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Abstract. A high-angle grain boundary is modeled as a planar defect characterized by its thickness and 
atomic density. We successively examine the elastic and electronic contributions to the solute/grain 
boundary binding energy. We deduce the effect of the grain boundary physical parameters on 
its propensity for segregation. The thickness of high-angle grain boundaries is not a fundamental 
parameter for segregation. The atomic density in the grain boundary controls the electronic binding 
energy. The rate of change of elastic constants with the density is the important factor in the elastic 
contribution to segregation. We conclude that segregation to boundaries with small excess volumes is 
not precluded. 

1. Introduction 

Equilibrium segregation at grain boundaries is 
an important phenomenon in view of the many 
drastic and sometime detrimental effects it may 
induce on the physical properties of polycrys- 
talline materials. Segregation in alloys occurs 
by concentration or depletion of the solute in 
the vicinity of grain boundaries. The extent of 
segregation has been observed by modern ana- 
lytical technics such as Auger microprobe [1] or 
field ion microscopy [2] to be limited to only a 
few atomic layers adjacent to the boundary or 
even a monolayer. It is also recognized that the 
extent of solute segregation is affected by the 
physical characteristics of the grain boundaries. 
For instance, in Fe-S alloys it was revealed that 
the amount of sulfur segregation increases with 
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the misorientation angle from small values to the 
high-angle regime [3]. Low-angle grain bound- 
ary can be represented by arrays of dislocations. 
Segregation at these boundaries arises from the 
interactions between the solute atoms and the 
elastic strain field of the dislocations [4]. Less 
is known about the relation between structure 
and propensity for segregation in the case of 
high-angle grain boundaries. A dependency of 
segregation on the crystallographic orientation of 
the boundary has been observed in Fe-P alloys 
[5]. Large amounts of phosphorus segregate to 
grain boundaries with high crystallographic in- 
dices, while the extent of segregation is smaller 
to low-indices planes. There appears to exist a 
relation between segregation propensity and the 
character of high-angle grain boundaries. One 
classifies boundaries into "special" boundaries 
and "general" boundaries on the basis of the de- 
gree of matching between the adjoining lattices. 
The special grain boundaries with higher degree 
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of order are often referred to as low energies. 
Special boundaries in Ni, as measured by the 
density of coincident sites Z', have shown weak 
tendency for sulphur segregation [6]. Further- 
more, in other experiments, a relation was found 
between segregation and grain boundary energy 
[7, 8] with least impurity content at low-energy 
boundaries. However, an evidence of segrega- 
tion of Re in a low-energy grain boundary in W 
exists [2]. 

On the other hand, experimental measure- 
ments of segregation in several metals have 
demonstrated a correlation between the grain 
boundary enrichment and the solubility of the 
solute [9]. The enrichment factor defined as the 
ratio of the grain boundary solute content and 
the bulk content is inversely proportional to the 
solute solubility limit [10]. 

A variety of theoretical models for equilib- 
rium segregation rely on a Gibbsian description 
of a bicrystal separated into grain boundary and 
bulk regions [11, 12]. These theories result in a 
segregation isotherm with limited predictive abil- 
ity regarding the local chemical and structural 
states of the system. Thus they are unable to 
provide an equilibrium solute concentration as 
a function of distance from the grain boundary. 
A recent mean-field theory of segregation [13] 
proposed a finer division of the crystal for uni- 
dimensional chemical and structural predictions 
at the atomic scale. 

The study of segregation in alloys at the micro- 
scopic scale has gained from realistic atomistic 
computer simulation techniques [14, 15]. The 
degree of realism of these calculations depends 
on the use of potentials to describe the interac- 
tions between atomic species. They also permit 
a clear description of the structural character of 
the grain boundaries studied, allowing the inves- 
tigation of the relationship between the structure 
of the interface and segregation. 

With finer models including the atomic struc- 
ture of grain boundaries, one gains in realism but 
one may lose in practicality. Indeed, the diffi- 
culties of implementation of such models render 
their application to the study of the very large 
multiplicity of grain boundaries quite elusive. 
Wolf [16] has shown (based on a large number 
of computer simulations of grain boundaries in 
various metals) that a limited set of physical pa- 

rameters, such as the interface excess volume, 
are related to the energy of high-angle grain 
boundaries. This result suggests that there may 
not be any need to know the structure of a 
grain boundary in detail, but that some more 
macroscopic variables may be used in place. 

In the hope that a similar reasoning can be 
extended to the problem of grain boundary seg- 
regation, we propose in this paper to develop a 
practical approach to modeling the phenomenon 
of segregation to high-angle grain boundaries in 
simple metals. In this approach, the core of a 
high-angle grain boundary is essentially consti- 
tuted of a stress-free thin slab of "bad" material 
sandwiched between two perfect crystals. The 
physical characteristics of the grain boundary are 
parametrized through a small number of vari- 
ables associated with the core region. Thickness 
and excess volume are the two basic parameters 
in the model. 

In simple metals, the driving forces for equilib- 
rium segregation include the reduction of excess 
energy by accomodation of the excess mechanical 
strain or electronic mismatch from solutes that 
fit poorly in the host material [4]. We calculate 
the solute/boundary binding energy within the 
frame of linear elasticity. An extension of the 
method for the determination of solute/boundary 
excess elastic energy to the electronic contribu- 
tion within a free electron model is straightfor- 
ward for simple metals. The elastic contribution 
to the binding energy is thus incorporated into a 
local isotherm theory, which permits the deriva- 
tion of segregant concentration profiles and grain 
boundary enrichment. Most significantly in this 
work is the possibility of relating chemical infor- 
mation to the high-angle grain boundary struc- 
tural parameters. 

In section 2, we derive the isotherm theory 
for the calculation of a theoretical solute con- 
centration profile. Sections 3 and 4 contain the 
determination of the elastic and electronic con- 
tributions to the solute binding energy in relation 
to the grain boundary structural variables. The 
effect of these structural parameters on segrega- 
tion are also reported. Finally, in section 5 some 
conclusions are drawn regarding the relationship 
between segregation propensity and the physical 
character of high-angle grain boundaries. 
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2. Local Isotherm Theory 

We initially define the geometric model of a 
high-angle grain boundary. The thin slab of bad 
material can be considered like a planar defect 
B sandwiched between two semi-infinite media 
A. The slab is centered on X3 = 0, where )(3 is 
a direction perpendicular to the interfaces; these 
ones localised on Xa = d=a. 

To develop a local isotherm theory, we divide 
the semi-infinite medium A into thin planar re- 
gions parallel to the grain boundary. The loca- 
tion of each planar region is identified by the 
integer parameter 1. Then, the energy of in- 
teraction of impurities with the grain boundary 
takes the form 

E = N E p(l)El(l), (1) 
1 

where p(l) is the fraction of atomic sites in the 
slab l occupied by impurities; El(I) is the posi- 
tion dependent binding energy of one impurity 
with the grain boundary; and N is the num- 
ber of atomic sites in each plane parallel to the 
grain boundary. 

On the other hand, there is a configurational 
entropy s(l) in each plane l [Np(l) sites are 
occupied among the N existing sites] 

N! 
s(1) = kBLn (Np)![N(1 - p)]!' (2) 

where kB is the Boltzmann constant. 
For large N, equation (2) leads to 

s = 

1 

= - k B N  ~ [ p L n p  + (1 - p)Ln(1 - p)]. (3) 
1 

We have to minimize the Helmotz free energy 
F = E - T S  with respect to the [p(/)] under 
the condition 

E p(1) = constant. (4) 
1 

By introducing a Lagrange multiplier A, we 
obtain 

E l ( l ) + k B T L n  1 p - A = 0 .  (5) - p  

For large l, formula (5) gives for 

A = kBTLn.  1 p_b. (6) 
- -  Pb 

where Pb is the impurity concentration in the 
bulk; then equation (5) reduces to 

Et(l) + k B T L n  p 1 - pb _ 0 (7) 
Pb 1 - - p  

o r  

Pb exp(-  Ez / k BT) 
P = 1 -- Pb + pbexp(--El /kBT)" (8) 

This Langmuir adsorption type equation applied 
to the case of grain boundary segregation was 
originally derived by McLean [11] for a fixed 
value of binding energy independent of posi- 
tion. In the limit of low concentration pb, and 
energy Et not much greater than a few kBT, 
the Langmuir-McLean equation (8) reduces to 
a locally varying isotherm 

P ~- Pb exp( - -EdkBT) .  (9) 

Let us now calculate the elastic contribution 
to the binding energy El. 

3. Elastic Contribution to the Binding Energy 

In the case of solutions of isovalent metals, 
size effects, and therefore elastic strain, may 
provide the essential part of the driving force 
for segregation [17]. Assuming full relaxation 
of strain energy at the interface, McLean [11] 
has used an expression for the elastic energy of 
a sphere inserted in a cavity of smaller radius 
derived by Pines [18] to estimate the segregation- 
binding energy. 

Here, an impurity atom is described within 
the Leibfried's model [19] in which a spherically 
symmetric point defect is represented by a su- 
perposition of three perpendicular double forces 
without moment centered at a point X0. This 
distribution of forces is written as 

0 
F,(X) = -A0b--X--~-6(X - X0), o~ = 1, 2, 3 

(10) 

where A0 is a constant with the dimension of a 
force times length. 

The strain energy associated with the intro- 
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duction of this body force is given by [20] 

1 fd3Xfd3X,F (X) 

g~ X')Fz(X'), (11) 

0 X where g~ (  , X') is the Green function of the 
medium. In the case of a point defect inserted 
into an A-B-A sandwich model of a bicrystal, 
the translational symmetry parallel to the planar 
defect permits a Fourier analysis of the Green 
function in the form 

g~ x') = f 
d2k// 

>< exp[ik//.(X// - X~/)], (12) 

where k / / and  X/ /are  both two-dimensional vec- 
tors with components (k~, k2, 0) and (X1,)(2, 0). 

For a medium isotropic in planes perpendic- 
ular to X3, the Green function can be further 
expressed in terms of simpler coefficients by ro- 
tating the vector k// into a vector (k/l, 0, 0) with 
the transformation 

/ k / /  k / /  

S(k//)= - ~  &k// �9 (13) 

0 0 

The Green function is written in the form 

g~ X~) = ~ sgl(k//) 
tt~ u 

g  (k//IX3, (14) 
and the strain energy becomes 

U, = z.. f S" j  (27r) f dX3 / dX;f,(k//IX3) 
,u, IJ 

• g~,~(k//]X3, X~)f2(k//IXg), (15) 

where 

y~,(k//lX3 ) = ~ S~(k//) f d2X//F~(X) 
Ot 

x exp(ik//.X//). (16) 

The * in equation (15) denotes the complex 
conjugate. 

The fz(k//lX3)'s of the symmetrical point de- 
fect defined in equation (16) are 

fl ( k / / [ X 3 )  = iAok//6(Xa - X03) exp(ik//.X)~ )) 
(17) 

f2(k//IX3 ) = 0 (18) 
d 

f3(k//IX3) = -Ao ~-~3 6(X3 - X03) 

x exp(ik//.X~)), (19) 

where Xl~ ) is the position of the point defect in 
a plane perpendicular to X3. 

Let us denote by Gll, 6'44 and C~1, C,~4 the 
elastic constants of the isotropic media A and 
B. The point defect is located in the left semi- 
infinite medium at a distance X03 from the center 
of the slab. 

The Green function, g, of the A-B-A sandwich 
is the sum of the Green function of an infinite 
medium, G~, and of the contribution of the 
interfaces between media A and B, G = g -  
Goo. The two dimensional Fourier transform 
of the Green function, G(k//IX3, X~), in the 
region X3 < - a  and X~ < - a  was reported in a 
previous publication [21]. 

The energy of interaction, Us, between the 
impurity and the planar defect is determined by 
inserting G into equation (15). This energy is 
obtained in the form 

f0 k~ u, 8~rC.~1_ dk//k// exp(-2k//[Xo31)r 

(201 
The upper limit, kn [22], for the integration 

over k// arises from the inability of continuous 
elasticity to represent the discrete nature of crys- 
tal lattices [23]. The function ~(k//) is given in 
an appendix. 

The energy U8 was calculated analytically in 
the limit of a very thin slab [21]. It was given as 

Us = A2~ vv' a 
161ten (1 + u)IX0314 

hll(1 + v=~=l)] 
• 1 h~4(1 + v)J I3(~), (21) 

where we defined v = C44/Cll; lJ = C~4/C~1; 
hll ffi C~ffC11; and h44 ffi CI44/C44 �9 W e  also 
used the notation 

h(()  = duu3exp(-u), ~ ffi 2k//lXo3[. (22) 
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This energy varies as the inverse fourth power 
of the distance from the planar defect in agree- 
ment with earlier calculation based on a capillary 
method [24]. The energy of interaction is pro- 
portional to the thickness of the planar defect 
and may change sign depending upon the ratio 
of elastic constants in both media A and B. 

Here, we integrate numerically equation (20) 
considering the constant A0 as an unknown quan- 
tity, to investigate the full dependency of the in- 
teraction energy upon the thickness of the slab 
and the position of the point defect. Since the 
energy Us is a quadratic function of the con- 
stant A0, its sign depends only on the values 
of the elastic constants. Therefore, we place 
ourself in the case of a negative energy, that is, 
C~I and C~4 less than Cll and C44 , respectively. 
These values are rationalized on the basis of 
lower atomic densities in the core of high-angle 
grain boundary [25]. We find that the energy of 
interaction is short range. 

For the sake of quantitative comparison with 
available experimental information, we focus our 
attention on the calculation of the grain bound- 
ary enrichment factor. We take the value of 
the interaction energy at X0a = - a  as repre- 
sentative of the impurity/grain boundary binding 
energy. As remarked by Smith and Ferrante 
[26], the magnitude of the thickness of high- 
angle grain boundaries is on the order of 5 A. 
Therefore, the elastic energy of the point defect 
within the slab cannot be taken as the binding 
energy in view of the limitation of continuous 
elasticity to calculating the phenomenon at an 
atomic scale [23]. 

Using equation (9), the grain boundary en- 
richment factor, /3, is defined as 

/3-p(--a)pb = e x p [  Us(-a)]kBT " (23) 

Hondros [9] obtained experimentally, for vari- 
ous metallic alloys, a linear relationship between 
Ln/3 and the logarithm of the solute solubility 
limit X,. A slope of approximately -1  appears 
to correlate Ln/3 and LnX,; this is for several 
solvents or crystalline form of the same solvent. 

We estimate the elastic contribution to the 
limit of solubility for impurities of low solubility 
from the relation [10, 27] 

Table 1. Input values for the calculation of the ratio R given 
in Fig. 2. 

CII(1011 N/m 2) Ca4(1011 N/m 2) kD(101~ m -1) 

W 5.120 1.530 1.23 
A1 1. I 13 0.261 0.96 

X --exp[  24, 
In this equation, the energy Uoo is the elastic 
energy of a spherical point defect embedded in 
an infinite isotropic medium of elastic constants 
Cll and 6'44. This energy was calculated from 
the Green function of an infinite isotropic elastic 
medium [20] in the form [28] 

A~k~ (25) 
U ~ -  121rZC1x. 

As remarked by Friedel [17], in the case of 
solutions of isovalent metals, the elastic contri- 
bution, X,, to the limit of solubility approaches 
the exact limit. 

Finally, eliminating the strength of the impu- 
rity's distribution of forces A0 between equations 
(23) and (24) yields the theoretical linear relation 
linking Ln/3 and LnX,. Only grain boundary and 
bulk physical parameters enter this relationship. 

In figure 1, we report the variation of the ra- 
tio R = Ln/3/LnXs with the half-thickness of the 
grain boundary for two types of metals, tungsten 
and aluminium. Tungsten is a transition metal 
for which the assumption of isotropicity is jus- 
tified, while aluminium is a nonisotropic simple 
metal. 

The grain boundary core density is approx- 
imately 0.9 times that of the bulk [26]. We 
calculate the elastic constants of the core as a 
function of density from relations between the 
elastic constants and density of the bulk with 
temperature [29]. The elastic constants are then 
given as linear functions of the atomic density. 
For this grain boundary core density, the elastic 
constants C[1 and C~4 are 0.4 times those of 
the bulk. All the physical constants used in this 
calculation are listed in table 1. 

These estimates are only approximate in the 
sense that the elastic constants only depend on 
density. It is clear, however, that crystallographic 
arguments should also control the values of the 
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Fig. 1. Variation of the ratio R with the half-thickness of the grain boundary for two types of metals. 
tungsten; (b) In the case of aluminium. 

4 

(a) In the case of 

grain boundaries elastic constants. It would be, 
therefore, necessary to perform precise calcu- 
lations of grain boundaries elastic constants as 
done by Wolf and Lutsko [30] with computa- 
tional methods. In their atomistic simulation 
of high-angle grain boundary in gold with 4% 
excess volume, Wolf and Lutsko calculated a re- 
duction of 17% and 97% in the grain boundary 
elastic constants C~1 and U~4. These numbers 
show that our estimation of the elastic constants 
for a grain boundary with 10% excess volume is 
reasonable. 

In figure 1, we observe that, in both cases, the 
ratio R shows drastic changes with the thickness 
in the range 0-3 A,. 

It remains nearly constant for thicknesses 
greater than 4 A. In this latter regime, which 
corresponds to typical high-angle grain bound- 
aries, this ratio takes a value approaching the 
experimental slope of -1.  This result is also in 
accord with a solid-solid interface analogue [27] 
of a theory of adsorption [31]. 

The weak dependency of R on the thickness 
above 3 A, is understandable on the basis of a 
smaller contribution.to the binding energy of one 
,ff the interfaces between the slab and a semi- 

infinite medium. In the limit of unphysically 
large thicknesses, the problem reduces to the 
interaction of a point defect with an interface 
between two isotropic elastic media [32]. 

An alternative model of a high-angle grain 
boundary is an interface between two semi- 
infinite media. In an anisotropic crystal, the 
solute atom sees the misoriented half-crystal in 
which it does not reside with average elastic 
constants different from those of the host half- 
crystal [33]. In this case, the energy of inter- 
action varies as the inverse of the cube of the 
distance. The major drawback of the model of a 
single interface between two semi-infinite media 
is that it does not allow the characterization of 
a grain boundary as a separate entity with its 
own physical characteristics. 

The grain boundary density affects the ratio, 
R, through variations in U~l and U~4. We plot 
in figure 2, R versus hn = C~x/Cn (assuming a 
similar variation for U'44/C44 [29]). We choose 
a constant value of 5 A for the thickness of the 
planar defect. All other physical constants are 
those of aluminium (See table 1). 

Two trivial cases are obtained for hn -- 1 
and 0. The former corresponds to a perfect 
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crystal without sites for segregation. The latter 
gives the free surface. A value for the ratio R on 
the order of -2.25 indicates a strong propensity 
for surface segregation of low solubility solute. 
For typical values of atomic densities in high- 
angle grain boundaries (15-5% lower than the 
bulk), hll takes values between 0.4 and 0.3. This 
corresponds to ratios R varying in the range -0.8 
to -1.1. 

It is worthy noting the insensitivity of the 
ratio R on the physical parameters of typical 
high-angle grain boundaries such as thickness. 
Furthermore, this ratio is independent of the 
solute character, as represented by the constant 
A0. This may explain the remarkable empirical 
correlation between grain boundary enrichment 
factor and solubility derived by Hondros [9] for 
a very wide range of systems. 

We observe also that the elastic binding energy 
is indirectly linked to the grain boundary atomic 
density through the elastic constants. The im- 
portant quantity here is h11. Assuming a linear 
variation between elastic constants and density, 
we write : 

hll = S(dB - da)/C11 + 1 (26) 

where dn and da are grain boundary and bulk 
atomic densities. S represents the variation of 
the elastic constants with density. It is a material 
property that determines the elastic contribution 
to segregation. 

This suggests a possibility of strong segrega- 
tion to grain boundaries with atomic densities 
approaching the bulk value. Consider the same 
boundary (as described by the grain misorien- 
ration and the crystallographic indices of the 
boundary plane) in two simple metals M1 and 
M2. Let $1 and Sz be the elastic constants 
variations with density of the two metals, re- 
spectively. We assume that 81 is much larger 
than $2 and that the grain boundary density dif- 
fers only slightly from the bulk value. The elastic 
contribution to segregation will be much greater 
for the metal M1 than for the metal M2. Indeed, 
the small density variation in the boundary gives 
rise to a significantly lower value for hll in the 
case of metal M1 than in the case of metal M2. 
A small value of hll results in a strong grain 
boundary enrichment factor. This explains why 
a grain boundary with little excess volume may 

exhibit a high adsorptive capacity for solutes. 

4. Electronic Contribution to the Binding Energy 

In metallic alloys of heterovalent elements [17], 
segregation is driven not only by the elastic misfit 
but also by valence effects. The purpose of this 
section is to obtain within a simple model the 
excess electronic energy of a point defect near 
a planar defect modeled again as a thin slab of 
metal /3 sandwiched between two semi-infinite 
perfect crystals of metal A. The calculations are 
conducted in the nearly free electron model, with 
step barriers at the interfaces, and are based on 
the Green function method [34]. The nearly free 
electron approximation limits the applicability of 
the model to simple metals. 

We model a solute atom located at r0 as a 
perturbing potential of the form [35] 

V(r) = A6(r - r0), (27) 

where 6(r) is the usual delta function, and A 
defines the strength of the perturbation. We 
consider the case of a small perturbation. 

Therefore, the correction to a non- 
degenerated electronic energy level of the system 
due to this potential is written, to first order in 
the perturbation V(r), in the form 

e(r0, E) = < ~IVI~ >, (28) 

where [ g' > is an eigen vector of the unperturbed 
system associated with the energy E. Introduc- 
ing equation (27) in equation (28) gives 

,(r0, E) = An0(r0, E). (29) 

The expression n0(r0, E) is the contribution of 
the electrons with energy E to the electronic 
density at location ro in the unperturbed sand- 
wich system. 

Furthermore, the electronic density n0(r0, E) 
can be advantageously determined from 
the imaginary part of the Green function, 
9(r0, r0, E) of the unperturbed system by the 
relation 

n(r0, E) = - 1  tmg(r0, r0, E). (30) 
qr 

Then the total energy of the point defect in 
the A - B - A  sandwich system is obtained at OK by 
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Fig. 2. Variation of R with the ratio of elastic constants, h11, for a grain boundary thickness of 5 A in aluminium. 

summing e(r0, E) over all possible states inside 
the Fermi surface 

e(ro) = An(to), (31) 

where n(ro) is the electronic density at location ro 

1 Im dEg(ro, r0, E). (32) n(ro )  = 

The calculation of the Green function is first 
performed in the two-dimensional space parallel 
to the interfaces by using the interface response 
theory [34]. This approach is similar to the one 
used in elasticity. 

The Green function is again expressed as 
g(k//; X03, X03; E) where k// is the wave vector 
parallel to the interfaces and X03 is the position 
of the solute atom in the direction X3 perpendic- 
ular to the interfaces. These expressions were 
derived in [36]. 

Finally, the electronic density is given by: 

1 Im dE n( ro )  = 

[ d2k// . 
(-~)2g(k//, Xo3; Xo3; E). (33) x 

In our calculation, the slab B and the perfect 

crystals A are characterized by their ground ener- 
gies EA, EB and their effective masses mA, roB. 
In the nearly free electron model approxima- 
tion, these parameters are related to the bulk 
electronic density n~ in metal i by the relation: 

h2 
E F - E , =  ~ \ 8 ~ r ]  , i = A , B .  (34) 

The Fermi level of both metals are aligned in 
the sandwich system at the energy EF. We also 
introduce the quantity 

B 

2 (35)  ai =k~/ (E Ei) with Bi= 2mi 

For the sake of simplicity, we choose the effective 
mass of the electron to be the same in both 
media A and B (BA = BB = B). The electronic 
density in the system A-B-A parallels the atomic 
density. Therefore, we choose a lower electronic 
density for the slab as a representation of the 
lower atomic density within the core of a high- 
angle grain boundary. This is achieved by taking 
EA below EB. 

The multiple integral in equation (33) can be 
simplified by the following change of variables: 
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Fig. 3. Excess electronic energy near a grain boundary in a AI crystal, for three different thicknesses (3, 5, and 7 A) of the 
grain boundary and for various atomic densities. The excess electronic energy is normalized to the electronic energy e0 of a 
solute atom in an infinite crystal of AI. The dimensionless quantity Z is equal to 2kFXo3, where kF is the Fermi's wave vector 
of AI, and the electronic energy eo is given by e0 = Ak3/31r2. (a) nB/nA ffi 0.8; (b) nB/nA = 0.9. 

~2 _ ( s  - E i )  
BI k~/ (36) 

and 

w2 _ 2m(E - El) 
h2 (37) 

and by inverting the order of integration over 
v and w. After some algebraic transformations, 
we obtain the electronic energy e(r0) as a simple 
integral of the form 

A / k F  
e(Xo3) = ~ (k~ - v2)Img(v, Xo3)vdv. 

(38) 

We integrate the equation (38) numerically. 
In figure 3 the excess electronic energy of an 
impurity in the vicinity of a planar defect in 
aluminium for various thicknesses and atomic 
densities is reported. 

This energy is proportional to the electronic 
density. Despite the absence of self-consistency 
in our calculations, they reproduce quite faith- 
fully electronic densities for an identical pla- 
nar defect in aluminium obtained with a self- 
consistent density functional formalism [26]. The 
amplitude of oscillations is more pronounced 
within our approximate method. 

Outside the planar defect, the excess electronic 
energy exhibits an attenuated sinusoidal variation 
changing sign every fraction of an interatomic 
distance. This energy does not provide a strong 
driving force for segregation of impurities out- 
side the slab. S t rong variations in energy occur 
at the interfaces between the slab and the infi- 
nite media. The electronic driving force will give 
rise to a very local segregation. We define the 
solute/grain boundary binding electronic energy 
as the excess electronic energy within the core 
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of the planar defect. We may further take it as 
the average excess energy equal to A(nn- hA) 
in view of the weak oscillations of the excess 
energy in the slab. This binding energy is insen- 
sitive to the thickness of the slab for thicknesses 
over 2 A. In contrast, the excess electronic 
density in the core differs drastically from the 
atomic density for thicknesses less than 2 A [36]. 
This results from an overlap of electronic density 
profile at the slab/infinite media interfaces. In 
consequence for thin grain boundaries, a reduc- 
tion in binding energy is expected. 

Contrary to the elastic binding energy, which 
is indirectly linked to the grain boundary den- 
sity through the elastic constants, the electronic 
binding energy is directly related to the atomic 
density in the grain boundary core through a 
simple linear relation. 

We can estimate the electronic contribution 
to the ratio R defined in the preceding section. 
The electronic contribution to the solubility limit 
is approximated by exp[-AnA/kBT] yielding an 
expression for R in the form: R = (nB--nA)/nA. 
For a grain boundary with 10% excess volume, 
R takes the value -0.1; a value very much lower 
than that predicted by the elastic model and 
measured by Hondros [9]. However, some cau- 
tion is needed. The expression for the solubility 
limit is valid only in the case of solute atoms with 
low solubility [27]; an approximation incompati- 
ble with the first-order perturbation approach to 
calculating binding energies. Nevertheless, this 
result suggests that elastic effects dominate the 
phenomenon of segregation. 

5. Conclusion 

We have investigated the effect of thickness and 
atomic density of high-angle grain boundaries 
on solute segregation. Two simple models have 
been derived to account for the elastic and elec- 
tronic contributions to the driving force for seg- 
regation. The electronic model is limited to the 
description of simple metals, and we restrict our 
elastic model to isotropic media. Furthermore, 
the electronic model is applied to solutions of 
heterovalent metals, and the elastic model ac- 
counts for the size effects in metallic alloys of 
isovalents metals. 

The propensity for segregation of the grain 
boundary is characterized by the solute/interface 
binding energy. In the case of elasticity, we 
are able to calculate a correlation between the 
grain boundary enrichment factor and the atomic 
solid solubility in the limit of low solubility. This 
correlation is in excellent agreement with exper- 
imental observations of segregation in various 
metallic systems. 

Grain boundary enrichment does not vary 
significantly with grain boundary thickness in 
the range of typical values for high-angle grain 
boundaries; this independently of the nature of 
the driving force for segregation. 

On the other hand, the atomic density of grain 
boundaries plays an important role in segrega- 
tion of impurities. The electronic binding energy 
depends explicitly on the atomic density. An 
elastic driving force exists for grain boundaries 
with elastic properties strongly tied to density. 
We have also considered the case of grain bound- 
aries with atomic densities approaching the bulk 
value. 

A high-angle grain boundary with near-bulk 
density in simple metals exhibiting large varia- 
tions of elastic constants with density will show a 
small electronic segregation binding energy and 
an important elastic-binding energy. This may 
be the case for special grain boundaries in some 
metals. Since Wolf [16] has shown that the en- 
ergy of high-angle grain boundaries increases lin- 
early with the excess volume, high-density bound- 
aries also corresponds to low-energy interfaces. 
This observation and our simple models suggest 
that segregation may occur to low-energy grain 
boundaries. This result is consistent with the 
Gibbs adsorption isotherm equation in which a 
partial derivative of energy with respect to chem- 
ical potential of the solute atom, and not an ab- 
solute energy, determines the solute excess. We 
conclude that although low density is sufficient 
for segregation, it is not a necessary condition. 
Moreover, grain boundaries with small excess 
volume may show a high adsorptive capacity. 

Finally, we note that the change in density 
of the material at the grain boundary on which 
our model is based constitutes only one of the 
possible contributions to segregation. Internal 
stresses developing in the vicinity of the grain 
boundary due to its atomic structure will inter- 
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act with the impurity's stress field. In another 
publication [37] we have modeled the stress field 
around a high-angle grain boundary by a two- 
dimensional array of compressive forces. It is 
shown that periodicity in the stress field annihi- 
lates the effect of the local sources of stress in 
the boundary as a driving force for segregation, 
leaving density as the most important effect for 
periodic high-angle grain boundaries. 

Appendix 

We give in this appendix the expression of the 
function 4f(k//) defined in equation (20). 

1 
r = 2 ( A  s + A A + H s + H A) (39) 

where the A s,A and H s,A are given by 

O~ 3 + ot2C S'A c o s h (2 a k / / )  - 2 a D  s'A 
AS, A = 

2D s, A 

H s, A _ c~2ES' A 
DS, A 

I I with: v = C44/Cll; and u' = C~4/Cll 

(40) 

(41) 

4k//C44 (42) 
a -  l + v  

Ca, A = q-2C~4 k//  

ak//(1 - v') q= 1(1 + v') sinh(2ak//) 

(43) 

D s, A = Or2 /r'~S, A~2 
+ I , ~ .  / [cosh2(2ak//) _ 1] 

+ 2 c S ,  A cosh(2ak//) - ( E S ' A )  2 (44) 
ES,  A = oLv C s  ' -~- + A[:t:(1 - v')ak// 

V t 

2 sinh(2ak//)] (45) 
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