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Elastic energy of interaction of a point defect with a grain boundary
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Analytic expressions for the elastic energy of interaction of a point defect with a planar defect, a
plane of dilatation, and half a plane of dilatation in a planar defect have been calculated. The impli-
cations with regard to segregation of impurities near high-angle grain boundaries are discussed.

I. INTRODUCTION

Segregation of solute atoms to or away from grain
boundaries is of great interest from an experimental and
theoretical point of view. Several different mechanisms
should be differentiated for solute segregation at grain
boundaries. Mechanisms for equilibrium segregation in-
clude the reduction of interfacial energy or the accommo-
dation of excess strain from solutes which fit poorly in
the lost material (either because of elastic or electronic
mismatch). We shall not consider in this paper the prob-
lem of segregation to low-angle boundaries (misorienta-
tion angle less than 15°) which consist of arrays of
discrete dislocations.

The purpose of this paper is to present the calculation
of the strain energy of a point defect in the vicinity of a
general high-angle grain boundary. Two models of the
grain boundary are considered which may represent it at
different stages of the segregation process.

The energy of interaction between a point defect and
an interface has been studied in elasticity theory."? In an
anisotropic crystal, the impurity sees the misoriented
half-crystal in which it does not reside with average elas-
tic constants different from those of the host half crystal.
The calculation of the strain energy of a point defect near
an interface between two crystals with different elastic
constants leads to an interaction which decreases as the
inverse of the cube of the distance. The impurity is at-
tracted or repelled depending on the values of ratios of
elastic constants in the two crystals.

We start by considering a stress-free purely planar
grain boundary to consist of a core region of “bad” ma-
terial sandwiched between two perfect crystals. By “bad”
material we mean that the atomic structure of the core
region is highly disorganized. The core region is there-
fore essentially a thin slab with elastic constants different
from those of the two semi-infinite regions it connects.
An A-B- A planar defect of this type may also describe a
grain boundary wetted by some other phase.

In Sec. II, we review briefly the equations which permit
the calculation of strain energies due to a distribution of
body forces. The self-strain energy of a point defect in
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the vicinity of an A4-B- A4 planar defect is reported in Sec.
III. In Sec. IV, forces of dilatation are introduced in the
planar defect. Solute atoms segregating in the core of the
boundary could be sources of such forces of dilatation.
The model of a stressed A-B-A planar defect may be a
description of a grain boundary in a later stage of segre-
gation. The elastic energy of interaction of a point defect
with a single force of dilatation, a half plane of dilatation,
and an infinite plane of dilatation in the planar defect are
calculated. The conclusions drawn from this work are
discussed in Sec. V.

II. ELASTIC ENERGY OF A DISTRIBUTION
OF BODY FORCE

We denote by F a body force per unit volume. The
strain energy associated with the introduction of the body
force is given by?

U=1 EB Ja*x [d*X' Fo(X)gls(X, X Fs(X), (1)

where ggﬂ(X,X’) is the Green function of the medium.
When the medium has the translational symmetry per-
pendicular to the direction X3, the Green function can be
Fourier analyzed:

05(X X')—fde“ 0p(K,|X3,X%)
8ap\ A, = (277_)2gaB 3,43

Xexp[iK (X, —X))], (2)

where K, and X are both two-dimensional vectors with
components (K;,K,,0) and (X,X,,0).

In the case of a medium isotropic in planes perpendicu-
lar to X3, the Green function can be expressed in terms of
simpler coefficients by rotating the vector K, into a vec-
tor (K ||,O,O) with the transformation

R,
_kz
0

2

0
S(k“): 1 0 and ]?a:Ka/K" (a=1,2) X
1

o ™

(3)
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The Green function is written in the form

g% (K |1X3,X5)=3 5. (R)g 5K, X3, X5)S,4K)
M, v

4)
and the strain energy becomes
d’K
U,=13 [—= [ax, [dx} f,(K,|X;)
wy " (2m)
X g, (K )1 X3,X%)
XfHK X5, (5)
where
FuKy|X3)= 3 S,.(R)) [ d>X F,(X)exp(iK X)) .
(6)

The % in Eq. (5) denotes the complex conjugate.

Equation (1) permits the calculation of the strain ener-
gy due to the superposition of two body forces
FO(X|X'") and FP(X|X?), where X! and X® are
the positions of the two individual forces.

The total strain energy is the sum of the self-strain en-
ergies of the individual forces and the interaction strain
energy.

After carrying out the same transformations on the in-
teraction strain energy as those mentioned above, the in-
teraction energy is given in Ref. 3 in the form

d’K,
(21)?

UI(X(I)’X(Z)):Z f de:;deS fL“(K”|X3)
v

X g, (K| X;3,X5)
XfPHK X)),
(7

where

fPXK|X)=3 S,,R)) [d*X, FP(X|X)

><exp(iK”-X|| ), j=12.
(8)

We must now specify the distributions of body force we
use in this work to describe a point defect and a stressed
high-angle grain boundary.

We represent a spherically symmetric point defect by
the superposition of three mutually perpendicular double
forces without moment centered at a point X,

That is, F(X) is expressed as

F,(X)=—A4,—0X—X,), a=1,2,3 9)
where A, is a constant with the dimensions of force
times length.

The f,(K|X;)s of the symmetrical point defect
defined in Eq. (6) are

(10a)
(10b)

F1K,X3)=iAoK}8(X3—Xg3)exp(iK - X|) ,

£2(K,X3)=0,
d

f3(K||,X3)=—A0';17Y‘3—

8(X;—Xo3)exp(i K- X[|”) , (100)
where XhO) is the position of the point defect in a plane
perpendicular to X ;.

Easy relaxation along the boundary plane of the forces
corresponding to point defects segregating at high-angle
grain boundaries results in the introduction of forces of
dilatations in the core of the boundary perpendicular to
the boundary plane. We represent the dilatation at every

position X le ) on the plane X;=0 by a single double force
without moment of the type
F,=0, (11a)
F,=0, (11b)
- a (B)
FB—_AB—XTS(X“_X" )8(X5) , (11c)

where A is again a constant with the dimensions of force
times length.
This force after transformation becomes

f1(K,X3)=0, (12a)
fz(KH,Xg,):O s (12b)
3K X3)=— 4= s(x, Jexp(i K- X(”) . (120)

ax,

III. SELF-STRAIN ENERGY
OF A POINT DEFECT NEAR A PLANAR DEFECT

The planar defect is constituted of a slab B sandwiched
between two semi-infinite media 4. The thickness of the
slab centered on X; =0 is 2a. The media 4 and B are as-
sumed to to be isotropic with elastic constants C;;,Cy,
and C};,C},, respectively.

The Green function g of an A-B- A planar defect is the
sum of the Green function of an infinite medium, G,
and the contribution of the interfaces between media A4
and B, G =g —G . The excess strain energy of the point
defect due to the slab is given by Eq. (5) where one substi-
tutes G for g. The point defect is located in the left semi-
infinite medium at a distance X,; from the center of the
slab.

It follows from Egs. (5) and (10) that the strain energy
is independent of X(”. Furthermore, only the sagittal
elements of the Green function are necessary for the cal-
culation of the strain energy of a spherically symmetric
point defect. The sagittal part of the interfacial contribu-
tion to the Green function, G(K,|X;X}) of the 4-B-4
sandwich in the region X; < —a and X < —a, is given in
the Appendix. The excess strain energy is calculated in
the form

A % KD :
U,= e [, K K e

—2K) [ X5

$(K,) , (13)

where K is the radius of the Debye circle throughout
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which the integration over K is carried out. Such a
cutoff arises from the discrete nature of the lattices.
#(K ) is defined as L(A+ A *+HS+H"), where the
AS4 and HS4 are given in the Appendix. We note that
in the limit C,=0,

CuCi
#(K)=—4K, (Cri—Caa)
and
Al C
U = 0 44 1 5,8, (14)

¢ 167 Cy;(Cyy—Cluy) |X03|3
where we use the notation

L(©=[Fduure™, §=2K|Xy] . (15)

This is the excess energy of a point defect in the vicinity
of a free surface.3

In the limit of a very thin slab, that is (aK” )<< 1, the
function ¢(K ) simplifies to

’

h ,
_ 2 v 1 (1+v)
¢(K”)—80K“C44—-——1+V —

R 16
hi, (1+v) (16

where we define v=C,,/C,;, v'=C4 /C}y, h;;=C1,/
C,y, and hyy=Cj,/C,4. The excess strain energy of the
point defect reduces to

U = A(Z) v a
o16mwCyy (1+v) |Xg5]*

_hn (4w

h%, (1+v) L&)

(17)
From the simpler expression, we note that the energy can
be either positive or negative, depending upon the values
of the ratios of elastic constants of the media 4 and B.
In particular, a point defect of the kind considered here is
attracted or repelled by the planar defect when
Cly <<Cyy or Cyy >>Cyy, respectively.

IV. INTERACTION BETWEEN A POINT DEFECT
AND A STRESSED PLANAR DEFECT

We now turn to a discussion of the strain energy of in-
teraction of a point defect and forces of dilatation in the
planar defect.

The A-B-A planar defect is the same as in Sec. III.
J
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FIG. 1. Domains of variation of sign of the interaction ener-
gy of a point defect and a plane of dilatation in a planar defect
when AA,<0. The dashed region corresponds to the half-
plane of dilatation.

The forces of dilatation are single double forces of the
type given by Egs. (11). We calculate initially the energy
of interaction of a spherically symmetric point defect lo-
cated at (X hO), X3 >a) and a single double force located
at (X |(|B ), X8=0). For the sake of simplicity, we carry out
the integration of Eq. (7) in the limit of a very thin slab,
that is, in the limit (aK|) <<1. We give in the Appendix
expressions for the Green functions, g (K, |X;,X5]) of a
thin planar defect when X is in the slab and X3 is in the
right semi-infinite medium. The integration of Eq. (7)
yields the result that

_ — 44 , 2 Xos
1= | s S aa b 21 2 172
TC 44 (R +X53) ‘(R” +X53)
Cy 6X 3 Xo3
—— +(1=2v") [(1—w) 3 ) (18)
Ch (R}+X5)? 7 [(RE+X3)'?
[
wher-elR"=XhO)—XhB). P,(X) is the nth Legendre poly- U= Ay A Xo1
nomial. 1172
27C44 X5, +X5
The total strain energy of interaction of the point de- 2o 03
fect with an infinite plane of dilatation is obtained by in- Cu
tegration of U; over all R. This energy is found to van- X [((1—=2v")— — +(1—2v')
ish due to the translational symmetry of the plane of dila- 11
tation. The strain energy of a point defect with the half 2X2,
plane of dilatation (X{®’ >0) is nonzero and obtained in X(1—v) . (19)

the form

(X3 +X5)?
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This energy is long ranged and varies as the inverse of
the distance X, of the point defect to the tip of the half-
plane of dilatation and as the inverse of the square of the
distance X; from the planar defect.

In the limit X, — + «, the energy vanishes as the
point defect sees an infinite plane of dilatation.

Equation (19) simplifies to
Ay A 1

(1=2v")—— (20)

Xp3=0) _
27Cyy Xo

(
Unip

when the point defect is located very near the core of the
planar defect.

V. CONCLUSION

The excess energy of a spherically symmetry point de-
fect in the neighborhood of a planar defect is short
ranged and varies as the inverse fourth power of the dis-
tance of the defect from the planar defect. This energy
can be either attractive or repulsive, depending on the
elastic constants of the core region and of the semi-
infinite regions.

The interaction energy of one point defect with an
infinite plane of dilatation in the planar defect is zero.
However, the elastic energy of interaction of the point de-
fect with half a plane of dilatation in the planar defect is
long ranged and varies as the inverse of the distance from
the tip of the plane and the inverse of the square of the
distance from the planar defect.

The sign of this latter energy varies spatially (Fig. 1).
The extent of these variations is controlled by the values
of the elastic constants in both media 4 and B. More-
over, the energy of interaction is attractive of repulsive
depending on whether the double forces modeling the
point defect and stressed planar defect are dilatational or
contractive forces.

Before reaching a complete understanding of the segre-
gation process, one has to evaluate the other contribu-
tions to the interaction energy between one point defect
and the grain boundary, such as the electronic interac-
tions, space charge effect in an ionic crystal and semicon-
ductors, etc. The electronic interaction of a heterovalent
impurity with a boundary in a crystal of normal metal
has been calculated via pair interactions deduced from
pseudopotentials.* The interaction has been found to de-
crease as the inverse of the square of the distance.

The electronic binding energy can be sizable when
compared with the excess strain energy. However, the
elastic contribution to the interaction energy between a
defect and a stressed grain boundary in a metal is expect-
ed to be one of the leading ones.
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APPENDIX

We give in this appendix the sagittal elements of the
static Green function g,4(K, |X3,X%) of an A-B- A planar
defect. The interface response theory of continuous ma-
terials’ has been applied to the determination of the
Green function of a composite material composed of an
isotropic thin slab with elastic constants Cj;,Cl,,
sandwiched between two semi-infinite regions with elastic
constants C;;,C4,. The planar interfaces are located at
X3;=—aand X;=+a.

The Green function g (X,X’) at any two space points
(X,X') in the space of the composite D is given by

g(DD)=G(DD)—G (DM)G ~{(MM)G (MD)
+G (DM)G ~{(MM)g (MM)G ~(MM)G (MD) ,
(A1)

where M means that X or X' is limited to the domain of
interfaces. G (X,X’) is the Green function of an infinite
medium and g (MM) is the interface response function of
the composite.

The interface response function g;(MM) of every con-
tinuous subsystem i constituting the composite is deter-
mined by application of the universal equation of the in-
terface response theory to the space M; of the interfaces
of i:

g XX+ [dX"g,(X,X") 4(X", X" )=G/(X,X")

with X, X", X" €M, . (A2)

The interface response operator A; is defined in continu-
ous media as V;G;, where V; is a cleavage operator which
creates out of an infinite medium the element i with its in-
terface. The cleavage operator in elasticity theory has
been given in Ref. 5. The planar defect has mirror sym-
metry. It proves more convenient to express all response
functions in terms of symmetrical (S) and antisymmetri-
cal ( A) states.®
The transformation matrix

1 0 1 0

1 1o 1 0 1
T=—

Vol 0o —10

0 -1 0 1

permits the passage between the original state and the
symmetrized states of the sagittal elements of the Green
function. In the symmetrical and antisymmetrical states,
there is separation of the response function in diagonal
blocks.

The interface response function of the
sandwich is obtained in the form

gﬁ(MM)]=‘(DS)4]

A-B-A

a

a Cscoshz(aKII )
giimMM) | |(DH7! 2 |C4sinh*aK)) | |’
(A3a)
gng(MM)=——D_S,lA ESA, (A3b)



1516 P. DEYMIER, L. JANOT, J. LI, AND L. DOBRZYNSKI 39
i 554 +2C4 K
(MM) E~>4, (A3c) S, A= I A5
D54 ¢ akK (1—v)+1(1++')sinh(2aK ) ’ (A3
gh(MM) | |(pS)! < |e CSsinh*(aK ) v
gdmm | (D47 2 |CAcosh(aK)) | |’ ESA=92Y 5 Y pcsA (1—v)aKo+—-sinh(2aK ) |, (A6)
(A3d) Y 4K Cyy
where 1+v
2 Cus Cis
DS A4 g_.‘.gCS,A h(2aK.)—(ES 4)2 — A4 d v=—2
2 T3 cosh(2aK ) —( ) v ., and v cr
s, 4) . w( | . e
+ (c [cosh2 (2aK)—1], (A4) T}}e Gre'en function G (K |X3,X}) of an infinite iso-
tropic medium has been calculated,
|
' , 1 : ,
G;"}(KHIX3,X3)=——~—[—(1+v)+K”(1—v)|X3—Xsl]exp(~K||!X3—X3|) ) (A7a)
4K Cyy
GH(K | [X;5,X5)=Gy( K”lX3,X3 ———#—(l-v)( 3—X3)exp(—K | |X;—X5]), (A7b)
4K Cyy
1 ’ ’
3K X5, X5)=————[(1+v)+K (1 V)| X;—X35|lexp(—K | X3 — X} ]) (A7c)
4K Cyy

We report in this Appendix the Green function in two
regions of the 4-B- A composite.

(1) X; and X} in the left semi-infinite medium. The
contribution of the interfaces to the Green’s function
G(DD)=g(DD)—G>(DD) is given in the symmetrical-
antisymmetrical base in the form

GHi?=A45%agay+boby)+B%4agap—bobp)
+iCS A byay—agby) , (A8a)

Gyt =A% Yagby+body)+ B> aghy—bodp)
—iCS4agdy—boby) , (A8b)

G3i*=A45Magho+bodo)+ B> (aghy—bod)

—iCSAaydy—boby) » (A8c)
G3A=A5Mboby+dody)+B5bobo—dody)
+iCSAdyby—body) (A8d)
where
a*+a?C® “cosh(2aK ) —2aD >4
ASA= (A9)
2D
2~S 2~ A
BS—' aC , :_aC , (Alo)
2D*S 2D
2SS, A
S, A— a’E>
C “psA (A11)
and v
a,=G{5(X;,0),

ay=G1(0,X3),
by=G3(X;,0),

by=G35(0,X5),
dy=G35(X,,0),
dy=G5(0,X4) .

We note that in the limit C),=0, G simplifies to the in-
terfacial contribution to the Green function of a semi-
infinite medium. >

(2) X5 in the right semi-infinite medium and X} in the
slab. In this case

G*(DD)—G*(DM)G Y MM)G *(MD)=0

and we give the Green function in the limit aK | <<1:

g“lgx(K“Xs,XI}):aPlSl )
, 3
gf3(K\|‘X3;X3):a'a‘Pf3 ’
g§1(Ku|X3’XI3)=aP§1 ’

’

3
g§3(K1|1X3’X3):0‘7P§3 ’
and.
X3
gﬁ(Kule’Xﬂ:aTPﬁ »
g (K, X5, X5)=aPfy,

, 3
gfl(K“‘X:;,X:;):aTPﬁ ,
gH(K X3, X5)=aPs; ,

where



39 ELASTIC ENERGY OF INTERACTION OF A POINT DEFECT . .. 1517

PSA=—bog SAMM) +dog $4MM) .

The g(MM) are the limits to first order of g (MM) when
aK, <<1.
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