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The electronic energies of interaction of a point defect with interfaces
and grain boundaries are calculated, as a function of the distance x03 between
the point defect and the corresponding planar defect. These interaction en-
ergies are shown to have the same type of oscillations as the corresponding
local electronic densities. Therefore the electronic interactions more signif-
icantly affect the energy of segregation of point defects towards interfaces
when x03 is in the near vicinity of these interfaces, while at large distances
the contribution of elastic interactions can dominate.
PACS numbers: 71.20.—b, 73.40.-c, 61.70.Yq, 68.35.Dv

Grain boundary segregation is an area of intense interest since solute atoms
concentrating at grain boundaries can alter drastically the properties of bulk
polycrystalline materials. Elastic and electronic interactions are the major con-
tributions to equilibrium segregation of impurities to grain boundaries in simple
metals.

In the previous publication [1], analytic expressions were reported for the
elastic energy of interaction of a point defect with a planar defect. The excess
elastic energy of the point defect in the vicinity of the planar defect was found to
be short range and to vary as 1/d4 where d is the distance from the planar defect.
This energy was expected to be a leading contribution to segregation.

The electronic energy of interaction of a solute atom with a grain boundary
is believed to offer an insufficient driving force for segregation. Friedel [2] presented
a variation of the electronic energy exhibiting damped oscillations as a function of
the distance. Atomistic calculations based on pair potentials or on tight-binding
models have been performed to determine the excess energy of solute atoms at
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different sites in the vicinity of surfaces [3, 4] or near a grain boundary [5]. The
density functional formalism was also applied to obtain the electronic density near
a planar defect and the energy of a grain boundary [6].

The purpose of this paper is to obtain within a simple but general model the
excess energy of a point defect near an interface between two metals M1and M2,
or near a planar defect modelled as a thin slab of metal M2 sandwiched between
two semi-infinite perfect crystals of metal M 1 . This energy will be expressed as a
simple integral which is easy to evaluate. Furthemore the Green function method
used in this work can easily be extended to more complicated heterostuctures.
The calculations are conducted in the nearly free electron model, with step barriers
at the interfaces.

The perturbation potential due to solute atom located at r0 is assumed to
be a point-like potential

where δ(r) is the usual delta function and A 0 defines the strength of the pertur-
bation.

The correction to a non-degenerated electronic energy level of the system
due to this potential is written, to the first order in the perturbation V(r), in the
form

where |") is an eigenvector of the unperturbed system associated with the energy
E. Introducing Eq. (1) in (2) gives

where n 0 (r0, E) is the contribution of the electrons with energy E to the electronic
density at location r 0 in the unperturbed interface or sandwich system.

Furthermore, the electronic density n0(r 0 , E) can be advantageously deter-
mined from the imaginary part of the Green function g(r0, r0, E) of the unper-
turbed system by the relation

Then the total energy of the point defect in the M 1 —M2 or in the M1—M 2—M 1
composite system is obtained at 0 K by summing ε(r0 , E) over all possible states
inside the Fermi surface

where n(r0) is the electronic density at location r0

The calculation of the Green function is first performed in the twodimensional
space parallel to the interfaces by using the interface response theory of Ref. [7].
This means that we express the elements g(k||; x03; 43; E) of the Green function,
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where k|| is the wave vector parallel to the interfaces and x 03 is the direction
perpendicular to them. These expressions are given in the Appendix 1. Then

In our calculation the metals M1 and M2 involved in the M1—M2 interface sys-
tem or in the M1—M2—M 1 planar defect are characterized by their ground energies
E1, E2 and their effective masses m1, m2. In the nearly free electron approxima-
tion these parameters are related to the bulk electronic density ni in metal i by
the relation

The Fermi levels of both metals are aligned in the composite system at the energy
EF. We also introduce the quantities

with

For the sake of simplicity, we chose the effective mass of the electron to be
the same in both media M1 and M2 (B1 = B2 = B).

Finally the geometries of the systems are defined as follows. In the interface
problem, the metal M 1 (M2 ) fills the negative (positive) x3 half-space. In the planar
defect system, the slab M2 fills the region -X < x3 < +X, where x3 = ±X define
the locations of the interfaces.

Let us assume that E1 is below E2 which means that the electron density is
smaller in material M2 than in material M1. This is expected to be the case in high
angle grain boundaries which are dilated regions showing lower atomic densities
than in the bulk. The multiple integral in Eq. (4c) can be simplified by changing
the variables u 2 = (E - Ei)/B1 - k|| 2and k2= 2m(E - E1)/ħ2and by inverting
the order of integration over u and k. After some algebra, we obtain n(r 0 ) as a
simple integral of the form

The expression of g(u, x03) which is dependent upon the location x03 of the impu-
rity is given in Appendix 2.

As the first application of this calculation, Fig. 1 presents the variation of
n(x03) near a bimetallic interface M1—M2. The bulk charge density in metals M 1

and M2 are chosen in order to simulate an Al-Ag system. Apart from a rapid vari-
ation near the interface, the charge density shows decaying oscillations with period
π/kF before reaching the bulk value on each side of the interface. In a self-consistent
calculation as in Ref. [8], the oscillations are actually less pronounced than those
in Fig. 1.
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In Fig. 2, we present the behaviour of the electronic density in a Al crystal
containing a planar defect. The electronic density inside the planar defect is chosen
to be 20% smaller than in the bulk crystal in order to simulate a smaller atomic
density inside a grain boundary. The curves in Fig. 2 refer to different thicknesses
2X of the planar defect.

Again one can notice a rapid variation of the electronic density in the near
vicinity of the interfaces. Inside a relatively thick planar defect n(x 03) shows decay-
ing oscillations before reaching a limiting value; in contrast, in a very thin planar
defect n(x03) behaves rather parabolically with a minimum at x03 = O which is
higher than in the thick grain boundary case.

Outside the grain boundary, the behaviour of the electronic density is qual-
itatively similar to that in the bimetallic system, except for a very thin planar
defect where the charge density is influenced by the presence of both interfaces.

As a conclusion, we can notice that at large distances from the planar defect,
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the electronic energy shows an attenuated sinusoidal variation which gives rise to
an oscillating driving force changing sign every fraction of an interatomic distance;
therefore this mechanism does not provide a sufficient driving force for segregation
of impurities. In contrast, at very short distances, that is within a few atomic radii
from the grain boundary core, the electronic energy may represent a significant
contribution to the energy of segregation. This is in accordance with measurements
of the extent of the equilibrium grain boundary segregation which indicate the
limitation of the segregation phenomenon to a few atomic layers at the grain
boundary core [9].

Finally let us mention that although only qualitative results can be expected
from our simple approach, the method of calculation can easily be extended to
other heterostructures of more complex geometries.
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Appendix 1

Here we report the Green function g(k|| , x3, x3; E) for a M1—M2 interface
system and a M1—M2-M1 sandwich system in the approximation of the nearly free
electrons.
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Appendix 2

In this appendix, we give the expressions of g(u, x03) appearing in Eq. (7)
according to the location x03 of the impurity.

1) M1—M2 interface system:
For x03 < 0
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