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ABSTRACT

Dirac factorization of the elastic wave equation of two-dimension stiff plates coupled to a rigid substrate reveals the possible topological
properties of elastic waves in this system. These waves may possess spin-like degrees of freedom associated with a gapped band structure
reminiscent of the spin Hall effect. In semi-infinite plates or strips with zero displacement edges, the Dirac-factored elastic wave equation
shows the possibility of edge modes moving in opposite directions. The finite size of strips leads to overlap between edge modes consequently
opening a gap in their spectrum eliminating the spin Hall-like effects. This Dirac factorization tells us what solutions of the elastic wave equa-
tion would be if we could break some symmetry. Dirac factorization does not break symmetry but simply exposes what topological properties
of elastic waves may result from symmetry breaking structural or external perturbations.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0086559

Topological acoustics (TA) is revolutionizing the field of acoustic
and elastic waves.1 Simple one-dimensional (1D) phononic structures,
analogous to the condensed matter Su–Schrieffer–Heeger (SSH)
model, have revealed many of the fundamental properties of TA
waves, such as nontrivial topological invariants (e.g., Chern number),
edge states at surfaces and interfaces between topologically different
media, and bulk-boundary correspondence.2–5 The latter is a powerful
guide to design topologically protected edge modes,6 whereby the
number of edge modes is the difference in Chern number between
those topological phases sharing an interface. In the SSH model, parity
symmetry is broken intrinsically through a system’s structure.
Spatiotemporal modulations of the elastic properties of 1D phononic
structures can break time-reversal and parity symmetry.7–10 Two-
(2D) or three-dimensional (3D) TA systems have exploited analogies
with the quantum Hall effect (QHE),11 the quantum spin Hall effect
(QSHE),12 and the quantum valley Hall effect (QVHE).13 2D TA sys-
tems use triangular-lattice or graphene-like structures that exhibit
Dirac degeneracies in their band structure, and symmetry breaking
opens a gap associated with a nontrivial topology. Breaking symmetry
intrinsically (e.g., parity symmetry) leads to acoustic analogues of the
QSHE or QHVE. Extrinsically breaking time-reversal symmetry
results in acoustic analogues of the QHE. 3D acoustic and mechanical

metamaterials have demonstrated Weyl points and Fermi arc-like sur-
face states.14–17 The hallmark of spin Hall insulators is the presence of
gapless edge states with different “spins” moving in opposite directions
that may lead to immunity to backscattering.

The Dirac equation18 has revealed the possibility of emergence of
the spin degrees of freedom of the electron from relativistic effects.
However, application of a magnetic field that breaks symmetry is nec-
essary to observe the spin degrees of freedom.19 In the same spirit,
Dirac factorization of elastic wave equations in 1D systems composed
of coupled elastic waveguides has revealed the possibility of the exis-
tence of pseudospin elastic waves, which amplitude takes the form of a
spinor in the two-dimensional Hilbert space of the direction of propa-
gation along the waveguide.20–24 The Dirac factorization tells us what
solutions of the elastic wave equation would be if we could break some
symmetry. Dirac factorization does not break symmetry. One would
need to add a structural or external perturbation to break symmetries
and reveal Dirac-like solutions, such as is done in the models of spin
Hall insulators described above.

In this paper, we extend the approach of Dirac factorization of
elastic wave equations to 2D. The elastic wave equation for a stiff string
in the absence of shear stress and rotational inertia is given by the
Euler–Bernoulli equation:25
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@2u
@t2
¼ a2

@2u
@x2
� b2

@4u
@x4

; (1)

where the first two terms are the usual terms for the motion of a
vibrating string and the third term is due to the resistance of the stiff
string to bending. Here, a and b are the longitudinal speed of sound
and a coefficient dependent on the cross-sectional area and the radius
of gyration of the string, Young’s modulus and linear density of the
constitutive material. x is the direction along the string. Generalization
of this equation to wave propagation in an isotropic homogeneous
thin plate takes the form of Kirchhoff–Love equation:26

@2u
@t2
¼ A2 @

2u
@x2
þ A2 @

2u
@y2
� B2 @4u

@x4
þ 2

@4u
@x2@x2

þ @
4u
@y4

 !
: (2)

Again, A is the speed of sound and B depends on the thickness of the
plate, Young’s modulus, and Poisson ratio. x; y are orthogonal direc-
tions in the plane of the plate.

If the plate is elastically coupled to a rigid substrate through some
medium, an additional restoring force arises and the wave equations
now take the form:

@2u
@t2
¼ A2 @

2u
@x2
þ A2 @

2u
@y2
�M2u� B2 @4u

@x4
þ 2

@4u
@x2@x2

þ @
4u
@y4

 !
:

(3)

In Eq. (3), M2 represents the stiffness of the additional restoring force
due to the coupling medium.

This equation can be rewritten algebraically as

Hu¼ C2 @
2

@x2
þC2 @

2

@y2
� Mþ B

@2

@x2
þ @2

@y2

 ! !2

� @2

@t2

8<
:

9=
;u¼ 0;

(4)

with C2 ¼ A2 þ 2MB. In Eq. (4), the displacement u is a scalar
quantity.

The differential operator, H, of Eq. (4) is redefined as a 2� 2
diagonal matrix so that it can be conveniently Dirac factored18 recov-
ering the familiar Dirac forms. More specifically, we can write that
equation in the form of the subsequent application of two matrix dif-
ferential operators to a vector-like displacement, namely,H�Hþu ¼ 0
where the differential operatorsH6 are given by

H6 ¼ �iC @

@x
rx � iC

@

@y
ry � M þ B

@2

@x2
þ @2

@y2

 ! !
rz 6 i

@

@t
I:

(5)

In Eq. (5), rx ¼
0 1
1 0

� �
, ry ¼

0 �i
i 0

� �
, rz ¼

1 0
0 �1

� �
are

the Pauli matrices and I ¼ 1 0
0 1

� �
is the identity matrix. i is the

imaginary quantity
ffiffiffiffiffiffi
�1
p

.
In contrast to H which satisfies time reversal and parity symme-

tries (i.e., one can replace t by �t and/or xðyÞ by �xð�yÞ and retain
the form of the equation), the operators, H6, do not satisfy xðyÞ parity
symmetry. It satisfies time reversal symmetry as changing the sign of
time simply changes the sign of the term 6i @@t I. We note that

solutions of the equations H6u ¼ 0, where u is now a 2� 1 vector,
are solutions of Eq. (4). However, the reverse is not true. With the
Dirac factorization u can be efficiently represented as a spinor.27 This
spinor represents the quasi-standing wave nature of solutions to Eq.
(4), that is, it is a superposition of forward and backward going waves
with different amplitudes dependent on the wave vector.

Let us now solve

H�u ¼ 0: (6)

We investigate here Eq. (6) only since Hþ is related to H� by time
reversal, and its solutions will be the time reversed solutions of Eq. (6).

We seek plane wave solutions of the form

u ¼ u1
u2

� �
eikxxeikyyeixt . Here, ~k ¼ kx , ky; and x are a two-

dimensional wave vector and the angular frequency. The operators
H6 are analogous to the long wavelength limit of the Qi, Wu, and
Zhang (QWZ) model of the anomalous quantum Hall effect.28 Indeed,

the ~k dependent part of the operator H6, namely, H6
~k
¼ Ckxrx

þCkyry � M þ B �k2x � k2y
� �� �

rz is the long wavelength limit of

the QWZ-like operator, HQWZ
~kð Þ ¼ C sin kxrx þ C sin kyry

þ � M þ 4Bð Þ þ 2B cos kx þ 2B cos ky
� �

rz . This periodic model is a

Chern insulator based on the Berry phase in ~k space.29 In the long-
wavelength limit, the topology of the Dirac-factored wave equation of
the stiff plate is directly connected to the non-trivial topology of the
QWZ-like model.

Inserting the plane wave solution into Eq. (6) yields the Eigen
value problem,

D
u1
u2

 !
¼

X� Z�

Z Xþ

 !
u1
u2

 !
¼ 0; (7)

where X6 ¼ x 6 M � B k2x þ k2y
� �� �

and Z ¼ C kx þ iky
� �

. Z� is

the complex conjugate of Z. One finds nontrivial solutions if the deter-
minant of the matrix D is zero yielding the dispersion relation,

x2 ¼ M � B k2x þ k2y
� �� �2

þ C2 k2x þ k2y
� �

: (8)

This dispersion relation has a cutoff frequency at kx; ky ¼ 0, at which
point x ¼ 6M. There also exist evanescent modes within the gap
x 2 M;�M½ �. Seeking evanescent modes in the y direction, we use

solutions of Eq. (6), in the form u ¼ u1
u2

� �
eikxxekyeixt where k is a

real quantity. Inserting this form into Eq. (6) yields an eigenvalue

problem D0
u1
u2

� �
¼ 0 where the components of the matrix D0 are all

real. The condition detD0 ¼ 0 for nontrivial solutions results in the
dispersion relation for evanescent modes,

x2 ¼ M � B k2x � k2
� �� �2 þ C2 k2x � k2

� �
: (9)

Equation (9) can be used to solve for kðxÞ. There are two solutions
given by

k21;2 ¼ k2x þ F6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 � M2 � x2ð Þ

B2

s
: (10)
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In that equation, F ¼ A2

2B2.
We now consider the emergence of edge modes along a line with

zero displacement cutting through the stiff plate at y ¼ 0 (Fig. 1).
The stiff plate now is reduced to two semi-infinite plates with

either y > 0 or y < 0. We seek linear combinations of evanescent sol-
utions in y satisfying the boundary condition u x; y ¼ 0;xð Þ ¼ 0. For
this, we use the ansatz,

u ¼
u1
u2

 !
eikxx ek1y � ek2yð Þeixt : (11)

Inserting Eq. (11) into Eq. (6) leads to the eigenvalue problem,

D00
u1
u2

 !
¼

N� Q�
Qþ Nþ

 !
u1
u2

 !
¼ 0; (12)

where

N6 ¼ xf k1; k2ð Þ6 M � Bk2x
� �

f k1; k2ð Þ þ Bg k1; k2ð Þ
� �

; (13a)

Q6 ¼ C kxf k1; k2ð Þ6h k1; k2ð Þ
� �

; (13b)

with f k1; k2ð Þ ¼ ek1y � ek2y , g k1; k2ð Þ ¼ k21e
k1y � k22e

k2y and
h k1; k2ð Þ ¼ k1ek1y � k2ek2y .

Nontrivial solutions arise when det D00 ¼ 0. After some algebraic
manipulations, this condition takes the form,

x2 � M � B k2x � k21
� �� �2 þ C2 k2x � k21

� �h i
e2k1y

þ x2 � M � B k2x � k22
� �� �2 þ C2 k2x � k22

� �h i
e2k2y

þ
h
�2x2 þ 2 M � B k2x � k21

� �� �
M � B k2x � k22

� �� �
þ 2C2 k2x � k1k2

� �i
ek1yek2y ¼ 0:

The first two terms in square brackets vanish as they represent the dis-
persion relations of bulk evanescent modes [Eq. (9)]. The remaining

term in the square bracket must then be identical to zero. Eliminating

x2 by adding the three equations x2 � M � B k2x � k21
� �� �2

þC2 k2x � k21
� �

¼ 0, x2 � M � B k2x � k22
� �� �2 þ C2 k2x � k22

� �
¼ 0,

and �2x2þ2 M�B k2x�k21
� �� �

M�B k2x�k22
� �� �

þ2C2 k2x�k1k2
� �

¼0 and after some algebraic manipulations, we obtain

k1 þ k2ð Þ2 ¼ C2

B2
: (14a)

Using these three bracketed equations, we can also find

k1k2 ¼ k2x �
2x2 � 2M M þ BFð Þ

C2
: (14b)

These conditions on the edge states coefficients, k1 and k2, depend on
the bulk dispersion relations and, therefore, fully reflect the long wave-
length bulk topological properties of the plate.

Finally, combining Eqs. (14a) and (14b) and Eq. (10), we find
that

x2 ¼ C2k2x: (14c)

There are, therefore, two possible branches for evanescent modes in
the y direction, namely, x ¼ 6Ckx . The first branch corresponds to
an evanescent wave propagating along the direction x with a positive
phase/group velocity. The second branch corresponds to another eva-
nescent wave propagating in the opposite direction along x. For the
y > 0 semi-infinite plate, we need to have both k1 and k2 negative.
Otherwise, the amplitude ek1y � ek2y would grow exponentially instead
of decaying away from the zero displacement boundary. For the y < 0
semi-infinite plate, we need to have both k1 and k2 positive.
Otherwise, the amplitude ek1y � ek2y would not decay away from the
zero displacement boundary. We can, therefore, rewrite Eq. (14) as

k1 þ k2 ¼ þ
C
B

for y > 0; (15a)

k1 þ k2 ¼ �
C
B

for y < 0: (15b)

Inserting Eq. (14c) into Eq. (14b) results in

k1k2 ¼
M
B
� k2x; (16)

with �
ffiffiffiffi
M
B

q
< kx <

ffiffiffiffi
M
B

q
to ensure the positiveness of the product

k1k2.
For y > 0, combining Eqs. (15a) and (16) gives

k1 ¼
C
2B

6
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C
B

� �2

� 4
M
B
� k2x

� �s
; (17a)

k2 ¼
C
2B

7
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C
B

� �2

� 4
M
B
� k2x

� �s
: (17b)

Note that the two pairs of evanescent solutions given by Eqs. (17a)
and (17b) are equivalent upon permutation of indices 1 and 2, that is,
to within a global sign (or global p phase) in Eq. (11).

For y > 0, we find two equivalent pairs,

k1 ¼ �
C
2B

6
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C
B

� �2

� 4
M
B
� k2x

� �
;

s
(18a)

FIG. 1. Schematic illustration of the two semi-infinite plates y > 0 or y < 0 with
zero displacement boundary condition along the y ¼ 0 line (dashed line).
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k2 ¼ �
C
2B

7
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C
B

� �2

� 4
M
B
� k2x

� �s
: (18b)

There is, therefore, one single solution of the form given by Eq. (10)
for each semi-infinite plate (y > 0 or y < 0). Each of these solutions
correspond to one of the dispersion branches, x ¼ 6Ckx . The y > 0
and the y < 0 edge mode propagate in opposite directions. This is the
signature of counter-propagating helical edge states along the bound-
ary y ¼ 0.

The edge mode branches x ¼ 6Ckx intersect the bulk band
given by Eq. (8) at ky ¼ 0, when k2x ¼ M

B (i.e., region of positiveness of
the product k1k2 as seen before). This is illustrated in Fig. 2.

The penetration depth of the edge modes in the direction y for
both semi-infinite plates is determined by the smaller in absolute value
of k1 and k2.

We also note that we have limited our investigation to edge states
under zero displacement conditions, u x; y ¼ 0;xð Þ ¼ 0, along a line
transecting the plate. Other type of boundary conditions along the
y ¼ 0 line, such as clamp condition, namely, u ¼ 0 and @u

@y ¼ 0,
would lead to seeking solutions with amplitude taking the form
ek1y þ ek2y � e�k1y � e�k2y . Under roller conditions, the displacement
is not zero anymore but only @u

@y ¼ 0 along the y ¼ 0 line, and we
would seek amplitudes in the form a ek1y þ e�k1yð Þ þ b ek2y � e�k2yð Þ,
where a and b are coefficients to be determined. In these two cases, the
displacement increases indefinitely and unphysically away from the
zero displacement boundary.

We now apply the method described above to revealing edge
modes at the zero displacement edges of a strip. For this, zero displace-
ment boundary conditions are imposed to the plate along lines ori-
ented parallel to the direction x at y ¼ � L

2 and y ¼ þ L
2 forming a

strip of width L (Fig. 3).
We seek solutions u ¼ u1ðk1y; k2yÞ

u2ðk1y; k2yÞ

� �
eikxxeixt such that

u1
6k1L
2 ;6k2L

2

� �
¼ 0 and u2

6k1L
2 ;6k2L

2

� �
¼ 0. For this, we consider

that u1 and u2 will be composed of linear combinations of functions of

the form: v yð Þ ¼ aek1y þ be�k1y þ cek2y þ de�k2y . The two equations
v 6L=2ð Þ ¼ 0 can be set into the system of equations
ae�k1L=2 þ beþk1L=2 ce�k2L=2 þ deþk2L=2

aeþk1L=2 þ be�k1L=2 ceþk2L=2 þ de�k2L=2

� �
1
1

� �
¼ 0

0

� �
. Since

the matrices
1 �1
1 �1

� �
and

�1 1
1 �1

� �
satisfy this system of equa-

tions, we can solve for a, b, c, and d in these two cases, leading to sym-

metric forms: vþ yð Þ ¼ coshk1y
coshk1L=2

� coshk2y
coshk2L=2

and antisymmetric forms:

v� yð Þ ¼ sinhk1y
sinhk1L=2

� sinhk2y
sinhk2L=2

. We, therefore, choose the ansatz

u1 yð Þ ¼ aþv
þ yð Þ þ a�v

� yð Þ; (19a)

u2 yð Þ ¼ bþv
þ yð Þ þ b�v

� yð Þ: (19b)

We solve for the four unknown coefficients aþ, a�, bþ, and b� by
inserting Eqs. (19a) and (19b) into Eq. (6) for y ¼ � L

2 and y ¼ þ L
2.

This leads to the eigenvalue problem,

�X �X �Y �Z
Y Z X X

�X X Y �Z
�Y Z X �X

0
BBBB@

1
CCCCA

aþ
a�
bþ
b�

0
BBBB@

1
CCCCA ¼ 0; (20)

where X ¼ Bðk21 � k22Þ, Y ¼ Cðk1T1 � k2T2Þ, and Z ¼ k1 1T1
�

�k2 1T2Þ and T1 ¼ tanh k1L=2 and T2 ¼ tanh k2L=2. There are non-
trivial solutions if the determinant of the matrix in Eq. (20) is zero,
that is

T1

T2
þ T2

T1
¼ C2 k21 þ k22

� �
� B2 k21 � k22

� �2
C2k1k2

: (21)

In the limit of large L, the left-hand side of Eq. (21) equals 2 irrespec-
tive of the value of k1 and k2: Eq. (21) reduces to Eq. (14a), namely,
the condition for the semi-infinite plate.

FIG. 2. Schematic illustration of the bulk bands at ky ¼ 0 and x ¼ 6Ckx bands
corresponding to the edge modes at y ¼ 0. The inset illustrates schematically the
amplitude ek1y � ek2yð Þ for y> 0 with k1 and k2 given by Eqs. (18a) and (18b).
We have chosen C

2B ¼ 1, MB ¼ 1, and k2x ¼ 0:5:

FIG. 3. Schematic illustration of the strip. The dashed line indicates the zero dis-
placement boundaries at y ¼ � L

2 and y ¼ þ L
2. The plate is infinite in the x

direction.
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Finally, let us consider the appearance of edge modes in the gen-
eral case of Eq. (21). For this, we rewrite this equation in the form,

G X;Yð Þ ¼ XY
tanhX=2
tanhY=2

þ tanhX=2
tanhY=2

� �

� X2 þ Y2 � B2

C2L2
X2 � Y2ð Þ2

� �
¼ 0 (22)

with the unknown quantities X ¼ k1L and Y ¼ k2L. There is trivial
solution when X ¼ Y , or k1 ¼ k2. This trivial solution corresponds to
zero amplitude displacements, i.e., vþ yð Þ ¼ 0 and v� yð Þ ¼ 0.
However, there also exist nontrivial edge mode solutions. In Fig. 4, we
have plotted G X;Yð Þ for X ¼ 61 and B2

C2L2 ¼ 0.05. We note the pres-
ence of the corresponding trivial solutions at Y ¼ X ¼ 61. The non-
trivial solutions arise around Y ¼ 62:3.

For small, L, that is the larger B2

C2L2, only the trivial solutions sur-
vive. Note in Fig. 4 that the solutions for k2 may switch from values
that are smaller than k1 to larger than k1, thus determining the depth
of the edge mode. The trivial solutions correspond to a maximum,
saddle point, or minimum of the function G 1;Yð Þ.

We can use Eq. (10) to rewrite the dispersion relations for the
evanescent modes as

x2 ¼ B2k4x þ A2k2x þM2 � B2k21k
2
2: (23)

For each possible pair of k1 and k2, Eq. (2) shows that the dispersion
relation of the corresponding edge mode exhibits a bandgap at the ori-
gin, kx ¼ 0. Only in the limit of large L, does Eq. (16) applies an
expression (23) reduces to the dispersion of un-gapped edge modes:
x2 ¼ C2k2x . Therefore, the edge modes may overlap in the finite space
of the strip and interact with each other to produce a gap in their spec-
trum. This is isomorphic to the finite size effects on edge states in
quantum spin Hall systems.30

We have shown that Dirac factorization can be used to expose
the possible topological properties of 2D elastic wave equations. In
particular, the nonsymmetry breaking equation for elastic waves in a

stiff plate coupled to a rigid substrate is shown to hide spin-like
degrees of freedom associated with a gapped band structure. In plates
with zero displacement edges such as semi-infinite plates or strips, the
Dirac-like elastic wave equation shows the possibility of counter-
propagating helical edge modes that may lead to a suppression of
backscattering. Immunity to backscattering would require (a) counter-
propagating edge modes associated with orthogonal degrees of free-
dom and that (b) scatterers cannot mix these degrees of freedom. The
first condition is approached in the limit of the semi-infinite plate. In
the case of strips, the finite size leads to overlap between edge modes
which opens a gap in their spectrum eliminating the spin Hall-like
effects. The investigation of the effect of the structure or symmetry of
scatterers on edge modes will be the subject of future work.

Dirac factorization tells us only what solutions of the elastic wave
equation would be if we could break some symmetry. To fully reveal
the possible topological attributes of elastic waves, one would need to
apply perturbations in the form of symmetry breaking structural fea-
tures or externally apply fields. In the first case, one may consider non-
homogeneous plates composed of materials with different elastic
properties, which geometry and structure break parity symmetry. In
the second case, one may modulate in space and time some of the elas-
tic properties of the plate to create synthetic gauge fields (i.e., fields
affecting the elastic pseudospin in a way similar to that of a magnetic
field applied onto an electron).22

Finally, by showing how to break reciprocity in supported stiff
plates, this theoretical study provides a roadmap for enabling funda-
mental functionalities for radio frequency (RF) devices. Acoustic sig-
nals offer several advantages in RF mobile communication
technologies because of their small wavelengths and high quality factor
compared to electromagnetic devices. Topological acoustics insulators
may enable implementation of guided-wave technologies in RF acous-
tic wave devices over broad frequency ranges with reduced losses from
defects, disorder, and sharp angles.1
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