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The nervous system is a complex dynamical system that incorporates higher order biology (e.g., multicellular
architecture) and lower-order biology (e.g., intra cellular pathway) that can be modeled via classical laws such as
reaction-diffusion models. Simple reaction-diffusion models of neuronal tissue are shown to support bio-chemical
wave effects that are analogous to quantum phenomena. These phenomena include quantum-like superpositions
and classical entanglement which will not be affected by decoherence n the wet and warm brain environment.
These classical phenomena could enable quantum-like complexity of brain functions. Conventional reaction-
diffusion models of biological tissues challenge the current quantum brain hypothesis and suggest that the brain
should perhaps be thought of as a classical quantum-like system.

Statement of Significance

This manuscript introduces the notion of nonseparability (classical entanglement) in the case of biochemical
waves in arrays of coupled axons. We use a linear reaction-diffusion model with cross diffusion to address non-
separability between degrees of freedom (along and across the axon array). Perturbation theory applied to a
nonlinear model with quadratic nonlinearity is used to illustrate nonseparability between modes along the ax-

ons. This paper suggests that the brain should perhaps be thought of as a classical quantum-like system.

1. Introduction

It has been argued that the complexity of brain functions cannot be
explained by classical physical and/or chemical theories but requires
quantum phenomena such as quantum superposition and entanglement
to be understood [1]. While decoherence of quantum superposition in
noisy and warm biological media serves as an argument against a quan-
tum hypothesis for the brain functions, evidence of quantum mechanical
effects in biological processes suggests that quantum phenomena could
play a role in neurobiology [2]. For instance, it has been hypothesized
that the nuclear spin residing in biological molecules may function as
qubit, a quantum bit of information [3], however, spin relaxation may
be too fast to enable long lifetime quantum entanglement [4]. Outside
the realm of neuroscience, the field of quantum biology has emerged
from recent observations suggesting that a number of biological phe-
nomena including enzyme catalysis, olfaction, photosynthesis may re-
sult from quantum mechanical effects such as coherence, tunneling and,
entanglement [5]. In contrast to the quantum hypothesis of brain func-
tions, there is an alternative proposal in which the complex dynamics of
the nervous system leads to classical physical and chemical phenomena
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that are analogous to quantum mechanics and can therefore augment its
capability for storing and processing information. Nonlocality and non-
separability are two distinctive aspects of entanglement. While nonlocal-
ity is a unique attribute of quantum mechanics, nonseparability is not.
The notion of classical “entanglement” i.e., local nonseparable coherent
superposition, or equivalently, the notion of classical nonseparability
[6,7] has attracted interest and has been observed in the physical fields
of optics [8,9] and more recently acoustics [10,11]. Since nonlocality
of quantum phenomena (such as the Einstein’s so-called spooky action
at a distance) is not a requirement for quantum information processing,
classical nonseparability may offer the advantage of quantum superposi-
tions in terms of information scalability without the fragility of quantum
coherence. Classically entangled compositional variables in biological
tissue, such as biochemical waves, each carrying information, would be
interdependent. The classical inseparability of these variables, robust
against decoherence, would enable quantum-like parallelism with po-
tential relevance to understand the complexity of brain functions. The
possibility of achieving quantum-like behavior in biological tissues does
not require new theories but relies on reaction-diffusion models a la Tur-
ing based on classical laws [12].
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2. Reaction-diffusion model and propagating wave solutions

The purpose of the greatly simplified reaction-diffusion model in-
troduced here is to demonstrate the emergence of quantum-like phe-
nomena in a classical biological system. This model incorporates higher
order biology (e.g., multicellular architecture) and lower-order biol-
ogy (e.g., intra cellular pathway). The prototypical model is com-
posed of three (infinitely long) parallel one-dimensional structures that
can support propagative chemical waves [13]. We refer to these one-
dimensional structures as chemical waveguides. This architecture is
reminiscent of parallel axons in the cerebral cortex [14]. It is also as-
sumed that the chemical waves propagating along each chemical waveg-
uide may result from an intracellular pathway involving a feedback loop
between two chemical component, 1 and 2, subsequently called reac-
tants. Inositol (1,4,5)-triphosphate (IP3)-mediated Calcium (Ca™) waves
in neurons are examples of waves that form from such a feedback pro-
cess [15]. Indeed, the endoplasmic reticulum (ER) forms inside the axon
a continuous network of interconnected tubules, sheets and cisternae
which enables Ca%*-induced Ca?* release and re-uptake mediated by
IP3, locally to and from the cytosol [16]. A continuous ER network is
therefore able to support long-distance Ca®* signaling through the cy-
tosol along the axon [17].

The waveguides may also interact through ephaptic transmission be-
tween axons [18] or synaptic active or passive diffusion of reactants.
Ephaptic coupling may result from exchange of ions between cells or
may result from local electric or magnetic fields. Experimental evidence
for axonal gap junctions suggests the possibility of ion exchange between
neurons [19]. However, myelin sheaths surrounding the myelinated ax-
ons, the most common type of axons, in the central nervous system, are
believed to inhibit direct neuron-to-neuron coupling. In contrast, un-
myelinated axons are more common in the peripheral nervous system
(e.g., in Remak bundles [20]). However, in both cases of myelinated and
unmyelinated axons, Schwann cells form close relationships with the
axons. Myelinating Schwann cells surround a single axon whereas, un-
myelinated Schwann cells bundle several axons together. The Schwann
cells keep axons from touching each other. Schwann cells are glial cells
subject to Ca* signaling [21]. While the myelin sheath may still in-
hibit ion transport between Schwann cell and the axon, astrocytes (an-
other type of glial cells) contact the axon membrane at the unmyelinated
nodes of Ranvier. Contact between axon and glial cell at axon nodes of-
fers a possible molecular mechanism by which neuron and glia can in-
teract [22]. There is evidence that astrocytes influence the communica-
tion between neurons [23]. In unmyelinated nodes, gap junctions may
connect glial cells and neurons [24,25]. Endogenous electric or mag-
netic fields can affect neuronal function via ephaptic coupling [26]. For
instance, astroglial biomagnetic fields associated with Ca?* transients
could be implicated in neuron-glial ephaptic crosstalk [27].

Finally, while self-diffusion of the reactants can occur along and
across the waveguides (e.g., via ephaptic coupling), the cross-diffusion
of one reactant along or between waveguides may be driven by the gra-
dient of the other reactant, that is, the two reactants diffusion may be
mediated by cotransporters [28]. Another possibility for cross-diffusion
across membranes is transport mediated by ubiquitous enzymatic trans-
membrane proteins. For instance, a hypothetical biomolecular mecha-
nism for cross-diffusion across membranes was proposed [29]. A trans-
membrane enzymatic structure supporting two active and one regula-
tory site can transform a reactant 2 into a substance 3 at one of the
active sites and vice versa at the other active site. The active sites sit on
both sides of the membrane. The transformation is catalyzed by a reac-
tant 1 at the regulatory site on one of the sides of the transmembrane
structure. This mechanism assumes constant concentration of substance
3 and random distribution/orientation of the enzymic structures within
membranes. Considering a chain of discrete compartments separated by
membranes containing enzymic structures, the rate of change of reactant
2 in one compartment was shown to be proportional to the Laplacian of
the of reactant 1; the signature of cross-diffusion. Some of the charac-
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Fig. 1. Schematic representation of the model of three axons a, b, and ¢ sup-
porting two reactants 1 and 2. Reactant 1 promotes the production of 2 and
reactant 2 inhibits reactant 1. (self-promotion/inhibition is not represented).
The horizontal double arrows represent self-diffusion (1-1 or 2-2) and cross-
diffusion (1-2 or 2-1 (not shown)) along the axons (direction x). The vertical
arrows represent self- and cross-transport of reactant between axons.
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teristics of this hypothetical mechanism have been observed in Receptor
Tyrosine Kinases (RTK) [30]. RTK are constituted of a ligand-binding
extra-cellular domain, a transmembrane domain and an enzymatic (ki-
nase) intracellular domains. RTK can stimulate enzymatic activity lead-
ing to the cleavage of Phosphatidylinositol Biphosphate (PIP2) into IP3
and diacylglycerol (DAG). In turn IP3 production increases intracellular
Ca2* concentration.

Fig. 1 illustrates schematically the geometry of the model, irrespec-
tively of the underlying biological mechanisms that may be involved in
the self-diffusion, cross-diffusion, and reaction kinetics processes.

Initially, we assume small excursions in the concentration of reac-
tants which enables us to consider a linear reaction model. That as-
sumption will be lifted in a later section.

The linear mathematical model takes the form of a set of coupled
ordinary differential equations (ODEs) given by:
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The reactant compositional variables are Ci’; with j = a, b, c labeling
the waveguides. The terms on the left of the equal signs represent the
local accumulation of reactants. The diffusion constants d and d’ quan-
tify the effect of one reactant on its own transfer or on the transfer of the
other reactant along the chemical waveguides, respectively. x is the posi-
tional variable along the waveguides. The transport coefficients L and L’
describe transport between waveguides. The sign of these diffusion and
transport coefficients determine the direction of transport with respect
to concentration gradients. r’ and r represent the self-regulation rate and
cross regulation rate (feedback loop) of the intracellular pathway. The
opposite signs in front of r ensures oscillatory behavior in concentration
within a chemical waveguide. It is essential to note that equations (1a-f)
do not introduce any new physics nor new chemistry.

Equations (1a-f) belong to a class of partial Differential Equations
(PDE) known as cross-diffusion equations. Cross-diffusion systems are
strongly coupled parabolic equations used to model processes arising
in cell biology, thermodynamics and ecology [31,32]. Cross-diffusion
systems obey parabolic equations of the form:

% )] () B

where F; are nonlinear functions of the solution vector C = {C;,C,}.
The nonlinear functions G; represent reaction terms. The cross-diffusion

problem is well-posed if the Jacobian matrix of the vector field F is
positive definite [33,34]. In the case of the Shigesada, Kawasaki, and
Teramoto (SKT) model of interacting species [35] the cross-diffusion
system possesses reaction terms. They showed that the cross-diffusion
system can be approximated by a reaction-linear diffusion system and
cross-diffusion instability is equivalent to Turing’s instability.

In that context, we can reformulate Eq. (1a-f) as the system of equa-
tions:

oC
0—; =V(f(C.G)VC + fE(C1. C)VGy) + £, (C1. Cy) (3a)
oC, . 5

= = V(/5(C1. C)VCy + £5(C1. C2)VG,) + 8,(C1. Cy) (3b)

where the functions f I', f |2, le’ and f22 are here constants and related
to the self and cross-diffusion coefficients for the direction along the
waveguides d and d’ and the transport coefficients L and L’ for the di-
rection perpendicular to the waveguides. Note that in Eq. (1a—f), the
direction perpendicular to the waveguides is discrete. Furthermore, the
gradient operator V is continuous in the direction of the waveguides
(direction x) and discrete in the direction perpendicular to the planar
array of waveguides (direction labelled by waveguide index j = a, b, ).
The finite number of waveguides imposes a condition of zero flux in
the direction perpendicular to the waveguides at waveguides a and c.
Equations (3a-b) are a generalized form of the SKT model. The functions
g and g, reduce to linear reaction rates in Eqs. (1a—f). The set of Egs.
(1a-f) is therefore a linearized version of a SKT cross-diffusion system.
The existence and nature of traveling wave solutions in excitable media
with linear or nonlinear cross-diffusion has been reviewed. [36].

With this in mind, we are seeking wave-like solutions of our lin-
earized reaction cross-diffusion model of the form: Cf’z) = A(I{;eikxef”’
where Aﬁ’; represents the amplitude of the waves. “i”

square root of -1. k is a wave number (k = 27” with 4 being the wave-

length) and w is the angular frequency, one can compactify equations
(1a-f) into a matrix form:

is the positive

{3 ®Hyy g+ M3y 3® Ly 2} Ag 5 =0 €]

-1 1 0
where I3 , 3 is the 3 x 3 identity matrix. M3 , 3 =] 1| -2 1]is

0 1 -1
the matrix that couples the three waveguides. This is effectively the
discrete Laplacian in the direction perpendicular to the wave guides
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including zero flux boundary conditions applied to the waveguides
(a) and (c). The coupling matrix is a representation of the axon-
to-axon interactions in the multicellular architecture. In the present
model, the three parallel waveguides are arranged in a single plane.
Other configurations (e.g., the waveguides are arranged on the ver-
tices of an equilateral triangle) will be associated with other forms
of the coupling matrix. The dynamical matrix is given by H,, , =
P 2 / 11,2 !’
( I:U-r —d:ic’kj ' —ia)r— d‘liczk+ r’) and Ly = <If’ Ii) ® is the
usual tensor product operator. Equation (4) separates the reaction and
diffusion dynamics along the waveguides from the coupling between
them. It separates the dynamics of the system into a behavior along
the x degree of freedom and a behavior corresponding to the degree
of freedom associated with the labelling of individual waveguides. In
that form, we can use a method developed by Othmer and Scriven
[37] to seek a solution to Eq. (4). We choose a solution for the amplitude
vector Ag, | =e, ® Ay | Where e, is a 3 x 1 eigenvector of M3 , 5
>.e., M3, ze, = 4,15 e, with 4, being the eigenvalue associated with

A .
e,) and where A, , | = < Al> represents the amplitude of reactants 1
2

and 2 in any of the waveguides. Equation (4) reduces to
e, ® {Hyyo+iyLyyr}Ayx =0 5)

The three eigenvectors e, corresponding to the eigenvalues 4, =0,
A, = -1, and A; = -3, are:
1 1

1
LIt ey=Lfo] es=Lf2 (6)

Vil Vval_i

These eigenvectors represent the relative phase and magnitude of
compositional waves supported by the different waveguides. They are
signatures of the collective behavior of the interacting waveguides in
our prototypical model of parallel axons. The waves supported by the
three waveguides are effectively phase-locked. These eigenvectors are
analogous to the Orbital Angular Momentum (OAM) degree of freedom
in quantum mechanics.

Equation (5) reduces to solving the simpler single waveguide eigen-
value/vector problem

e =

{Hyxo+ Ly x2}Ar 1 =0 O]

We can now use Turing’s linear stability analysis of our cross-
diffusion systems to adjust the system to achieve plane wave trav-
eling behavior of the solutions [38]. The parabolic equation (5) is
the sum of several operators representing the self-diffusion (SD),
cross-diffusion (CD) along and across the waveguides as well as
—dk® + A, L 0

0 —dk? + A”L>’ ¢b=

11,2 ’ /

(—d’kz(:- AL —dk JA"L ) and RK = <_:r :f) The eigenval-
ues of the self-diffusion operator alone are real negative (since 4, < 0)
and twice degenerate: Agp = —dk? + 4, L. The eigenvalues of the cross-
operator are real positive or negative: Acp = +(—d’k* + A,L'). The
eigenvalues of the reaction kinetics are complex, Agzx =’ Fir. For a
given wave number, self-diffusion alone leads to time-decaying concen-
tration excursions and to a uniform stable state. Cross-diffusion alone
leads to decaying solutions (stable uniform state) or growing (unstable
state) for a given k. The reaction kinetics alone gives rise to damped or
amplified temporal oscillations.

The eigen frequencies w, of the complete operator, sum of the SD,
CD and RK operators, are found to be complex

the reaction kinetics (RK): SD = <

o =¢\/r2— (=d'K2 + A, ') +i(—dK® + 1 + A,L) ®)

Complex eigen frequencies indicate that the compositional waves
are generally attenuated or grow as they propagate. w,, needs to be
real (positive or negative) for the system to support traveling waves.
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For this we are assuming that the system is in the limiting case where
the rate r is sufficiently large such that > — (—d’k? + A, L')* is positive.
This condition restricts propagation to waves with wave vectors that are
sufficiently small. This corresponds to a strong feedback between reac-
tants 1 and 2. Choosing the self-diffusion coefficients, d and L and the
self-promoting reaction rate r’ to be negligibly small leads to real fre-
quencies corresponding to compositional waves propagating along the
waveguides without attenuation. We see that the cross-diffusion intro-
duces dispersion (dependency of the frequency on the wave number).
In that case, the complex eigenvectors are

_ ii\/r+d’k2—lnL/
A2><1_A0< /—r—d’k2+/lnL’ )

The reactants 1 and 2 oscillate with respect to each other with a
phase of % (i.e.,i= ei%).

In summary, choosing the second OAM as an example, the complete
solution for the compositional wave supported by the coupled chemical
waveguides is given by

@
Cl

— n=2 _ikx jiwt _
—e2®A2X1e e = 0

v2(-

(10)

Vr—d'i2 -1
with @g,—(k) = F\/r? — (-d’k? - L"). Solutions corresponding to the

two other OAM can be written in a similar manner. This model can be
easily generalized to a larger number, N, of coupled chemical waveg-
uides (i.e., bundles of N>3 axons) and various forms of the coupling
matrix My , i as well as larger number of reactants. Since equation (2) is
a linear differential equation, any linear combination of solutions Cf”'=xl i
ngle and Cg:jl is also solution of the equation. In the next section, we
show that if the system is driven externally by an oscillating stimulus, we
can obtain linear combinations of solutions which are interdependent in

a way analogous to local quantum entanglement.

® Ao(xi Vr+ d'k? + L,>eikxe[wo,,_2(k)t

3. Externally driven reaction diffusion model

We solve the set of externally driven coupled differential equations

ac(ﬂ) 02C(a) ,
1 2 i
=5 - rCl ¢ L’(c; ) c;“)) = Fe™6(x = 0) (11a)
ac(ﬂ) aZC(a) )
- +d - Lo+ c@ L’(C;b) - cj“)) = Fye®§(x = 0) (11b)
X

ac® 2c®
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= F;e/®§(x = 0) (11c)

®) 25

oC Pe¥e
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= F,e/§(x = 0) (11d)
ac(c) aZC(C) )
— = e () =) = Bea=0) (o)
ac(c) aZC(C) )
-——+ d'——- L4 - L’(cl(” - cg’”) = Fye®§(x = 0) (11f)
X

Here d, r and L’ of equation (1a—f) are again neglected in order to
focus on traveling compositional waves. Fp with P = 1,2,3,4,5, 6 are the
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real amplitudes of the stimulus on each waveguide driving the two reac-
tants. 5(x = 0) is the Dirac delta function that ensures that the stimulus
is applied on each waveguide at the same location x = 0. w is the angular
frequency of the stimulus which may be different from the eigenvalues
wg,- From a biological point of view, the stimulus may be associated
with excitation of apical dendrite cells from which emerge the axons
forming the parallel fiber.

We now seek solutions of Egs. (11a-f) in the form of linear combina-
tions of propagative waves:

1

1 1
Z\ i Y\ ;
C6 1= 1l® <Zl>elk1xelwt +l0l® <Y1>elk2xe1wt +]-2
1 2 -1 2 1

® <I1:IV/l>eik3xei(ot (12)

2

These solutions are phase-locked with the stimulus i.e., the response
wave of Eq. (12) is synchronized to the periodic frequency of the driver
[39].

We note in this equation that the wave number takes on different val-
ues corresponding to the different OAMs, namely k,, k, and k3. The six
unknowns of the problem are the amplitudes, Z; 5, Y7 5 and Wy 5. The
system of equation (11a-f) is solved at x = 0. After extensive algebraic
manipulations, we find

B —F2_4,6(d’k% +r)+iwF 55

t S(a)z—a)gl)

—Fi;5 (d/k? —r)+iwF, 46

3(w? - a)él)

and Z;, =

(13a)

—szﬁ(d’kg +r+ L) +ioF; -Fs (d’k% —r+ L) +iwF)g

Y, = dy, =
! Z(wz—a)gz) me Z(wz—a)gz)
(13b)
—Fyo4(d'kK2+r+3L") +ioF
W, = 2,6,4( 3T r ) ol s and
6(w2—w33)
—Fis3(d'k2 —r+3L') +ioF:
w, = “husalds y L) +ieFass (130)
6(w —w03)

with Fis5=F +F;+Fs, Foyg=F+F,+F, Fis=F —F;, Fyg=
F, - Fg and F, 53 = F| + Fs — 2F;, F, 4, = F, + F; — 2F,. The resonant
amplitudes Z; 5, Y; 5 and W; , are interdependent. Equation (12),
therefore, represents a coherent superposition. By tuning the driving
amplitudes, all six resonant amplitudes change simultaneously. Simi-
larly, by changing the frequency of the driver, all resonant amplitudes
change as well. Importantly for the analogy with quantum mechanics,
the resonant amplitudes are complex quantities. That is, they carry a
phase. Equation (12) and (13a-c) establish an analogy with nonsepa-
rable quantum systems. This analogy can be best seen if we change to
a notation conventional to quantum mechanics. Let us use the usual
bra-ket notation of quantum mechanics. First, we denote the OAM
eigenvectors of Eq. (6) by the kets |e;), |ey), |es). These three vec-
tors form an orthonormal basis for a three-dimensional Hilbert space,
Hoaus i-e., they obey the conditions (e;|e;) =1 if I = J and 0 other-
wise. Here the bra (e;| represents the complex conjugate (since the e;’s
are real vectors, complex numbers and their conjugates are the same).
Second, we also refer to e’¥1%, e/k2*, ¢/k3% as the set of kets |k;), |kz),
|ks). This set forms another orthonormal basis for a three-dimensional
Hilbert space, Hy, associated with the direction of propagation (i.e., x
degree of freedom). The orthonormality condition implies the property
(kylky)y =/ dxe *r*e'*eX = 1 if p = q and O otherwise. With this nota-
tion, and considering separately the reactants 1 and 2, we can rewrite
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Eq. (12) in the form:

C(a)
¢ = | | = (V3zilenlky) + VaXileslko) + VaWiles)li) e (14a)

& =[P = (V3zalenlki) + V2Xale) ko) + VEWsles)lks) )e"

(14b)

Equations (14a,b) are analogous to nonseparable superposition of
states in the product Hilbert space Hp,,,®Hj. The basis set for states in
that 9-dimensional product space is |e;)|k1), |e1)|k2), |e1)|ks), |ea) ki),
le2)|ka), leadlks), les)lkr), les)lka), |es)|ks). It is impossible to write
Egs (12a,b) as products of a linear combination of the kets: |e;), |es),
les) and a linear combination of the kets: |k;), |ky), |ks). For exam-
ple, one cannot write C; as the product («; |e;) + ayle,) + azles) (B ki) +
Brlky) + B3lks)) where the o’s and f’s are complex coefficients. This
characteristic is the signature of nonseparability. Therefore, Equations
(14a,b) refer to nonseparable waves with the OAM degrees of freedom
classically entangled with the directional degrees of freedom. The OAM
forms a subsystem which can be described as the superposition of three
mutually orthogonal states analogous to a qutrit [40], which we call
here a chem-trit. The direction of propagation forms another subsystem
expressible as a superposition of three other orthonormal discrete states.
It is also a chem-trit analogous to another qutrit. Therefore, equations
(14a,b) are describing the classical entanglement of these two chem-
trits.

Exploring Egs. (14) further, if we limit the stimulus of the system
to amplitudes such that F, 5 = F, — Fs =0 and F,, = F, — F; =0, then
Y, =0and Y, = 0. Equations (14a,b) reduce to

C1 = (V3Zilenlky) + VoW les)lks) ) (150

G, = (V3Zalen)lky) + VoWales)lks) e (15b)

In this case, both the OAM Hilbert space and the Hilbert space asso-
ciated with the direction of propagation reduce to 2-dimensional spaces
with bases |e;), |es) and |ky), |ks), respectively. The OAM and direc-
tion of propagation form qubit analogues. We may call these subsystems
chem-bits. C; and C, span a product space which isnow a2 x 2=4-
dimensional space with basis |e;)|ky), |e;)|ks), |es)|ky), |es)|ks). The
states given by Eq. (15a,b) are examples of two chem-bits in a nonsep-
arable superposition analogous to the so-called Bell states in quantum
mechanics. Other combinations of Bell states can be formed by restrict-
ing the stimulus amplitudes in various ways.

Finally, let us consider the case F| 5 =0, Fy4=0, F|53=0, F¢, =
0 which leads to C; = V/3Z,le;)|k;)e’® and C, = \/3Z,]e; )|k, el
This is a pure separable state as it is a simple product of an
OAM basis vector and a basis vector for the directional degrees of
freedom.

By varying the amplitude of the stimulus, the linear model system in-
troduced above is able to explore a sizable portion of the product Hilbert
space. For a given neuronal architecture involving N parallel axons and
a set of R reactants, this product space scales linearly with the number
of chemical waveguides as R x N. This model suggests that multiple
bits of chemical information can be encoded in coherent superpositions
and when the superposition is nonseparable its components can be pro-
cessed efficiently in a simultaneous manner. This model system suggests
the possibility of achieving quantum-like behavior in information pro-
cessing with its high level of parallelism in classical physical/chemical
systems such as neuronal tissues.
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4. Nonlinear reaction diffusion model

The model system introduced in the preceding section depends on
the assumption of intracellular pathways describable by linear functions
of concentration. The nervous system, like many biological systems, is in
fact a nonlinear dynamical system. When considering nonlinear reaction
rate functions, it is possible to draw some observations on the emergence
of other forms of nonseparable biological waves in the limit of small
nonlinear effects using perturbation theory. For this, we augment the set
of equation (11a-f) with a nonlinear term quadratic in the compositional
variables.

@ gpc@
ac aC 2
1 ’ 2 (a) (a) ' c® (@) _ it —
—— =S = () L (¢ - ) = Feax = 0)
(16a)
(a) 2 (@)
ac 2 8 .
2w d L+ rC 4 5(C0) 1 (P =€) = Fre5(x = 0)
or Ox2 1 1 1 1

(16b)

(b) 200
oC 0-C 2
1 ’ 2 (b) (b) 1 ~® (a) ' o© (b)
Y W—rg +s<C2 ) —L(C2 -G >+L(C2 -G, )

= F3e'§(x = 0) (16¢)
(b) 2(b)
oC 7] 2
e S it W o s<C(b)) - L’(C"” - C(‘”) ¥ L’(c“) - c“”)
ot 0x2 1 1 1 1 1 1
= F el 5(x = 0) (16d)
(©) 2 ~(c)
oC 02C 2 )
—. 0; ’ axi _ rCé” n s<C§C>) _ L/(C;“) _ Céh)) = Fyel®6(x = 0)
(16e)
© 2(0)
aC 92C 2
2 ’ 1 (c) (c) ’ (c) )\ _ it _
—— td — 4 4 5(07) - L (€ - ) = Fee™'5x = 0)
(16f)

All variables and parameters are the same as in Eqs (11a-f) but s
which represents the rate of the quadratic reaction. We solve this set
of differential equations using multiple time scale perturbation theory
[41] in the limit s = ¢ where ¢ is small. We rewrite the compositions as
polynomials in ¢, that is, considering as an example a generic composi-
tion, C:

C(‘L‘O,‘L",Tz) = CO(TO,Tl,TZ) +eCy (10,11,12) + 82C2(T0,‘L'1,‘L'2) +... (17

with the multiple time scales 7, = 1, 7 = €t, 7, = £°¢. The time and space
derivatives take the forms:

aC, aC aC, aC aC aC,
E——°+e<—l+—°>+52<—2+—‘+—°>+.“ (18a)

a  or ary o7 0ty 0t 0n
and
2 9°C 9’C d*C
9¢ 0, 00 20 (18b)
0x2 0x2 0x2 ox2

Rewriting every composition and derivative of composition in Egs
(16a—f) according to equations (17) and (18a,b), gives terms to zeroth
order, first order and second order in €. The zeroth order terms in € can
be grouped into a set of equations to zeroth order in perturbation:

oo P
aT() (3x2

- O+ 1 ()~ €)= Fie™™5(x=0)  (19)

(@) 2 (@)
acz,o , 7} CI,O

+
aT() ax2

+rC+ L (- €)= Remsx=0)  (19)
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oc® )

y__ 20 ®) _ y1{ b _ @ 1{ ~©) _ )
e S ey L (CZYO - CM) +L (CZ’O - Cz,o)
= F3e/®05(x = 0) (19¢)

ac(b) aZC(h)
2.0 ’ 1.0 (b) 1{ ) (a) 1{ ~(© (b)
rd' 2 - L (cl,0 - cw) +L (c]’o - Cw)

7
= F,e/®05(x = 0) (19d)
(©) 2 ~(€)

acyy 0°CY

7 0x2

- el - 1(Chy — € ) = Fse™5(x=0)  (1%)

ac(c) 02 C(C)
2,0 +d 1,0
01 0x?

, .
+rCly -1/ (C) =€) = Feem(x=0) (19D

Equations (19a—f) are completely isomorphic to Egs. (11a-f) which
solutions are analogous to Eq (12).

The terms linear in € can be grouped to form the set of equations to
15t order in perturbation:

ac(ﬂ) ac(a) azc(a) )
L1 10 r__21 @ | 10 @) _ @
B 07 oty +d ox rcz,l +L <C2,l - C2,1> = —(sz())
(20a)
(a) (a) 2 (@)
aC aC 0-C )
21 20 ’ L1 (a) 1 ~(b) @)\ _ (a)
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(20b)
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| 9% T on | e T ( 21 2,1)+ ( 217 2,1)
2
— (b)
- _(C2.0> (20¢)
(b) (b) 2 (b)
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21 20 [ g2 7L G _ 11{ O _ @Y, 7 ) _ o)
- 97y a7 +d 0x2 + rCU -L (Cl,l - Cl,l) +L (CIJ - Cl,l)
2
— (b)
- _(Cl~0> (20d)
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(20e)
ac)  acl) 02c® ,
1 20 r__LL © _ {0 _ ~®Y _ _{~©
- 0179 a7y +d 0x? e -t (CU Clvl) - (Cl,o) (20)

Equations (20a-f) form a system of driven differential equations.
However, in contrast to the zeroth order equations which are externally
driven, the first order equations are driven by the solutions to the zeroth
order equations. The solutions of Eqs. (20a-f) are the sum of homoge-
neous solutions (solutions of the equation without the quadratic terms
on the right-hand side of the equal sign) and particular solutions (i.e.,
with the right-hand side drivers). The time derivatives involving zeroth

0
a7y
ing terms) in the homogeneous solutions. In order to eliminate secular
solutions, we assume that the compositions are independent of the time
scale 7, that is the terms d—‘il are effectively zero.

Higher order equations are not necessary to support our argument
in this section but can be constructed by grouping terms proportional to

€2,

order compositions (e.g., ) will lead to secular terms (i.e., diverg-
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We now recognize that the parallel fibers have a finite length on
the order of a few millimeters. In that case the waves, solutions of the
zeroth order equations, that can be supported by the driven chemical
waveguides are not characterized by a continuum of wave number, k,
but give rise to a set of waves with discrete values of the wave number,
namely k, k', k", ... This is a common property of waves in finite size
systems. The relationship between the discrete wave numbers and the
angular frequency for a given OAM state are still given by the real part
of Eq. (8). The solutions to the zeroth order equations are therefore a
superposition of waves given by Eq. (12) over all possible wave numbers
associated with a given OAM:

1 1
C6>< 1,0=Z e <Zl(kl)>eik1xeiwr0+z 0|® <Yl (k2)>eik2xeiw70

k4 Z,y (k1) = Y, (k;)

1

Wl(k3)> iksx i
+ 2l® ikyx i)
2, (i) )

2D

Since Z; ,, Y1, , and W, are resonant amplitudes (see Eq. (13a—c)),
to simplify the problem, we consider that only the two wave numbers,
k, and k!, with frequencies, wg,(k,) and w,(k,) closest to the driver’s
frequency, w, will make significant contributions to Cq 4 1, o. Further-
more, to make our problem analytically tractable, we also assume that
the external driver’s amplitudes, F, are such that Y, , = 0. We therefore
limit the model to excitation of only two OAMs. Eq. (21) reduces to:

1 1 1

Cox10=]1|® Zi(k) PUSEPLLON B I Z,(k}) i gion | o
: : Z,y(ky) : ]

1

Wl(kS) ik3x iwT _ Wl(k;) ikl x iwr

3
In that case, each wave characterized by a specific OAM is limited
to two discrete levels.
Denoting Z(k)=Z, Z(k')=2Z', Wk)=W, W(k')=W', we can
use equation (22) to calculate the right-hand side terms of Egs. (20a-f).
As an illustrative example, we write one of them

2 ) ) ) 1 N2
(cl(g) = (zle"flx + 21N LW eke 4 Wl’e”‘%X) e207 ©3)
We can rewrite this zeroth order driving term as
2 ) N2 ) L1 N\2
()’ = { (zromms 2oty + (wiess - wyes)
+2(Zye 17+ 71 ) (Whelhsr 4+ W) feiom 24)

The first and second quadratic terms in Eq. (24) lead to self-
interaction between two states with the same OAM. The third term con-
tains cross terms between states of different OAM, e; and e3. In contrast
with the linear model, we treat these two OAMs as the signature of two
subsystems, each subsystem supporting two discrete wavenumber lev-
els. These are equivalent forms of chem-bits. The cross terms enable
us to explore the tensor product Hilbert space of the Hilbert spaces of
these two subsystems. The Hilbert space, H;, of the subsystem “1” is
two dimensional with basis: |k,) = ¢/*1¥ and IK}) = ¢*1*. The two di-
mensional Hilbert space, Hs, of the subsystem “3” has the basis |k;) =
e3x and |K}) = ¢*3*. The tensor product space, H,, = H, ® H; has
dimension 2% with the basis ¢ = |k;)|k;) = e/*1753)%, ¢, = |k)|K]) =
ei(lirk;)x, @3 = |k} k3) = ei(k/l+k3)x, @4 = KK = S KIHRX With that
notation, and for illustrative example, the cross term (CT) of Eq. (24) be-
comes: (cf?(;)zCT =Z\ W01+ ZW] oy + ZIW 05+ ZW/ 0.

The cross terms in Eq. (24) enable the exploration of the tensor prod-
uct space of the bipartite system composed of the two subsystems “1”
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and “3”, i.e. two chem.bits. To that effect, we are seeking solutions to
Egs. (20a-f) which are only driven by the cross terms of Eq. (24). A
general form for these particular solutions in the chemical waveguide
qg=a,b,cis

Cf"f - ( a0, + Py + 7Py + 6@ (/,4) #2070 (25a)
c;f’f _ ( @g 4 ﬂgz) @ +y§q>¢3 " 5;@(,, 4)ei2w70 (25b)

Inserting these expressions into Egs. (20a—f) gives a set of 24 equa-
tions with the 24 unknowns, a’s, f’s, y’s and §’s. After very extensive
algebraic manipulations, we get:

4z, W, [d’(k1 +ky) Hr+ 3L’] — i8wZ, W,
a® — o — g —
1 1 1 G

a

(26a)

42214/2[d’(k1 +hy) =+ 3L’] —i8wZ,W,
@ — B _ o e _
20{2 =a, = 2a2 =

G

a

(26b)

with G, = 40 — [(d(k, + k3)? +3L) — 2]

4Z,W] [d! (k) +K,) 4+ 3L = i80Z,W]

20 =0 =24 = G
s

(27a)

4z,w) [d’(kl 1) =+ 3L’] — i8wZ, W/

@ _ ) _ _op©) _
=20, =p, =25,
Gy

27b)
2
with Gy = 40 — [(d'(k, + K> +3L") =]

AZy W' (K, + ks) + r 4 30| - 8024 W,

G,

2},(0) (b) 23/(0)

(28a)

AZYWA|d' (K + k) = r 4 31| — i80Z) W

2},(&) (b> Zy(c)

G,

(28b)

2
with G, = —4e?® - [(d'(K| + k> +3L) =17

2 .
4Zyw][d' (K, + k) 4+ 3L | - 8024w,

25(ﬂ) 5(17) 25(6) —
1 Gy

(29a)

2 .
4zZywy [ (k + )" = r+ 31| - i80Z; Wy

G,

2
(29b)
2
with G = —4e? — [(d'(K! + k) +3L') —r?]

The question that arises is that of the separability of Egs. (25a,b).
Let us consider a single chemical component in a single waveguide, (b),
expressed in the bipartite system product basis, namely:

) = (@) lks) + 5PV 1KA) + 7 i ks) + 5P 1K} IK) Jel2eo
(30
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Can we rewrite this expression as the product?

Cibl) = (ulky) + malk})) (vilks) + vZIk§>)e’2“’° (31

(b) (b)

Eq. (31) is equal to Eq. (30) if -~ (b) = ;{b)

This condition is not gen-
erally satisfied unless the waves forlthe two OAMs “1” and “3” are de-
generate with same characteristic frequencies and wave numbers. Out-
side this very special case, the first order chemical waves given by Egs.
(25a,b) are nonseparable in the tensor product space, H;3. These non-
separable states are defined in H;5 which dimension 22 is exponentially
complex. In the case of a neuronal tissue with N parallel axons, nonlin-
ear reaction rates scaling as a power of N, and provided that each OAM
supports only two k-levels, the multipartite nonlinear system would ad-
mit chemical waves to first order that span an exponentially complex
Hilbert product space of dimension 2¥. The amount of information that
could be encoded or processed by even a few tens of parallel fibers would
then be massive. From a biological point of view, the spatially extensive
apical dendritic cells in the cerebrum could be envisaged as a mean
of sensing the wave number states, k, of nonseparable states. A wave
number k relates to the wavelength of a chemical wave and its identifi-
cation necessitates spatial resolution along the parallel fibers. The apical
dendrites branch along the parallel fibers and form a large number of
synapses [14]. The extensive synaptic network between apical dendrites
and parallel fibers may be able to probe spatial modulations of reactants.

5. Conclusion

The biological wave models of a neurological tissue which have been
presented in this paper (more specifically a highly reduced model of
parallel axons) are based on conventional reaction diffusion theories.
These models incorporate higher order biology (e.g., multicellular ar-
chitecture through axon-to-axon coupling), lower-order biology (e.g.,
intra cellular pathway involving a number of chemical reactants) and
external chemical stimulation. We have demonstrated theoretically that
the reaction diffusion model with linear intracellular reaction rates offer
the ability to prepare and tune nonseparable superposition of chemical
waves that can propagate along the axons. These waves are products of
a part associated with directional degrees of freedom along the chem-
ical waveguides (axon) and an orbital angular momentum (OAM) part
associated with the coupling between the multiple axons. Nonsepara-
ble quantum-like Bell states are constructed as a superposition of these
chemical waves, which cannot be factored as a product of a single di-
rectional part and an OAM part. Remarkably, we also find that the am-
plitude coefficients of the nonseparable superposition of product waves
are complex quantities, that is they include a phase. By tuning these
complex amplitudes by varying stimuli distribution between the axons
and/or frequency, the model is able to navigate a sizeable portion of
the Bell state’s Hilbert space. The dimension of this Hilbert space scales
linearly with the number of chemical waveguides, N, times the number
of chemical reactants (here 2).

We also showed theoretically, in the case of nonlinear (quadratic) in-
tracellular reaction rates, using multiple time scale perturbation theory,
the existence of another type of nonseparable superpositions of chemical
waves that span a Hilbert space with exponential scaling. This space’s
dimension scales as the N power of the number of waves that can be
driven effectively by the external chemical stimulus. We show that this
nonlinear reaction diffusion model is analogous to a two-partite (subsys-
tems defined by two different OAMs), two-level quantum system (levels
defined by the possible waves that can be stimulated). The amplitudes
appearing in the nonseparable superposition are also complex quanti-
ties dependent on the frequency and amplitude of the external stimulus.
By tuning these complex amplitudes, the stimulus can make the model
navigate the exponentially scaling Hilbert space.

It must be admitted that the biological models presented here are
oversimplified. The model multicellular architecture (parallel chemi-
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cal waveguides) and intracellular pathway (feedback between two re-
actants) may be a pale representation of the complexity of neuronal cir-
cuitry in the cerebral cortex. Nonetheless, these simple models demon-
strate, within plausible conventional reaction diffusion models of bio-
logical systems, the remarkable ability of describing bio-chemical phe-
nomena analogous to quantum mechanics. These phenomena include
coherent superposition of states and nonseparability (i.e., local or classi-
cal entanglement). The nonseparability of bio-chemical waves is robust
against decoherence as it is not a quantum phenomenon. However, it
could enable quantum-like parallelism in bio-chemical wave communi-
cation and processing of information with potential relevance to under-
standing the complexity of brain functions. The possibility of achiev-
ing quantum-like behavior in conventional reaction-diffusion models of
biological tissues challenges the current quantum brain hypothesis and
opens up new avenues for interpretation of real neurological data and/or
design of new experiments.
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