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Abstract. The electronic contribution to the driving force for segregation to a curved interface between 
a cylindrical fiber of insulator embedded in a metal matrix is calculated. The solute/curved-interface 
binding energy is shown to vary as the inverse of the radius of curvature of the interface in the limit 
of a small radius. This result implies that the propensity for segregation of curved interfaces is larger 
than that of planar interfaces. 

1. Introduction 

The phenomenon of segregation of solute atoms 
to interfaces plays an important role in deter- 
mining the bulk properties of polycrystalline ma- 
terials. It is now well recognized that the extent 
of solute segregation is affected by the physical 
characteristics of the interface. To date most 
experimental and theoretical investigations have 
concentrated on planar interfaces. Very little 
attention has been given to the effect of inter- 
facial morphology on segregation. Of particular 
interest is the relationship between the interface 
curvature and the driving forces for solute seg- 
regation. Experimental evidence for a such a 
relationship is scarce but indications of curvature 
effects on interfacial segregation exist [1]. 

The driving forces for solute segregation in 
metallic alloys include elastic and electronic con- 
tributions. In this paper we introduce a simple 
model of a curved interface which enables the 
calculation of the electronic contribution to the 

binding energy of a heterovalent impurity to the 
interface. The system is composed of a metallic 
matrix containing a cylindrical inclusion of in- 
sulating material. This model is therefore only 
applicable to metal/insulator interfaces such as 
those present in metal-matrix/insulator-fiber com- 
posites. A first order approximation for the bind- 
ing energy of a single solute atom in a metallic 
medium in terms of the medium Green's func- 
tion is presented in section 2. In section 3 we 
report the calculation of the Green's function 
of the metallic medium containing a cylindrical 
inclusion of insulating material. The Green's 
function of the metal is calculated within the 
nearly free electron approximation. The effect 
of the curvature of the cylindrical inclusion on 
the propensity for segregation of the impurity 
atom is discussed in section 4. 

Finally, general conclusions regarding the phe- 
nomenon of segregation to curved interfaces are 
drawn in section 5. 
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2. Electronic Contribution to Solute Energy 

The purpose of this section is to obtain within 
a simple model the electronic contribution to 
the energy of a point defect in some metal- 
lic medium. The metallic medium is described 
within the nearly free electron model, thus limit- 
ing the applicability of the model to simple met- 
als. 

We first model a heterovalent solute atom im- 
mersed in the medium at some position r0 as a 
perturbing potential in the form [2]: 

V(r) = AS(r - ro) (1) 

where 5 is the usual delta function, and A a con- 
stant measuring the strength of the perturbation. 
In the rest of this paper we will consider only 
weak perturbations. The correction to a non- 
degenerated electronic level of the medium re- 
sulting from the perturbing potential is expressed 
to first order in the form: 

c(r0,E) = (r162 (2) 

where [r is an eigen vector of the unperturbed 
medium associated with the energy E. Substitut- 
ing equation (1) into equation (2) yields: 

e(ro) = Ano(ro,E) (3) 

The quantity n0(r0, E) corresponds to the con- 
tribution of electrons with energy E to the elec- 
tronic density at the location r0 in the unper- 
turbed medium. This latter equation is particu- 
larly useful as the electronic density n0(r0, E) can 
be advantageously determined from the imag- 
inary part of the Green's function g(r0,r0, E) 
of the unperturbed medium through the follow- 
ing relation: 

no(ro, E) = - l l m g ( r o ,  ro, E) (4) 

The total electronic density at the point ro can 
then be obtained at 0~ by integrating no(to, E) 
over all possible states inside the Fermi surface: 

2 fEF 
n(r0) = - - I m  (5) J dEg(ro, ro,E) 

7r 

The factor 2 in equation (5) is inserted to account 
for the spin degeneracy. 

The total energy of the point defect located in 
the medium at r0 is: 

e(ro) = An(to) (6) 

The preceding relationship enables us to eval- 
uate the electronic contribution to the energy of 
an impurity by simply calculating the electronic 
density function. 

3. Green's Function of Medium with Curved 
Interface 

The model medium with a curved interface, we 
consider in this paper, is a composite medium 
constituted of a metallic matrix with an infinitely 
long cylinder of insulating material oriented along 
some axis Z. The radius of the cylinder is de- 
noted by R. The Green's function of the metallic 
medium in the composite medium is determined 
within the framework of the Interface Response 
Theory of continuous media [3]. The Green's 
function g(r, r') at any two points (r, r') in the 
space, D, spanned by the metallic medium is 
given by: 

g(DD) = C(DD) 

- G(DM)G -1 (MM)G(MD) 

+ G(DM)G-I(MM)g(MM) 

x G-I(MM)G(MD) (7) 

where M means that r and r' are limited to the 
domain of the interface between the metal and 
the insulator. G(r,r ')  is the Green's function 
of an infinite medium, g(MM) is the interface 
response function of the composite or, in other 
words, the Green's function of the composite 
medium limited to points on the interface. Since 
there are no electronic states at the interface 
between the metal and the insulator, the inter- 
face response function, g(MM), vanishes and the 
Green's function of the metallic medium is easily 
evaluated in terms of the Green's function of an 
infinite metallic medium as: 

g(DD) = G(DD) 
- G(DM)G -1 (MM)G(MD) (8) 

The Green's function of an infinite metallic 
medium within the approximation of the nearly 
free electron is solution of the equation: 

[E - H(r)]G(r, r') = 5(r - r') (9) 
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where E is the energy and 6 ( r -  r') is the Dirac 
function. The Hamiltonian, H, of the metal is 
given by: 

h 2 
H(r)  = -~--~mA + /~m (10) 

where Em is the constant potential energy in the 
metal and h, the reduced Planck's constant. 

Since the infinite medium has translational 
symmetry along the Z axis, the Green's func- 
tion can be Fourier analyzed: 

G(r , r  I) = f ~ G ( r , , r ; , k z ) e  'kz(z-z') (11) 

where rp and rrp are two dimensional vectors 
perpendicular to the Z axis. With this Fourier 
transformation, equation (9) reduces to: 

B [ a ,  + k~la(r,,  6 ,  kz) = 6(r, - 6 )  (12) 

where B = h2/2m; kz being the component of 
the wave vector k along the Z axis. Ap is the 
two dimensional Laplacian. The quantity, k, is 
defined by k 2 = ( E -  Em)/B - k2g. 

The symmetry of our problem suggests the use 
of polar coordinates. We separate the angular 
and radial coordinates by expanding the Green's 
function in the form: 

oo 

G(r , r ' , k z )=  ~ le' '(~'-~")Gm(r,r' ,kz) 
~ T r ~  - O 0  

(13) 

Introducing (13) into equation (12) expressed 
in polar coordinates and making use of the or- 
thogonal properties of the set e 'm~, we obtain: 

, 

_ b(r - r') (14) 
r 

The solutions to this equation are [4]: 

am (r, r', kz) 

f Jm(kr)gm(kr') 
- {Jm(kr')gm(k ) 

if  r < r ' ]  
if r > r' / 

(15) 

where Jm and Hm are the Bessel and Hankel 
functions of order m, respectively. 

Equation (8) can now be used to evaluate the 
radial part of the Green's function of the metallic 

medium with a cylindrical interface. Here, the 
space of the interface, M, is reduced to the radius 
R. The Green's function at r' = r is given by: 

gin(r, r) = Gin(r, r) - Gm(r, R) 
x G~I(R, R)Om(R, r) (16) 

In equation (16) we have dropped the variable 
kg for the sake of simplicity; the dependence on 
kz is now considered implicit in the parameter k. 

Inserting the appropriate solutions (15) into 
equation (16) yields: 

gm(r, r) = rc -~-~iHm(kr) 

Jm(kR) Hm(kr) 
x { J m ( k r ) -  Hm(kR) } 

(17) 

The relationship, Hm = Jm +iYm, between the 
HankeI function and the Bessel functions is used 
to extract the imaginary part of the radial Green's 
function in equation (17): 

7r 
Im g,~(r,r) - 2B 

((Ym(kr)Jm(kR) - Jm(kr)Ym(kR)) 2 
X 

k 

(18) 
To calculate the electronic density in the vicin- 

ity of the metal/insulator interface we only need 
the imaginary part of the radial Green's function 
since the angular variable qa' = qo and the terms 
exp[ im(~-  eft)] reduce to a one. The electronic 
density is a function of the radial distance from 
the interface and is independent of the angu- 
lar variable. 

4. Effect o f  Curvature  on  So lu te / In ter face  Bind-  
ing Energy  

The solute/interface binding energy given by 
equation (6) is proportional to the electronic 
density near the interface. The radial electronic 
density function is: 

= - -  dE Irngr,(r,r ) (19) 
7 r  

f l l = - o o  

where Imgm(r,r)  is given by equation (18). 
An expression for the electronic density cannot 
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be obtained analytically. However, the scaling of 
the binding energy with the radius of curvature 
of the interface can be evaluated provided a few 
approximations are made. First, we consider 
only the contribution of electrons with kz = O, 
thus assuming that the electrons do not propa- 
gate along the cylinder axis. Furthermore, we 
take the constant potential, Era, in the metal as 
origin of energies, simplifying the parameter, k, 
to v/(E/B). 

We now also consider the case of a solute atom 
located in the neighborhood of the interface. 
That is, we choose r = r0 = R + b r .  With this 
choice we can use a Taylor expansion to express 
the Bessel functions in r to first order: 

Jm(kr) = Jm(kR) + J~(kR)kSr + . . .  

Ym(kr) = Yn~(kR) + Y~m(kR)k6r +""  (20) 

We make use of the well known relations for 
derivatives of Bessel functions: 

J~(x) = -Jm+~(x) + mJ~(x) 
27 

Y:(27) = -ym+l(x) + 2y.,(27) (21) 
X 

as well as 

2 
J m + l ( X ) y m ( x )  - -  J m ( x ) Y m + l ( , i g )  = ~ (22) 

7r27 

After some algebraic manipulations we obtain: 

Im gin(r, r) 

~r { 4(6r) 2 } (23) 
-- -2---B 7r2R2[J2(kR) + Y~(kR)] 

We can now rewrite equation (19) in the form: 

8(&)2 
n(r) = 7r2R 2- k dk S(kR) (24) 

where S(kR) stands for the summation: 

oo 1 

s = E  (kR) + Y2( R) 
(25) 

kF in equation (24) is the modulus of the Fermi 
wave vector. 
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Figure 1. Variation of the  summation S with k R  (see text and 
equation (26) for details). The  quanti ty k R  is dimensionless. 

Making use of the fact that j 2  = j _ 2  and 
Y~ = Y~m the sum, S, is rewritten in the form: 

S = 
1 

~ ( k R )  + Yg(kR) 
oo 1 

+ 2 E J2m(kR ) + y2(kR) 
m~-I 

(26) 

We calculate this sum numerically in the case 
of an aluminum matrix for which kr = 1.75 A-1. 
We also consider a maximum radius of curvature 
of 400 ,4,. The summation is truncated at a 
maximum value for m of 1000. This high value 
insures that the summation converges for all kR 
in the interval [0, 700]. We report in figure 1 
the results of this calculation. For large kR, 
the summation is a quadratic function of kR 
which takes the form S(kR) = 2.47(kR) ~. This 
result implies that for large R, the energy of 
the point defect located in the vicinity of the 
curved interface is independent of the radius. 
This energy converges toward the energy of a 
point defect near a planar interface. In the limit 
of small kR, S varies nearly linearly with kR. In 
this limit, equation (24) predicts a point defect 
energy varying as the inverse of the radius of 
curvature of the interface. 
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Figure 2. Variation of the function f with the radius of curva- 
ture of the interface (see text and equation (28) for details). 

To elucidate the complete variation of the de- 
fect energy with the radius, equation (24) is 
rewritten in the form: 

8( r) y R n ( r ) -  ( ) (27) 

where 

I [krn du ,, S(u) (28) f (R)  = --~ JO 

The integral f (R)  is evaluated numerically us- 
ing the data of figure 1 and is reported in figure 2. 
The transition between small and large values of 
the radius takes place near 25 A,. For R larger 

o 

that 25 A, the defect energy remains approxi- 
mately constant as predicted. Below 25 ilk, f (R)  
rises drastically, indicating segregation enhance- 
ment. The typical radius of insulating fibers used 
in metal-matrix composites is much larger than 
this 25 A limit. Segregation to a metal/insulator 
interface will not be enhanced by the overall cur- 
vature of the fiber. However, irregularities along 
the fiber such as grooves or corners between 
facets such as those in silicon nitride whiskers 
may exhibit local radii of curvature on the order 
and even smaller than 25 A. These irregularities 
will then augment the driving force for segrega- 
tion in their vicinity. 

In summary, for small arguments, kR, the sum, 

S, varies as the argument itself. The electronic 
density in the vicinity of the curved interface 
between the metal and the insulator given by 
equations (23) and (19) scales as the inverse of 
the radius of the interface. The binding energy 
of a solute atom to the interface varies with R 
in the same way. This result suggests that the 
driving force for segregation to curved interfaces 
is stronger than that for segregation to planar 
interfaces. It also indicates that solute enrich- 
ment near interfaces increases as the radius of 
curvature decreases. 

5. Conclusions 

We have derived an expression for the electronic 
contribution to the binding energy of a solute 
atom near a curved interface between a metal 
and an insulator. Note, however, that this rela- 
tion is only valid for the case of a convex metallic 
interface. To calculate the binding energy near 
a concave interface, one could consider the case 
of a cylindrical metallic inclusion embedded in 
an insulating matrix. In this case, the imaginary 
part of the Green's function inside the metal van- 
ishes as the electronic states inside the cylinder 
are quantized. A different approach would then 
be necessary to evaluate the electronic density 
near the concave interface. This could be accom- 
plished by using wave functions instead of Green's 
function and will make the object of an other 
publication. Application of the Green's function 
method to curved metal/metal interfaces such 
as curved grain boundaries would require the 
conservation of the interface response function, 
g(MM), in equation (7) as this term does not 
vanish in this case. However, difficulties will be 
encountered from the fact that electronic states 
will be quantized in the metallic cylindrical fiber. 

The key result of this work is that in the limit of 
small radius of curvature, the electronic contribu- 
tion to the solute/interface binding energy varies 
as the inverse of the radius of curvature. The 
electronic energy is all but one contribution to 
the driving force for interfacial segregation. An 
elastic contribution to a solute/curved-interface 
binding energy can be calculated using Green's 
functions and the Interface Response Theory in 
a manner similar to that reported earlier in the 
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case of a planar interface [5]. The dependence on 
curvature of the elastic contribution to the solute 
energy can be obtained from simple arguments. 
The pressure difference, ZIP, across a curved sur- 
face for instance is inversely proportional to the 
radius of curvature. The work required for the 
formation of a point defect with excess volume 
ZIV is to first order APZIV, leading to an inverse 
relationship with .the radius of curvature. As the 
sum of the electronic and elastic energies, the 
total solute/interface binding energy should also 
vary as the inverse of the radius of curvature 
of the interface. The electronic driving force 
for segregation is shorter range than the elastic 
contribution due to Friedel type oscillations in 
the point defect/interface electronic energy. The 
electronic energy will play a dominant role on seg- 
regation in the very near vicinity of the interface. 
The electronic contribution to segregation will be 
even more important for metal matrices and insu- 
lator fibers with similar elastic moduli as the elas- 
tic driving force for segregation vanishes in the 
limit of media with identical elastic properties [5]. 

In conclusion, we have shown in this work that 
segregation should be significantly affected by in- 
terracial morphology and that solute enrichment 

should be more important near highly curved 
interfaces than near planar interfaces. 
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