from Eq. (14) for the case of linearly coupled waveguides with no nonlinear stiffness of the coupling, the quantity{
φA2 − φA3

}
should vary linearly with φ0, which is however not the case for the experimental results (as shown in Figs. 1–

3). Uniform distribution of stiffness, on the other hand, is needed to match the period of variations of phase of the
nonseparable states with the input phase φ0. Finally, we perform Fourier transform in space for the particular sets of
k12L,n and k23L,n to reveal the wave numbers and hence the periodicity associated with the spatial pattern of the stiffness.
From Figs. 6b and 6c we see that k (2L) = 3 and 13 has the highest amplitudes for the case of k12L,n, and k (2L) = 5 has
the highest amplitudes for the case of k23L,n. The identification of few dominant wave numbers for the particular choices
of k12L,n and k23L,n indicates that the coupling stiffness has some form of periodicity along their length and hence, we infer
that the elastic waveguides are mutually coupled periodically. This suggests that both nonlinearity and periodicity in the
coupling stiffness enables us to navigate a broad segment of the Hilbert space of product states.

5. Conclusion and discussion

Externally driven classical elastic waveguide systems, which are composed of parallel arrays of 1D aluminum rods
coupled along their length with epoxy, are able to capture the characteristic of classical ‘‘entanglement’’ i.e., they can
11
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Fig. 6. (a) variations of
({

φA2 − φA3

}
+ φ0

)
with φ0 . In the plots γ = 1 and asterisks correspond to α = 0.25, circles correspond to α = 0.50, and

quares correspond to α = 0.75. (b) and (c) Spatial Fourier transform of the coupling stiffness k12L,n and k23L,n to reveal the wave numbers and hence
he periodicity associated with the spatial pattern of the stiffness. The driving frequency ωI = 48.1 kHz. The amplitudes are in arbitrary units and
he phases are in degrees.

upport local nonseparable superpositions of product states. These nonseparable states, analogous to the Bell states, are
he superposition of elastic waves, each a product of a plane wave part and spatial eigen modes. We have experimentally
xplored the different ways of manipulating the complex amplitude coefficients of these Bell states by driving these
lastic systems externally. We have demonstrated that the frequency, relative amplitudes, and phases of the external
rivers applied to the waveguides, are essential parameters for navigating the Hilbert space of these elastic product states.
e have observed that the modulus of the complex amplitude of the nonseparable states can be significantly tuned by

arying the relative amplitudes used to drive the waveguides. On the other hand, the phase of the drivers applied to the
ndividual waveguides significantly affects the phase of the nonseparable states. Remarkably, our experimental results
how that the phase difference between the complex amplitude coefficients of nonseparable states varies nonlinearly and
ignificantly with the relative phase between the drivers. This unanticipated nonlinearity suggests that additional physical
henomena may be at play in the experiments. Therefore, we have developed a numerical model based on elastically
oupled mass–spring waveguides, with the aim of shedding light on these possible phenomena. This model goes beyond
inear elasticity and includes the nonlinear elasticity of the coupling medium between waveguides. It also incorporates
andomly distributed variations in stiffness of the coupling medium along the waveguides to mimic possible experimental
eterogeneities. Comparison between the experimental behavior and the numerical results confirms the importance of
onlinearity and inhomogeneities of the coupling stiffness. Adding a quadratic nonlinearity and randomly distributed
eterogeneities in the stiffness of the coupling springs of the model, we were able to achieve qualitative agreement with
he experimental findings. The model further shows that the presence of nonlinear elasticity and variations in stiffness
f the coupling medium provide a means to extend the range of the elastic product states’ Hilbert space that can be
xplored via external drivers. Nonlinear elasticity and heterogeneities in the medium coupling the waveguides can serve
s parameters in the design of elastic systems which will enable the creation and manipulation of nonseparable states
ver a wide expanse of product states’ Hilbert space. Expanding access to a broader range of the Hilbert space of elastic
roduct states is essential for developing elasticity-based quantum analogue devices and quantum analogue information
rocessing platforms since the Hilbert space dimension is the primary resource for quantum computation [49]. A quantum
omputer must have a Hilbert space whose dimension, in principle, is able to solve problems of arbitrary size. Moreover,
avigation of the Hilbert space will eventually lead to the possibility of operating on the states, enabling the transformation
f states analogous to quantum gates and, therefore, eventually developing algorithms.
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