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a b s t r a c t 

The nervous system is a complex dynamical system that incorporates higher order biology (e.g., multicellular 
architecture) and lower-order biology (e.g., intra cellular pathway) that can be modeled via classical laws such as 
reaction-diffusion models. Simple reaction-diffusion models of neuronal tissue are shown to support bio-chemical 
wave effects that are analogous to quantum phenomena. These phenomena include quantum-like superpositions 
and classical entanglement which will not be affected by decoherence n the wet and warm brain environment. 
These classical phenomena could enable quantum-like complexity of brain functions. Conventional reaction- 
diffusion models of biological tissues challenge the current quantum brain hypothesis and suggest that the brain 
should perhaps be thought of as a classical quantum-like system. 

Statement of Significance 

This manuscript introduces the notion of nonseparability (classical entanglement) in the case of biochemical 
waves in arrays of coupled axons. We use a linear reaction-diffusion model with cross diffusion to address non- 
separability between degrees of freedom (along and across the axon array). Perturbation theory applied to a 
nonlinear model with quadratic nonlinearity is used to illustrate nonseparability between modes along the ax- 
ons. This paper suggests that the brain should perhaps be thought of as a classical quantum-like system. 
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. Introduction 

It has been argued that the complexity of brain functions cannot be
xplained by classical physical and/or chemical theories but requires
uantum phenomena such as quantum superposition and entanglement
o be understood [1] . While decoherence of quantum superposition in
oisy and warm biological media serves as an argument against a quan-
um hypothesis for the brain functions, evidence of quantum mechanical
ffects in biological processes suggests that quantum phenomena could
lay a role in neurobiology [2] . For instance, it has been hypothesized
hat the nuclear spin residing in biological molecules may function as
ubit, a quantum bit of information [3] , however, spin relaxation may
e too fast to enable long lifetime quantum entanglement [4] . Outside
he realm of neuroscience, the field of quantum biology has emerged
rom recent observations suggesting that a number of biological phe-
omena including enzyme catalysis, olfaction, photosynthesis may re-
ult from quantum mechanical effects such as coherence, tunneling and,
ntanglement [5] . In contrast to the quantum hypothesis of brain func-
ions, there is an alternative proposal in which the complex dynamics of
he nervous system leads to classical physical and chemical phenomena
∗ Corresponding author: 
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hat are analogous to quantum mechanics and can therefore augment its
apability for storing and processing information. Nonlocality and non-
eparability are two distinctive aspects of entanglement. While nonlocal-
ty is a unique attribute of quantum mechanics, nonseparability is not.
he notion of classical “entanglement ” i.e., local nonseparable coherent
uperposition, or equivalently, the notion of classical nonseparability
 6 , 7 ] has attracted interest and has been observed in the physical fields
f optics [ 8 , 9 ] and more recently acoustics [ 10 , 11 ]. Since nonlocality
f quantum phenomena (such as the Einstein’s so-called spooky action

t a distance ) is not a requirement for quantum information processing,
lassical nonseparability may offer the advantage of quantum superposi-
ions in terms of information scalability without the fragility of quantum
oherence. Classically entangled compositional variables in biological
issue, such as biochemical waves, each carrying information, would be
nterdependent. The classical inseparability of these variables, robust
gainst decoherence, would enable quantum-like parallelism with po-
ential relevance to understand the complexity of brain functions. The
ossibility of achieving quantum-like behavior in biological tissues does
ot require new theories but relies on reaction-diffusion models à la Tur-
ng based on classical laws [12] . 
ust 2020 
ticle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. Schematic representation of the model of three axons a, b, and c sup- 
porting two reactants 1 and 2. Reactant 1 promotes the production of 2 and 
reactant 2 inhibits reactant 1. (self-promotion/inhibition is not represented). 
The horizontal double arrows represent self-diffusion (1-1 or 2-2) and cross- 
diffusion (1-2 or 2-1 (not shown)) along the axons (direction x ). The vertical 
arrows represent self- and cross-transport of reactant between axons. 

t  

T  

e  

n  

i  

a  

C
 

t  

t
 

t  

s
 

o

. Reaction-diffusion model and propagating wave solutions 

The purpose of the greatly simplified reaction-diffusion model in-
roduced here is to demonstrate the emergence of quantum-like phe-
omena in a classical biological system. This model incorporates higher
rder biology (e.g., multicellular architecture) and lower-order biol-
gy (e.g., intra cellular pathway). The prototypical model is com-
osed of three (infinitely long) parallel one-dimensional structures that
an support propagative chemical waves [13] . We refer to these one-
imensional structures as chemical waveguides. This architecture is
eminiscent of parallel axons in the cerebral cortex [14] . It is also as-
umed that the chemical waves propagating along each chemical waveg-
ide may result from an intracellular pathway involving a feedback loop
etween two chemical component, 1 and 2, subsequently called reac-
ants. Inositol (1,4,5)-triphosphate (IP 3 )-mediated Calcium (Ca + ) waves
n neurons are examples of waves that form from such a feedback pro-
ess [15] . Indeed, the endoplasmic reticulum (ER) forms inside the axon
 continuous network of interconnected tubules, sheets and cisternae
hich enables Ca 2 + -induced Ca 2 + release and re-uptake mediated by

P3, locally to and from the cytosol [16] . A continuous ER network is
herefore able to support long-distance Ca 2 + signaling through the cy-
osol along the axon [17] . 

The waveguides may also interact through ephaptic transmission be-
ween axons [18] or synaptic active or passive diffusion of reactants.
phaptic coupling may result from exchange of ions between cells or
ay result from local electric or magnetic fields. Experimental evidence

or axonal gap junctions suggests the possibility of ion exchange between
eurons [19] . However, myelin sheaths surrounding the myelinated ax-
ns, the most common type of axons, in the central nervous system, are
elieved to inhibit direct neuron-to-neuron coupling. In contrast, un-
yelinated axons are more common in the peripheral nervous system

e.g., in Remak bundles [20] ). However, in both cases of myelinated and
nmyelinated axons, Schwann cells form close relationships with the
xons. Myelinating Schwann cells surround a single axon whereas, un-
yelinated Schwann cells bundle several axons together. The Schwann

ells keep axons from touching each other. Schwann cells are glial cells
ubject to Ca 2 + signaling [21] . While the myelin sheath may still in-
ibit ion transport between Schwann cell and the axon, astrocytes (an-
ther type of glial cells) contact the axon membrane at the unmyelinated
odes of Ranvier. Contact between axon and glial cell at axon nodes of-
ers a possible molecular mechanism by which neuron and glia can in-
eract [22] . There is evidence that astrocytes influence the communica-
ion between neurons [23] . In unmyelinated nodes, gap junctions may
onnect glial cells and neurons [ 24 , 25 ]. Endogenous electric or mag-
etic fields can affect neuronal function via ephaptic coupling [26] . For
nstance, astroglial biomagnetic fields associated with Ca 2 + transients
ould be implicated in neuron-glial ephaptic crosstalk [27] . 

Finally, while self-diffusion of the reactants can occur along and
cross the waveguides (e.g., via ephaptic coupling), the cross-diffusion
f one reactant along or between waveguides may be driven by the gra-
ient of the other reactant, that is, the two reactants diffusion may be
ediated by cotransporters [28] . Another possibility for cross-diffusion

cross membranes is transport mediated by ubiquitous enzymatic trans-
embrane proteins. For instance, a hypothetical biomolecular mecha-
ism for cross-diffusion across membranes was proposed [29] . A trans-
embrane enzymatic structure supporting two active and one regula-

ory site can transform a reactant 2 into a substance 3 at one of the
ctive sites and vice versa at the other active site. The active sites sit on
oth sides of the membrane. The transformation is catalyzed by a reac-
ant 1 at the regulatory site on one of the sides of the transmembrane
tructure. This mechanism assumes constant concentration of substance
 and random distribution/orientation of the enzymic structures within
embranes. Considering a chain of discrete compartments separated by
embranes containing enzymic structures, the rate of change of reactant
 in one compartment was shown to be proportional to the Laplacian of
he of reactant 1; the signature of cross-diffusion. Some of the charac-
eristics of this hypothetical mechanism have been observed in Receptor
yrosine Kinases (RTK) [30] . RTK are constituted of a ligand-binding
xtra-cellular domain, a transmembrane domain and an enzymatic (ki-
ase) intracellular domains. RTK can stimulate enzymatic activity lead-
ng to the cleavage of Phosphatidylinositol Biphosphate (PIP2) into IP3
nd diacylglycerol (DAG). In turn IP3 production increases intracellular
a 2 + concentration. 

Fig. 1 illustrates schematically the geometry of the model, irrespec-
ively of the underlying biological mechanisms that may be involved in
he self-diffusion, cross-diffusion, and reaction kinetics processes. 

Initially, we assume small excursions in the concentration of reac-
ants which enables us to consider a linear reaction model. That as-
umption will be lifted in a later section. 

The linear mathematical model takes the form of a set of coupled
rdinary differential equations (ODEs) given by: 

𝜕𝐶 
( 𝑎 ) 
1 
𝜕𝑡 

= 𝑑 
𝜕 2 𝐶 ( 𝑎 ) 1 
𝜕 𝑥 2 

+ 𝑑 ′
𝜕 2 𝐶 ( 𝑎 ) 2 
𝜕 𝑥 2 

+ 𝑟 ′𝐶 ( 𝑎 ) 1 − 𝑟𝐶 
( 𝑎 ) 
2 + 𝐿 

(
𝐶 

( 𝑏 ) 
1 − 𝐶 

( 𝑎 ) 
1 

)
+ 𝐿 ′

(
𝐶 

( 𝑏 ) 
2 − 𝐶 

( 𝑎 ) 
2 

)
(1a) 

𝜕𝐶 
( 𝑎 ) 
2 
𝜕𝑡 

= 𝑑 
𝜕 2 𝐶 ( 𝑎 ) 2 
𝜕 𝑥 2 

+ 𝑑 ′
𝜕 2 𝐶 ( 𝑎 ) 1 
𝜕 𝑥 2 

+ 𝑟 ′𝐶 ( 𝑎 ) 2 + 𝑟𝐶 
( 𝑎 ) 
1 + 𝐿 

(
𝐶 

( 𝑏 ) 
2 − 𝐶 

( 𝑎 ) 
2 

)
+ 𝐿 ′

(
𝐶 

( 𝑏 ) 
1 − 𝐶 

( 𝑎 ) 
1 

)
(1b) 

𝜕𝐶 
( 𝑏 ) 
1 
𝜕𝑡 

= 𝑑 
𝜕 2 𝐶 ( 𝑏 ) 1 
𝜕 𝑥 2 

+ 𝑑 ′
𝜕 2 𝐶 ( 𝑏 ) 2 
𝜕 𝑥 2 

+ 𝑟 ′𝐶 ( 𝑏 ) 1 − 𝑟𝐶 
( 𝑏 ) 
2 − 𝐿 

(
𝐶 

( 𝑏 ) 
1 − 𝐶 

( 𝑎 ) 
1 

)
+ 𝐿 

(
𝐶 

( 𝑐 ) 
1 − 𝐶 

( 𝑏 ) 
1 

)
− 𝐿 ′

(
𝐶 

( 𝑏 ) 
2 − 𝐶 

( 𝑎 ) 
2 

)
+ 𝐿 ′

(
𝐶 

( 𝑐 ) 
2 − 𝐶 

( 𝑏 ) 
2 

)
(1c) 

𝜕𝐶 
( 𝑏 ) 
2 
𝜕𝑡 

= 𝑑 
𝜕 2 𝐶 ( 𝑏 ) 2 
𝜕 𝑥 2 

+ 𝑑 ′
𝜕 2 𝐶 ( 𝑏 ) 1 
𝜕 𝑥 2 

+ 𝑟 ′𝐶 ( 𝑏 ) 2 + 𝑟𝐶 
( 𝑏 ) 
1 − 𝐿 

(
𝐶 

( 𝑏 ) 
2 − 𝐶 

( 𝑎 ) 
2 

)
+ 𝐿 

(
𝐶 

( 𝑐 ) 
2 − 𝐶 

( 𝑏 ) 
2 

)
− 𝐿 ′

(
𝐶 

( 𝑏 ) 
1 − 𝐶 

( 𝑎 ) 
1 

)
+ 𝐿 ′

(
𝐶 

( 𝑐 ) 
1 − 𝐶 

( 𝑏 ) 
1 

)
(1d) 

𝜕𝐶 
( 𝑐 ) 
1 
𝜕𝑡 

= 𝑑 
𝜕 2 𝐶 ( 𝑐 ) 1 
𝜕 𝑥 2 

+ 𝑑 ′
𝜕 2 𝐶 ( 𝑐 ) 2 
𝜕 𝑥 2 

+ 𝑟 ′𝐶 ( 𝑐 ) 1 − 𝑟𝐶 
( 𝑐 ) 
2 − 𝐿 

(
𝐶 

( 𝑐 ) 
1 − 𝐶 

( 𝑏 ) 
1 

)
− 𝐿 ′

(
𝐶 

( 𝑐 ) 
2 − 𝐶 

( 𝑏 ) 
2 

)
(1e) 

𝜕𝐶 
( 𝑐 ) 
2 
𝜕𝑡 

= 𝑑 
𝜕 2 𝐶 ( 𝑐 ) 2 
𝜕 𝑥 2 

+ 𝑑 ′
𝜕 2 𝐶 ( 𝑐 ) 1 
𝜕 𝑥 2 

+ 𝑟 ′𝐶 ( 𝑐 ) 2 + 𝑟𝐶 
( 𝑐 ) 
1 − 𝐿 

(
𝐶 

( 𝑐 ) 
2 − 𝐶 

( 𝑏 ) 
2 

)
− 𝐿 ′

(
𝐶 

( 𝑐 ) 
1 − 𝐶 

( 𝑏 ) 
1 

)
(1f) 
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a  

r  
The reactant compositional variables are 𝐶 ( 𝑗) 1 , 2 with 𝑗 = 𝑎, 𝑏, 𝑐 labeling
he waveguides. The terms on the left of the equal signs represent the
ocal accumulation of reactants. The diffusion constants d and d ′ quan-
ify the effect of one reactant on its own transfer or on the transfer of the
ther reactant along the chemical waveguides, respectively. x is the posi-
ional variable along the waveguides. The transport coefficients L and L ′
escribe transport between waveguides. The sign of these diffusion and
ransport coefficients determine the direction of transport with respect
o concentration gradients. r ′ and r represent the self-regulation rate and
ross regulation rate (feedback loop) of the intracellular pathway. The
pposite signs in front of r ensures oscillatory behavior in concentration
ithin a chemical waveguide. It is essential to note that equations (1a-f)
o not introduce any new physics nor new chemistry. 

Equations (1a-f) belong to a class of partial Differential Equations
PDE) known as cross-diffusion equations. Cross-diffusion systems are
trongly coupled parabolic equations used to model processes arising
n cell biology, thermodynamics and ecology [ 31 , 32 ]. Cross-diffusion
ystems obey parabolic equations of the form: 

𝜕 𝐶 𝑖 

𝜕𝑡 
= Δ

[ 
𝐹 𝑖 

( 

⇀

𝐶 

) ] 
+ 𝐺 𝑖 

( 

⇀

𝐶 

) 

(2)

here F i are nonlinear functions of the solution vector 
⇀

𝐶 = { 𝐶 1 , 𝐶 2 } .
he nonlinear functions G i represent reaction terms. The cross-diffusion

roblem is well-posed if the Jacobian matrix of the vector field 
⇀

𝐹 is
ositive definite [ 33 , 34 ]. In the case of the Shigesada, Kawasaki, and
eramoto (SKT) model of interacting species [35] the cross-diffusion
ystem possesses reaction terms. They showed that the cross-diffusion
ystem can be approximated by a reaction-linear diffusion system and
ross-diffusion instability is equivalent to Turing’s instability. 

In that context, we can reformulate Eq. (1a -f) as the system of equa-
ions: 

𝜕 𝐶 1 
𝜕𝑡 

= ∇ 

(
𝑓 1 1 

(
𝐶 1 , 𝐶 2 

)
∇ 𝐶 1 + 𝑓 2 1 

(
𝐶 1 , 𝐶 2 

)
∇ 𝐶 2 

)
+ 𝑔 1 

(
𝐶 1 , 𝐶 2 

)
(3a)

𝜕 𝐶 2 
𝜕𝑡 

= ∇ 

(
𝑓 1 2 

(
𝐶 1 , 𝐶 2 

)
∇ 𝐶 1 + 𝑓 2 2 

(
𝐶 1 , 𝐶 2 

)
∇ 𝐶 2 

)
+ 𝑔 2 

(
𝐶 1 , 𝐶 2 

)
(3b)

here the functions 𝑓 1 1 , 𝑓 
2 
1 , 𝑓 

1 
2 , and 𝑓 2 2 are here constants and related

o the self and cross-diffusion coefficients for the direction along the
aveguides d and d ′ and the transport coefficients L and L ′ for the di-

ection perpendicular to the waveguides. Note that in Eq. (1a –f), the
irection perpendicular to the waveguides is discrete. Furthermore, the
radient operator ∇ is continuous in the direction of the waveguides
direction x ) and discrete in the direction perpendicular to the planar
rray of waveguides (direction labelled by waveguide index 𝑗 = 𝑎, 𝑏, 𝑐).
he finite number of waveguides imposes a condition of zero flux in
he direction perpendicular to the waveguides at waveguides a and c .
quations (3a-b) are a generalized form of the SKT model. The functions
 1 and g 2 reduce to linear reaction rates in Eqs. (1a–f). The set of Eqs.
1a-f) is therefore a linearized version of a SKT cross-diffusion system.
he existence and nature of traveling wave solutions in excitable media
ith linear or nonlinear cross-diffusion has been reviewed. [36] . 

With this in mind, we are seeking wave-like solutions of our lin-
arized reaction cross-diffusion model of the form: 𝐶 ( 𝑗) 1 , 2 = 𝐴 

( 𝑗) 
1 , 2 𝑒 

𝑖𝑘𝑥 𝑒 𝑖𝜔𝑡 

here 𝐴 

( 𝑗) 
1 , 2 represents the amplitude of the waves. “i ” is the positive

quare root of -1. k is a wave number ( 𝑘 = 

2 𝜋
𝜆

with 𝜆 being the wave-
ength) and 𝜔 is the angular frequency, one can compactify equations
1a-f) into a matrix form: 

𝐼 3 × 3 ⊗𝐻 2 × 2 + 𝑀 3 × 3 ⊗𝐿 2 × 2 
}
𝐴 6 × 1 = 0 (4)

here I 3 × 3 is the 3 × 3 identity matrix. 𝑀 3 × 3 = 

⎛ ⎜ ⎜ ⎝ 
−1 1 0 
1 −2 1 
0 1 −1 

⎞ ⎟ ⎟ ⎠ is
he matrix that couples the three waveguides. This is effectively the
iscrete Laplacian in the direction perpendicular to the wave guides
ncluding zero flux boundary conditions applied to the waveguides
a) and (c). The coupling matrix is a representation of the axon-
o-axon interactions in the multicellular architecture. In the present
odel, the three parallel waveguides are arranged in a single plane.
ther configurations (e.g., the waveguides are arranged on the ver-

ices of an equilateral triangle) will be associated with other forms
f the coupling matrix. The dynamical matrix is given by 𝐻 2 × 2 =
 

− 𝑖𝜔 − 𝑑 𝑘 2 + 𝑟 ′ − 𝑟 − 𝑑 ′𝑘 2 

+ 𝑟 − 𝑑 ′𝑘 2 − 𝑖𝜔 − 𝑑 𝑘 2 + 𝑟 ′

) 

and 𝐿 2 × 2 = 

( 

𝐿 𝐿 ′

𝐿 ′ 𝐿 

) 

. ⊗ is the

sual tensor product operator. Equation (4) separates the reaction and
iffusion dynamics along the waveguides from the coupling between
hem. It separates the dynamics of the system into a behavior along
he x degree of freedom and a behavior corresponding to the degree
f freedom associated with the labelling of individual waveguides. In
hat form, we can use a method developed by Othmer and Scriven
37] to seek a solution to Eq. (4) . We choose a solution for the amplitude
ector 𝐴 6 × 1 = 𝑒 𝑛 ⊗𝐴 2 × 1 where e n is a 3 × 1 eigenvector of M 3 × 3 
i.e., 𝑀 3 × 3 𝑒 𝑛 = 𝜆𝑛 𝐼 3 × 3 𝑒 𝑛 with 𝜆n being the eigenvalue associated with

 n ) and where 𝐴 2 × 1 = 

( 

𝐴 1 
𝐴 2 

) 

represents the amplitude of reactants 1

nd 2 in any of the waveguides. Equation (4) reduces to 

 𝑛 ⊗
{
𝐻 2 × 2 + 𝜆𝑛 𝐿 2 × 2 

}
𝐴 2 × 1 = 0 (5) 

The three eigenvectors e n corresponding to the eigenvalues 𝜆1 = 0 ,
2 = −1 , and 𝜆3 = −3 , are: 

 1 = 

1 √
3 

⎛ ⎜ ⎜ ⎝ 
1 
1 
1 

⎞ ⎟ ⎟ ⎠ , 𝑒 2 = 

1 √
2 

⎛ ⎜ ⎜ ⎝ 
1 
0 
−1 

⎞ ⎟ ⎟ ⎠ , 𝑒 3 = 

1 √
6 

⎛ ⎜ ⎜ ⎝ 
1 
−2 
1 

⎞ ⎟ ⎟ ⎠ (6)

These eigenvectors represent the relative phase and magnitude of
ompositional waves supported by the different waveguides. They are
ignatures of the collective behavior of the interacting waveguides in
ur prototypical model of parallel axons. The waves supported by the
hree waveguides are effectively phase-locked. These eigenvectors are
nalogous to the Orbital Angular Momentum (OAM) degree of freedom
n quantum mechanics. 

Equation (5) reduces to solving the simpler single waveguide eigen-
alue/vector problem 

𝐻 2 × 2 + 𝜆𝑛 𝐿 2 × 2 
}
𝐴 2 × 1 = 0 (7) 

We can now use Turing’s linear stability analysis of our cross-
iffusion systems to adjust the system to achieve plane wave trav-
ling behavior of the solutions [38] . The parabolic equation (5) is
he sum of several operators representing the self-diffusion (SD),
ross-diffusion (CD) along and across the waveguides as well as

he reaction kinetics (RK): 𝑆𝐷 = 

( 

− 𝑑 𝑘 2 + 𝜆𝑛 𝐿 0 
0 − 𝑑 𝑘 2 + 𝜆𝑛 𝐿 

) 

, 𝐶𝐷 =
 

0 − 𝑑 ′𝑘 2 + 𝜆𝑛 𝐿 
′

− 𝑑 ′𝑘 2 + 𝜆𝑛 𝐿 
′ 0 

) 

and 𝑅𝐾 = 

( 

𝑟 ′ − 𝑟 

+ 𝑟 𝑟 ′

) 

. The eigenval-

es of the self-diffusion operator alone are real negative (since 𝜆n < 0)
nd twice degenerate: 𝜆𝑆𝐷 = − 𝑑 𝑘 2 + 𝜆𝑛 𝐿 . The eigenvalues of the cross-
perator are real positive or negative: 𝜆𝐶𝐷 = ±( − 𝑑 ′𝑘 2 + 𝜆𝑛 𝐿 

′) . The
igenvalues of the reaction kinetics are complex, 𝜆𝑅𝐾 = 𝑟 ′ ∓ 𝑖𝑟 . For a
iven wave number, self-diffusion alone leads to time-decaying concen-
ration excursions and to a uniform stable state. Cross-diffusion alone
eads to decaying solutions (stable uniform state) or growing (unstable
tate) for a given k . The reaction kinetics alone gives rise to damped or
mplified temporal oscillations. 

The eigen frequencies 𝜔 0 n of the complete operator, sum of the SD,
D and RK operators, are found to be complex 

 0 𝑛 = ∓ 

√ 

𝑟 2 − 

(
− 𝑑 ′𝑘 2 + 𝜆𝑛 𝐿 

′
)2 + 𝑖 

(
− 𝑑 𝑘 2 + 𝑟 ′ + 𝜆𝑛 𝐿 

)
(8)

Complex eigen frequencies indicate that the compositional waves
re generally attenuated or grow as they propagate. 𝜔 0 n needs to be
eal (positive or negative) for the system to support traveling waves.
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or this we are assuming that the system is in the limiting case where
he rate r is sufficiently large such that 𝑟 2 − ( − 𝑑 ′𝑘 2 + 𝜆𝑛 𝐿 

′) 2 is positive.
his condition restricts propagation to waves with wave vectors that are
ufficiently small. This corresponds to a strong feedback between reac-
ants 1 and 2. Choosing the self-diffusion coefficients, d and L and the
elf-promoting reaction rate r ′ to be negligibly small leads to real fre-
uencies corresponding to compositional waves propagating along the
aveguides without attenuation. We see that the cross-diffusion intro-
uces dispersion (dependency of the frequency on the wave number). 

In that case, the complex eigenvectors are 

 2 × 1 = 𝐴 0 

( 

∓ 𝑖 
√
𝑟 + 𝑑 ′𝑘 2 − 𝜆𝑛 𝐿 

′√
𝑟 − 𝑑 ′𝑘 2 + 𝜆𝑛 𝐿 

′

) 

(9)

The reactants 1 and 2 oscillate with respect to each other with a

hase of 𝜋2 (i.e., 𝑖 = 𝑒 
𝑖 
𝜋

2 ). 
In summary, choosing the second OAM as an example, the complete

olution for the compositional wave supported by the coupled chemical
aveguides is given by 

 

𝑛 =2 
6 × 1 = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

𝐶 
( 𝑎 ) 
1 
𝐶 

( 𝑎 ) 
2 
𝐶 

( 𝑏 ) 
1 
𝐶 

( 𝑏 ) 
2 
𝐶 

( 𝑐 ) 
1 
𝐶 

( 𝑐 ) 
2 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 
= 𝑒 2 ⊗𝐴 

𝑛 =2 
2 × 1 𝑒 

𝑖𝑘𝑥 𝑒 𝑖𝜔𝑡 = 

1 √
2 

⎛ ⎜ ⎜ ⎝ 
1 
0 
−1 

⎞ ⎟ ⎟ ⎠ 

⊗𝐴 0 

( 

∓ 𝑖 
√
𝑟 + 𝑑 ′𝑘 2 + 𝐿 ′√
𝑟 − 𝑑 ′𝑘 2 − 𝐿 ′

) 

𝑒 𝑖𝑘𝑥 𝑒 𝑖 𝜔 0 𝑛 =2 ( 𝑘 ) 𝑡 (10)

ith 𝜔 0 𝑛 =2 ( 𝑘 ) = ∓ 

√ 

𝑟 2 − ( − 𝑑 ′𝑘 2 − 𝐿 ′) 2 . Solutions corresponding to the
wo other OAM can be written in a similar manner. This model can be
asily generalized to a larger number, N , of coupled chemical waveg-
ides (i.e., bundles of N > 3 axons) and various forms of the coupling
atrix M N × N as well as larger number of reactants. Since equation (2) is
 linear differential equation, any linear combination of solutions 𝐶 𝑛 =1 6 × 1 ,

 

𝑛 =2 
6 × 1 and 𝐶 𝑛 =3 6 × 1 is also solution of the equation. In the next section, we
how that if the system is driven externally by an oscillating stimulus, we
an obtain linear combinations of solutions which are interdependent in
 way analogous to local quantum entanglement. 

. Externally driven reaction diffusion model 

We solve the set of externally driven coupled differential equations 

 

𝜕𝐶 
( 𝑎 ) 
1 
𝜕𝑡 

+ 𝑑 ′
𝜕 2 𝐶 ( 𝑎 ) 2 
𝜕 𝑥 2 

− 𝑟𝐶 
( 𝑎 ) 
2 + 𝐿 ′

(
𝐶 

( 𝑏 ) 
2 − 𝐶 

( 𝑎 ) 
2 

)
= 𝐹 1 𝑒 

𝑖𝜔𝑡 𝛿( 𝑥 = 0 ) (11a)

 

𝜕𝐶 
( 𝑎 ) 
2 
𝜕𝑡 

+ 𝑑 ′
𝜕 2 𝐶 ( 𝑎 ) 1 
𝜕 𝑥 2 

+ 𝑟𝐶 
( 𝑎 ) 
1 + 𝐿 ′

(
𝐶 

( 𝑏 ) 
1 − 𝐶 

( 𝑎 ) 
1 

)
= 𝐹 2 𝑒 

𝑖𝜔𝑡 𝛿( 𝑥 = 0 ) (11b)

 

𝜕𝐶 
( 𝑏 ) 
1 
𝜕𝑡 

+ 𝑑 ′
𝜕 2 𝐶 ( 𝑏 ) 2 
𝜕 𝑥 2 

− 𝑟𝐶 
( 𝑏 ) 
2 − 𝐿 ′

(
𝐶 

( 𝑏 ) 
2 − 𝐶 

( 𝑎 ) 
2 

)
+ 𝐿 ′

(
𝐶 

( 𝑐 ) 
2 − 𝐶 

( 𝑏 ) 
2 

)
= 𝐹 3 𝑒 

𝑖𝜔𝑡 𝛿( 𝑥 = 0 ) (11c)

 

𝜕𝐶 
( 𝑏 ) 
2 
𝜕𝑡 

+ 𝑑 ′
𝜕 2 𝐶 ( 𝑏 ) 1 
𝜕 𝑥 2 

+ 𝑟𝐶 
( 𝑏 ) 
1 − 𝐿 ′

(
𝐶 

( 𝑏 ) 
1 − 𝐶 

( 𝑎 ) 
1 

)
+ 𝐿 ′

(
𝐶 

( 𝑐 ) 
1 − 𝐶 

( 𝑏 ) 
1 

)
= 𝐹 4 𝑒 

𝑖𝜔𝑡 𝛿( 𝑥 = 0 ) (11d)

 

𝜕𝐶 
( 𝑐 ) 
1 
𝜕𝑡 

+ 𝑑 ′
𝜕 2 𝐶 ( 𝑐 ) 2 
𝜕 𝑥 2 

− 𝑟𝐶 
( 𝑐 ) 
2 − 𝐿 ′

(
𝐶 

( 𝑐 ) 
2 − 𝐶 

( 𝑏 ) 
2 

)
= 𝐹 5 𝑒 

𝑖𝜔𝑡 𝛿( 𝑥 = 0 ) (11e)

 

𝜕𝐶 
( 𝑐 ) 
2 
𝜕𝑡 

+ 𝑑 ′
𝜕 2 𝐶 ( 𝑐 ) 1 
𝜕𝑥 2 

+ 𝑟𝐶 
( 𝑐 ) 
1 − 𝐿 ′

(
𝐶 

( 𝑐 ) 
1 − 𝐶 

( 𝑏 ) 
1 

)
= 𝐹 6 𝑒 

𝑖𝜔𝑡 𝛿( 𝑥 = 0 ) (11f)

Here d, r ′ and L ′ of equation (1a –f) are again neglected in order to
ocus on traveling compositional waves. F with 𝑃 = 1 , 2 , 3 , 4 , 5 , 6 are the
P 
eal amplitudes of the stimulus on each waveguide driving the two reac-
ants. 𝛿( 𝑥 = 0 ) is the Dirac delta function that ensures that the stimulus
s applied on each waveguide at the same location 𝑥 = 0 . 𝜔 is the angular
requency of the stimulus which may be different from the eigenvalues
 0 n . From a biological point of view, the stimulus may be associated
ith excitation of apical dendrite cells from which emerge the axons

orming the parallel fiber. 
We now seek solutions of Eqs. (11a -f) in the form of linear combina-

ions of propagative waves: 

 6 × 1 = 

⎛ ⎜ ⎜ ⎝ 
1 
1 
1 

⎞ ⎟ ⎟ ⎠ ⊗
( 

𝑍 1 
𝑍 2 

) 

𝑒 𝑖 𝑘 1 𝑥 𝑒 𝑖𝜔𝑡 + 

⎛ ⎜ ⎜ ⎝ 
1 
0 
−1 

⎞ ⎟ ⎟ ⎠ ⊗
( 

𝑌 1 
𝑌 2 

) 

𝑒 𝑖 𝑘 2 𝑥 𝑒 𝑖𝜔𝑡 + 

⎛ ⎜ ⎜ ⎝ 
1 
−2 
1 

⎞ ⎟ ⎟ ⎠ 
⊗

( 

𝑊 1 
𝑊 2 

) 

𝑒 𝑖 𝑘 3 𝑥 𝑒 𝑖𝜔𝑡 (12) 

These solutions are phase-locked with the stimulus i.e., the response
ave of Eq. (12) is synchronized to the periodic frequency of the driver

39] . 
We note in this equation that the wave number takes on different val-

es corresponding to the different OAMs, namely k 1 , k 2 and k 3 . The six
nknowns of the problem are the amplitudes, Z 1, 2 , Y 1, 2 and W 1, 2 . The
ystem of equation (11a -f) is solved at 𝑥 = 0 . After extensive algebraic
anipulations, we find 

 1 = 

− 𝐹 2 , 4 , 6 
(
𝑑 ′𝑘 2 1 + 𝑟 

)
+ 𝑖𝜔 𝐹 1 , 3 , 5 

3 
(
𝜔 2 − 𝜔 2 01 

) and 𝑍 2 = 

− 𝐹 1 , 3 , 5 
(
𝑑 ′𝑘 2 1 − 𝑟 

)
+ 𝑖𝜔 𝐹 2 , 4 , 6 

3 
(
𝜔 2 − 𝜔 2 01 

)
(13a) 

 1 = 

− 𝐹 2 , 6 
(
𝑑 ′𝑘 2 2 + 𝑟 + 𝐿 ′

)
+ 𝑖𝜔 𝐹 1 , 5 

2 
(
𝜔 2 − 𝜔 2 02 

) and 𝑌 2 = 

− 𝐹 1 , 5 
(
𝑑 ′𝑘 2 1 − 𝑟 + 𝐿 ′

)
+ 𝑖𝜔 𝐹 2 ,

2 
(
𝜔 2 − 𝜔 2 02 

)
(13b) 

 1 = 

− 𝐹 2 , 6 , 4 
(
𝑑 ′𝑘 2 3 + 𝑟 + 3 𝐿 ′

)
+ 𝑖𝜔 𝐹 1 , 5 

6 
(
𝜔 2 − 𝜔 2 03 

) and 

 2 = 

− 𝐹 1 , 5 , 3 
(
𝑑 ′𝑘 2 3 − 𝑟 + 3 𝐿 ′

)
+ 𝑖𝜔 𝐹 2 , 6 , 4 

6 
(
𝜔 2 − 𝜔 2 03 

) (13c) 

ith 𝐹 1 , 3 , 5 = 𝐹 1 + 𝐹 3 + 𝐹 5 , 𝐹 2 , 4 , 6 = 𝐹 2 + 𝐹 4 + 𝐹 6 , 𝐹 1 , 5 = 𝐹 1 − 𝐹 5 , 𝐹 2 , 6 =
 2 − 𝐹 6 and 𝐹 1 , 5 , 3 = 𝐹 1 + 𝐹 5 − 2 𝐹 3 , 𝐹 2 , 6 , 4 = 𝐹 2 + 𝐹 6 − 2 𝐹 4 . The resonant
mplitudes Z 1, 2 , Y 1, 2 and W 1, 2 are interdependent. Equation (12) ,
herefore, represents a coherent superposition. By tuning the driving
mplitudes, all six resonant amplitudes change simultaneously. Simi-
arly, by changing the frequency of the driver, all resonant amplitudes
hange as well. Importantly for the analogy with quantum mechanics,
he resonant amplitudes are complex quantities. That is, they carry a
hase. Equation (12) and ( 13a –c) establish an analogy with nonsepa-
able quantum systems. This analogy can be best seen if we change to
 notation conventional to quantum mechanics. Let us use the usual
ra-ket notation of quantum mechanics. First, we denote the OAM
igenvectors of Eq. (6) by the kets | e 1 ⟩, | e 2 ⟩, | e 3 ⟩. These three vec-
ors form an orthonormal basis for a three-dimensional Hilbert space,
 OAM 

, i.e., they obey the conditions ⟨𝑒 𝐼 |𝑒 𝐽 ⟩ = 1 if 𝐼 = 𝐽 and 0 other-
ise. Here the bra ⟨e I | represents the complex conjugate (since the e I ’s
re real vectors, complex numbers and their conjugates are the same).
econd, we also refer to 𝑒 𝑖 𝑘 1 𝑥 , 𝑒 𝑖 𝑘 2 𝑥 , 𝑒 𝑖 𝑘 3 𝑥 as the set of kets | k 1 ⟩, | k 2 ⟩,
 k 3 ⟩. This set forms another orthonormal basis for a three-dimensional
ilbert space, H k , associated with the direction of propagation (i.e., x
egree of freedom). The orthonormality condition implies the property
𝑘 𝑝 |𝑘 𝑞 ⟩ = ∫ dx 𝑒 − 𝑖𝑘 𝑝 𝑥 𝑒 𝑖𝑘 𝑞 𝑥 = 1 if 𝑝 = 𝑞 and 0 otherwise. With this nota-
ion, and considering separately the reactants 1 and 2, we can rewrite
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q. (12) in the form: 

 1 = 

⎛ ⎜ ⎜ ⎜ ⎝ 
𝐶 

( 𝑎 ) 
1 
𝐶 

( 𝑏 ) 
1 
𝐶 

( 𝑐 ) 
1 

⎞ ⎟ ⎟ ⎟ ⎠ = 

(√
3 𝑍 1 |𝑒 1 ⟩|𝑘 1 ⟩ + 

√
2 𝑌 1 |𝑒 2 ⟩|𝑘 2 ⟩ + 

√
6 𝑊 1 |𝑒 3 ⟩|𝑘 3 ⟩)𝑒 𝑖𝜔𝑡 (14a)

 2 = 

⎛ ⎜ ⎜ ⎜ ⎝ 
𝐶 

( 𝑎 ) 
2 
𝐶 

( 𝑏 ) 
2 
𝐶 

( 𝑐 ) 
2 

⎞ ⎟ ⎟ ⎟ ⎠ = 

(√
3 𝑍 2 |𝑒 1 ⟩|𝑘 1 ⟩ + 

√
2 𝑌 2 |𝑒 2 ⟩|𝑘 2 ⟩ + 

√
6 𝑊 2 |𝑒 3 ⟩|𝑘 3 ⟩)𝑒 𝑖𝜔𝑡 

(14b) 

Equations (14a , b ) are analogous to nonseparable superposition of
tates in the product Hilbert space H OAM 

⊗H k . The basis set for states in
hat 9-dimensional product space is | e 1 ⟩| k 1 ⟩, | e 1 ⟩| k 2 ⟩, | e 1 ⟩| k 3 ⟩, | e 2 ⟩| k 1 ⟩,
 e 2 ⟩| k 2 ⟩, | e 2 ⟩| k 3 ⟩, | e 3 ⟩| k 1 ⟩, | e 3 ⟩| k 2 ⟩, | e 3 ⟩| k 3 ⟩. It is impossible to write
qs ( 12a,b ) as products of a linear combination of the kets: | e 1 ⟩, | e 2 ⟩,
 e 3 ⟩ and a linear combination of the kets: | k 1 ⟩, | k 2 ⟩, | k 3 ⟩. For exam-
le, one cannot write C 1 as the product ( 𝛼1 |𝑒 1 ⟩ + 𝛼2 |𝑒 2 ⟩ + 𝛼3 |𝑒 3 ⟩)( 𝛽1 |𝑘 1 ⟩ +
2 |𝑘 2 ⟩ + 𝛽3 |𝑘 3 ⟩) where the 𝛼’s and 𝛽’s are complex coefficients. This
haracteristic is the signature of nonseparability. Therefore, Equations
14a , b ) refer to nonseparable waves with the OAM degrees of freedom
lassically entangled with the directional degrees of freedom. The OAM
orms a subsystem which can be described as the superposition of three
utually orthogonal states analogous to a qutrit [40] , which we call
ere a chem-trit. The direction of propagation forms another subsystem
xpressible as a superposition of three other orthonormal discrete states.
t is also a chem-trit analogous to another qutrit. Therefore, equations
14a , b ) are describing the classical entanglement of these two chem-
rits. 

Exploring Eqs. (14) further, if we limit the stimulus of the system
o amplitudes such that 𝐹 1 , 5 = 𝐹 1 − 𝐹 5 = 0 and 𝐹 2 , 6 = 𝐹 2 − 𝐹 6 = 0 , then
 1 = 0 and 𝑌 2 = 0 . Equations (14a , b ) reduce to 

 1 = 

(√
3 𝑍 1 |𝑒 1 ⟩|𝑘 1 ⟩ + 

√
6 𝑊 1 |𝑒 3 ⟩|𝑘 3 ⟩)𝑒 𝑖𝜔𝑡 (15a)

 2 = 

(√
3 𝑍 2 |𝑒 1 ⟩|𝑘 1 ⟩ + 

√
6 𝑊 2 |𝑒 3 ⟩|𝑘 3 ⟩)𝑒 𝑖𝜔𝑡 (15b)

In this case, both the OAM Hilbert space and the Hilbert space asso-
iated with the direction of propagation reduce to 2-dimensional spaces
ith bases | e 1 ⟩, | e 3 ⟩ and | k 1 ⟩, | k 3 ⟩, respectively. The OAM and direc-

ion of propagation form qubit analogues. We may call these subsystems
hem-bits. C 1 and C 2 span a product space which is now a 2 × 2 = 4 -
imensional space with basis | e 1 ⟩| k 1 ⟩, | e 1 ⟩| k 3 ⟩, | e 3 ⟩| k 1 ⟩, | e 3 ⟩| k 3 ⟩. The
tates given by Eq. (15a ,b) are examples of two chem-bits in a nonsep-
rable superposition analogous to the so-called Bell states in quantum
echanics. Other combinations of Bell states can be formed by restrict-

ng the stimulus amplitudes in various ways. 
Finally, let us consider the case 𝐹 1 , 5 = 0 , 𝐹 2 , 6 = 0 , 𝐹 1 , 5 , 3 = 0 , 𝐹 2 , 6 , 4 =

 which leads to 𝐶 1 = 

√
3 𝑍 1 |𝑒 1 ⟩|𝑘 1 ⟩𝑒 𝑖𝜔𝑡 and 𝐶 2 = 

√
3 𝑍 2 |𝑒 1 ⟩|𝑘 1 ⟩𝑒 𝑖𝜔𝑡 .

his is a pure separable state as it is a simple product of an
AM basis vector and a basis vector for the directional degrees of

reedom. 
By varying the amplitude of the stimulus, the linear model system in-

roduced above is able to explore a sizable portion of the product Hilbert
pace. For a given neuronal architecture involving N parallel axons and
 set of R reactants, this product space scales linearly with the number
f chemical waveguides as R × N . This model suggests that multiple
its of chemical information can be encoded in coherent superpositions
nd when the superposition is nonseparable its components can be pro-
essed efficiently in a simultaneous manner. This model system suggests
he possibility of achieving quantum-like behavior in information pro-
essing with its high level of parallelism in classical physical/chemical
ystems such as neuronal tissues. 
. Nonlinear reaction diffusion model 

The model system introduced in the preceding section depends on
he assumption of intracellular pathways describable by linear functions
f concentration. The nervous system, like many biological systems, is in
act a nonlinear dynamical system. When considering nonlinear reaction
ate functions, it is possible to draw some observations on the emergence
f other forms of nonseparable biological waves in the limit of small
onlinear effects using perturbation theory. For this, we augment the set
f equation (11a –f) with a nonlinear term quadratic in the compositional
ariables. 

 

𝜕𝐶 
( 𝑎 ) 
1 
𝜕𝑡 

+ 𝑑 ′
𝜕 2 𝐶 ( 𝑎 ) 2 
𝜕 𝑥 2 

− 𝑟𝐶 
( 𝑎 ) 
2 + 𝑠 

(
𝐶 

( 𝑎 ) 
2 

)2 
+ 𝐿 ′

(
𝐶 

( 𝑏 ) 
2 − 𝐶 

( 𝑎 ) 
2 

)
= 𝐹 1 𝑒 

𝑖𝜔𝑡 𝛿( 𝑥 = 0 ) 

(16a) 

 

𝜕𝐶 
( 𝑎 ) 
2 
𝜕𝑡 

+ 𝑑 ′
𝜕 2 𝐶 ( 𝑎 ) 1 
𝜕 𝑥 2 

+ 𝑟𝐶 
( 𝑎 ) 
1 + 𝑠 

(
𝐶 

( 𝑎 ) 
1 

)2 
+ 𝐿 ′

(
𝐶 

( 𝑏 ) 
1 − 𝐶 

( 𝑎 ) 
1 

)
= 𝐹 2 𝑒 

𝑖𝜔𝑡 𝛿( 𝑥 = 0 ) 

(16b) 

 

𝜕𝐶 
( 𝑏 ) 
1 
𝜕𝑡 

+ 𝑑 ′
𝜕 2 𝐶 ( 𝑏 ) 2 
𝜕 𝑥 2 

− 𝑟𝐶 
( 𝑏 ) 
2 + 𝑠 

(
𝐶 

( 𝑏 ) 
2 

)2 
− 𝐿 ′

(
𝐶 

( 𝑏 ) 
2 − 𝐶 

( 𝑎 ) 
2 

)
+ 𝐿 ′

(
𝐶 

( 𝑐 ) 
2 − 𝐶 

( 𝑏 ) 
2 

)
= 𝐹 3 𝑒 

𝑖𝜔𝑡 𝛿( 𝑥 = 0 ) (16c)

 

𝜕𝐶 
( 𝑏 ) 
2 
𝜕𝑡 

+ 𝑑 ′
𝜕 2 𝐶 ( 𝑏 ) 1 
𝜕 𝑥 2 

+ 𝑟𝐶 
( 𝑏 ) 
1 + 𝑠 

(
𝐶 

( 𝑏 ) 
1 

)2 
− 𝐿 ′

(
𝐶 

( 𝑏 ) 
1 − 𝐶 

( 𝑎 ) 
1 

)
+ 𝐿 ′

(
𝐶 

( 𝑐 ) 
1 − 𝐶 

( 𝑏 ) 
1 

)
= 𝐹 4 𝑒 

𝑖𝜔𝑡 𝛿( 𝑥 = 0 ) (16d)

 

𝜕𝐶 
( 𝑐 ) 
1 
𝜕𝑡 

+ 𝑑 ′
𝜕 2 𝐶 ( 𝑐 ) 2 
𝜕 𝑥 2 

− 𝑟𝐶 
( 𝑐 ) 
2 + 𝑠 

(
𝐶 

( 𝑐 ) 
2 

)2 
− 𝐿 ′

(
𝐶 

( 𝑐 ) 
2 − 𝐶 

( 𝑏 ) 
2 

)
= 𝐹 5 𝑒 

𝑖𝜔𝑡 𝛿( 𝑥 = 0 ) 

(16e) 

 

𝜕𝐶 
( 𝑐 ) 
2 
𝜕𝑡 

+ 𝑑 ′
𝜕 2 𝐶 ( 𝑐 ) 1 
𝜕𝑥 2 

+ 𝑟𝐶 
( 𝑐 ) 
1 + 𝑠 

(
𝐶 

( 𝑐 ) 
1 

)2 
− 𝐿 ′

(
𝐶 

( 𝑐 ) 
1 − 𝐶 

( 𝑏 ) 
1 

)
= 𝐹 6 𝑒 

𝑖𝜔𝑡 𝛿( 𝑥 = 0 ) 

(16f) 

All variables and parameters are the same as in Eqs (11a –f) but s
hich represents the rate of the quadratic reaction. We solve this set
f differential equations using multiple time scale perturbation theory
41] in the limit 𝑠 = 𝜀 where ɛ is small. We rewrite the compositions as
olynomials in ɛ , that is, considering as an example a generic composi-
ion, C : 

 

(
𝜏0 , 𝜏1 , 𝜏2 

)
= 𝐶 0 

(
𝜏0 , 𝜏1 , 𝜏2 

)
+ 𝜀 𝐶 1 

(
𝜏0 , 𝜏1 , 𝜏2 

)
+ 𝜀 2 𝐶 2 

(
𝜏0 , 𝜏1 , 𝜏2 

)
+ … (17)

ith the multiple time scales 𝜏0 = 𝑡 , 𝜏1 = 𝜀𝑡 , 𝜏2 = 𝜀 2 𝑡. The time and space
erivatives take the forms: 

𝜕𝐶 

𝜕𝑡 
= 

𝜕 𝐶 0 
𝜕 𝜏0 

+ 𝜀 

( 

𝜕 𝐶 1 
𝜕 𝜏0 

+ 

𝜕 𝐶 0 
𝜕 𝜏1 

) 

+ 𝜀 2 
( 

𝜕 𝐶 2 
𝜕 𝜏0 

+ 

𝜕 𝐶 1 
𝜕 𝜏1 

+ 

𝜕 𝐶 0 
𝜕 𝜏2 

) 

+ … (18a)

nd 

𝜕 2 𝐶 

𝜕 𝑥 2 
= 

𝜕 2 𝐶 0 

𝜕 𝑥 2 
+ 𝜀 

𝜕 2 𝐶 1 
𝜕 𝑥 2 

+ 𝜀 2 
𝜕 2 𝐶 2 
𝜕 𝑥 2 

(18b)

Rewriting every composition and derivative of composition in Eqs
16a –f) according to equations (17) and ( 18a ,b), gives terms to zeroth
rder, first order and second order in ɛ . The zeroth order terms in ɛ can
e grouped into a set of equations to zeroth order in perturbation: 

 

𝜕𝐶 
( 𝑎 ) 
1 , 0 

𝜕 𝜏0 
+ 𝑑 ′

𝜕 2 𝐶 ( 𝑎 ) 2 , 0 

𝜕 𝑥 2 
− 𝑟𝐶 

( 𝑎 ) 
2 , 0 + 𝐿 ′

(
𝐶 

( 𝑏 ) 
2 , 0 − 𝐶 

( 𝑎 ) 
2 , 0 

)
= 𝐹 1 𝑒 

𝑖𝜔 𝜏0 𝛿( 𝑥 = 0 ) (19a)

 

𝜕𝐶 
( 𝑎 ) 
2 , 0 

𝜕 𝜏
+ 𝑑 ′

𝜕 2 𝐶 ( 𝑎 ) 1 , 0 

𝜕 𝑥 2 
+ 𝑟𝐶 

( 𝑎 ) 
1 , 0 + 𝐿 ′

(
𝐶 

( 𝑏 ) 
1 , 0 − 𝐶 

( 𝑎 ) 
1 , 0 

)
= 𝐹 2 𝑒 

𝑖𝜔 𝜏0 𝛿( 𝑥 = 0 ) (19b)

0 
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𝜕𝐶 
( 𝑏 ) 
1 , 0 

𝜕 𝜏0 
+ 𝑑 ′

𝜕 2 𝐶 ( 𝑏 ) 2 , 0 

𝜕 𝑥 2 
− 𝑟𝐶 

( 𝑏 ) 
2 , 0 − 𝐿 ′

(
𝐶 

( 𝑏 ) 
2 , 0 − 𝐶 

( 𝑎 ) 
2 , 0 

)
+ 𝐿 ′

(
𝐶 

( 𝑐 ) 
2 , 0 − 𝐶 

( 𝑏 ) 
2 , 0 

)
= 𝐹 3 𝑒 

𝑖𝜔 𝜏0 𝛿( 𝑥 = 0 ) (19c)

 

𝜕𝐶 
( 𝑏 ) 
2 , 0 

𝜕 𝜏0 
+ 𝑑 ′

𝜕 2 𝐶 ( 𝑏 ) 1 , 0 

𝜕 𝑥 2 
+ 𝑟𝐶 

( 𝑏 ) 
1 , 0 − 𝐿 ′

(
𝐶 

( 𝑏 ) 
1 , 0 − 𝐶 

( 𝑎 ) 
1 , 0 

)
+ 𝐿 ′

(
𝐶 

( 𝑐 ) 
1 , 0 − 𝐶 

( 𝑏 ) 
1 , 0 

)
= 𝐹 4 𝑒 

𝑖𝜔 𝜏0 𝛿( 𝑥 = 0 ) (19d)

 

𝜕𝐶 
( 𝑐 ) 
1 , 0 

𝜕 𝜏0 
+ 𝑑 ′

𝜕 2 𝐶 ( 𝑐 ) 2 , 0 

𝜕 𝑥 2 
− 𝑟𝐶 

( 𝑐 ) 
2 , 0 − 𝐿 ′

(
𝐶 

( 𝑐 ) 
2 , 0 − 𝐶 

( 𝑏 ) 
2 , 0 

)
= 𝐹 5 𝑒 

𝑖𝜔 𝜏0 𝛿( 𝑥 = 0 ) (19e)

 

𝜕𝐶 
( 𝑐 ) 
2 , 0 

𝜕𝜏0 
+ 𝑑 ′

𝜕 2 𝐶 ( 𝑐 ) 1 , 0 

𝜕𝑥 2 
+ 𝑟𝐶 

( 𝑐 ) 
1 , 0 − 𝐿 ′

(
𝐶 

( 𝑐 ) 
1 , 0 − 𝐶 

( 𝑏 ) 
1 , 0 

)
= 𝐹 6 𝑒 

𝑖𝜔𝜏0 𝛿( 𝑥 = 0 ) (19f)

Equations (19a –f) are completely isomorphic to Eqs. (11a –f) which
olutions are analogous to Eq (12) . 

The terms linear in ɛ can be grouped to form the set of equations to
 

st order in perturbation: 

 

⎛ ⎜ ⎜ ⎝ 
𝜕𝐶 

( 𝑎 ) 
1 , 1 

𝜕 𝜏0 
+ 

𝜕𝐶 
( 𝑎 ) 
1 , 0 

𝜕 𝜏1 

⎞ ⎟ ⎟ ⎠ + 𝑑 ′
𝜕 2 𝐶 ( 𝑎 ) 2 , 1 

𝜕 𝑥 2 
− 𝑟𝐶 

( 𝑎 ) 
2 , 1 + 𝐿 ′

(
𝐶 

( 𝑏 ) 
2 , 1 − 𝐶 

( 𝑎 ) 
2 , 1 

)
= − 

(
𝐶 

( 𝑎 ) 
2 , 0 

)2 

(20a)

 

⎛ ⎜ ⎜ ⎝ 
𝜕𝐶 

( 𝑎 ) 
2 , 1 

𝜕 𝜏0 
+ 

𝜕𝐶 
( 𝑎 ) 
2 , 0 

𝜕 𝜏1 

⎞ ⎟ ⎟ ⎠ + 𝑑 ′
𝜕 2 𝐶 ( 𝑎 ) 1 , 1 

𝜕 𝑥 2 
+ 𝑟𝐶 

( 𝑎 ) 
1 , 1 + 𝐿 ′

(
𝐶 

( 𝑏 ) 
1 , 1 − 𝐶 

( 𝑎 ) 
1 , 1 

)
= − 

(
𝐶 

( 𝑎 ) 
1 , 0 

)2 

(20b)

 

⎛ ⎜ ⎜ ⎝ 
𝜕𝐶 

( 𝑏 ) 
1 , 1 

𝜕 𝜏0 
+ 

𝜕𝐶 
( 𝑏 ) 
1 , 0 

𝜕 𝜏1 

⎞ ⎟ ⎟ ⎠ + 𝑑 ′
𝜕 2 𝐶 ( 𝑏 ) 2 , 1 

𝜕 𝑥 2 
− 𝑟𝐶 

( 𝑏 ) 
2 , 1 − 𝐿 ′

(
𝐶 

( 𝑏 ) 
2 , 1 − 𝐶 

( 𝑎 ) 
2 , 1 

)
+ 𝐿 ′

(
𝐶 

( 𝑐 ) 
2 , 1 − 𝐶 

( 𝑏 ) 
2 , 1 

)
= − 

(
𝐶 

( 𝑏 ) 
2 , 0 

)2 
(20c)

 

⎛ ⎜ ⎜ ⎝ 
𝜕𝐶 

( 𝑏 ) 
2 , 1 

𝜕 𝜏0 
+ 

𝜕𝐶 
( 𝑏 ) 
2 , 0 

𝜕 𝜏1 

⎞ ⎟ ⎟ ⎠ + 𝑑 ′
𝜕 2 𝐶 ( 𝑏 ) 1 , 1 

𝜕 𝑥 2 
+ 𝑟𝐶 

( 𝑏 ) 
1 , 1 − 𝐿 ′

(
𝐶 

( 𝑏 ) 
1 , 1 − 𝐶 

( 𝑎 ) 
1 , 1 

)
+ 𝐿 ′

(
𝐶 

( 𝑐 ) 
1 , 1 − 𝐶 

( 𝑏 ) 
1 , 1 

)
= − 

(
𝐶 

( 𝑏 ) 
1 , 0 

)2 
(20d)

 

⎛ ⎜ ⎜ ⎝ 
𝜕𝐶 

( 𝑐 ) 
1 , 1 

𝜕 𝜏0 
+ 

𝜕𝐶 
( 𝑐 ) 
1 , 0 

𝜕 𝜏1 

⎞ ⎟ ⎟ ⎠ + 𝑑 ′
𝜕 2 𝐶 ( 𝑐 ) 2 , 1 

𝜕 𝑥 2 
− 𝑟𝐶 

( 𝑐 ) 
2 , 1 − 𝐿 ′

(
𝐶 

( 𝑐 ) 
2 , 1 − 𝐶 

( 𝑏 ) 
2 , 1 

)
= − 

(
𝐶 

( 𝑐 ) 
2 , 0 

)2 

(20e)

 

⎛ ⎜ ⎜ ⎝ 
𝜕𝐶 

( 𝑐 ) 
2 , 1 

𝜕 𝜏0 
+ 

𝜕𝐶 
( 𝑐 ) 
2 , 0 

𝜕 𝜏1 

⎞ ⎟ ⎟ ⎠ + 𝑑 ′
𝜕 2 𝐶 ( 𝑐 ) 1 , 1 

𝜕 𝑥 2 
+ 𝑟𝐶 

( 𝑐 ) 
1 , 1 − 𝐿 ′

(
𝐶 

( 𝑐 ) 
1 , 1 − 𝐶 

( 𝑏 ) 
1 , 1 

)
= − 

(
𝐶 

( 𝑐 ) 
1 , 0 

)2 
(20f)

Equations (20a -f) form a system of driven differential equations.
owever, in contrast to the zeroth order equations which are externally
riven, the first order equations are driven by the solutions to the zeroth
rder equations. The solutions of Eqs. (20a -f) are the sum of homoge-
eous solutions (solutions of the equation without the quadratic terms
n the right-hand side of the equal sign) and particular solutions (i.e.,
ith the right-hand side drivers). The time derivatives involving zeroth

rder compositions (e.g., 
𝜕𝐶 

( 𝑎 ) 
1 , 0 
𝜕 𝜏1 

) will lead to secular terms (i.e., diverg-

ng terms) in the homogeneous solutions. In order to eliminate secular
olutions, we assume that the compositions are independent of the time
cale 𝜏1 , that is the terms 𝜕 

𝜕 𝜏1 
are effectively zero. 

Higher order equations are not necessary to support our argument
n this section but can be constructed by grouping terms proportional to
 

2 . 
We now recognize that the parallel fibers have a finite length on
he order of a few millimeters. In that case the waves, solutions of the
eroth order equations, that can be supported by the driven chemical
aveguides are not characterized by a continuum of wave number, k ,
ut give rise to a set of waves with discrete values of the wave number,
amely 𝑘, 𝑘 ′, 𝑘 ′′, … This is a common property of waves in finite size
ystems. The relationship between the discrete wave numbers and the
ngular frequency for a given OAM state are still given by the real part
f Eq. (8) . The solutions to the zeroth order equations are therefore a
uperposition of waves given by Eq. (12) over all possible wave numbers
ssociated with a given OAM: 

 6 × 1 , 0 = 

∑
𝑘 1 

⎛ ⎜ ⎜ ⎝ 
1 
1 
1 

⎞ ⎟ ⎟ ⎠ ⊗
( 

𝑍 1 
(
𝑘 1 
)

𝑍 2 
(
𝑘 1 
)) 

𝑒 𝑖 𝑘 1 𝑥 𝑒 𝑖𝜔 𝜏0 + 

∑
𝑘 2 

⎛ ⎜ ⎜ ⎝ 
1 
0 
−1 

⎞ ⎟ ⎟ ⎠ ⊗
( 

𝑌 1 
(
𝑘 2 
)

𝑌 2 
(
𝑘 2 
)) 

𝑒 𝑖 𝑘 2 𝑥 𝑒 𝑖𝜔 𝜏0 

 

∑
𝑘 3 

⎛ ⎜ ⎜ ⎝ 
1 
−2 
1 

⎞ ⎟ ⎟ ⎠ ⊗
( 

𝑊 1 
(
𝑘 3 
)

𝑊 2 
(
𝑘 3 
)) 

𝑒 𝑖 𝑘 3 𝑥 𝑒 𝑖𝜔 𝜏0 

(21) 

Since Z 1, 2 , Y 1, 2 and W 1, 2 are resonant amplitudes (see Eq. (13a –c)),
o simplify the problem, we consider that only the two wave numbers,
 n and 𝑘 ′

𝑛 
, with frequencies, 𝜔 0 n ( k n ) and 𝜔 0 𝑛 ( 𝑘 ′𝑛 ) closest to the driver’s

requency, 𝜔 , will make significant contributions to C 6 × 1, 0 . Further-
ore, to make our problem analytically tractable, we also assume that

he external driver’s amplitudes, F , are such that 𝑌 1 , 2 = 0 . We therefore
imit the model to excitation of only two OAMs. Eq. (21) reduces to: 

 6 × 1 , 0 = 

⎛ ⎜ ⎜ ⎝ 
1 
1 
1 

⎞ ⎟ ⎟ ⎠ ⊗
( 

𝑍 1 
(
𝑘 1 
)

𝑍 2 
(
𝑘 1 
)) 

𝑒 𝑖 𝑘 1 𝑥 𝑒 𝑖𝜔 𝜏0 + 

⎛ ⎜ ⎜ ⎝ 
1 
1 
1 

⎞ ⎟ ⎟ ⎠ ⊗
( 

𝑍 1 
(
𝑘 ′1 
)

𝑍 2 
(
𝑘 ′1 
)) 

𝑒 
𝑖𝑘 ′1 𝑥 𝑒 𝑖𝜔 𝜏0 + 

⎛ ⎜ ⎜ ⎝ 
1 
−2 
1 

⎞ ⎟ ⎟ ⎠ 
⊗

( 

𝑊 1 
(
𝑘 3 
)

𝑊 2 
(
𝑘 3 
)) 

𝑒 𝑖 𝑘 3 𝑥 𝑒 𝑖𝜔 𝜏0 + 

⎛ ⎜ ⎜ ⎝ 
1 
−2 
1 

⎞ ⎟ ⎟ ⎠ ⊗
( 

𝑊 1 
(
𝑘 ′3 
)

𝑊 2 
(
𝑘 ′3 
)) 

𝑒 
𝑖𝑘 ′3 𝑥 𝑒 𝑖𝜔 𝜏0 (22) 

In that case, each wave characterized by a specific OAM is limited
o two discrete levels. 

Denoting 𝑍( 𝑘 ) = 𝑍, 𝑍( 𝑘 ′) = 𝑍 

′, 𝑊 ( 𝑘 ) = 𝑊 , 𝑊 ( 𝑘 ′) = 𝑊 

′, we can
se equation (22) to calculate the right-hand side terms of Eqs. (20a –f).
s an illustrative example, we write one of them 

𝐶 
( 𝑎 ) 
1 , 0 

)2 
= 

(
𝑍 1 𝑒 

𝑖 𝑘 1 𝑥 + 𝑍 

′
1 𝑒 
𝑖𝑘 ′1 𝑥 + 𝑊 1 𝑒 

𝑖 𝑘 3 𝑥 + 𝑊 

′
1 𝑒 
𝑖𝑘 ′3 𝑥 

)2 
𝑒 𝑖 2 𝜔 𝜏0 (23)

We can rewrite this zeroth order driving term as 

𝐶 
( 𝑎 ) 
1 , 0 

)2 
= 

{ (
𝑍 1 𝑒 

𝑖 𝑘 1 𝑥 + 𝑍 

′
1 𝑒 
𝑖𝑘 ′1 𝑥 

)2 
+ 

(
𝑊 1 𝑒 

𝑖 𝑘 3 𝑥 + 𝑊 

′
1 𝑒 
𝑖𝑘 ′3 𝑥 

)2 

+ 2 
(
𝑍 1 𝑒 

𝑖 𝑘 1 𝑥 + 𝑍 

′
1 𝑒 
𝑖𝑘 ′1 𝑥 

)(
𝑊 1 𝑒 

𝑖 𝑘 3 𝑥 + 𝑊 

′
1 𝑒 
𝑖𝑘 ′3 𝑥 

)} 

𝑒 𝑖 2 𝜔 𝜏0 (24) 

The first and second quadratic terms in Eq. (24) lead to self-
nteraction between two states with the same OAM. The third term con-
ains cross terms between states of different OAM, e 1 and e 3 . In contrast
ith the linear model, we treat these two OAMs as the signature of two

ubsystems, each subsystem supporting two discrete wavenumber lev-
ls. These are equivalent forms of chem-bits. The cross terms enable
s to explore the tensor product Hilbert space of the Hilbert spaces of
hese two subsystems. The Hilbert space, H 1 , of the subsystem “1 ” is

wo dimensional with basis: |𝑘 1 ⟩ = 𝑒 𝑖𝑘 1 𝑥 and |𝑘 ′1 ⟩ = 𝑒 
𝑖𝑘 ′1 𝑥 . The two di-

ensional Hilbert space, H 3 , of the subsystem “3 ” has the basis |𝑘 3 ⟩ =
 

𝑖𝑘 3 𝑥 and |𝑘 ′3 ⟩ = 𝑒 
𝑖𝑘 ′3 𝑥 . The tensor product space, 𝐻 13 = 𝐻 1 ⊗𝐻 3 has

imension 2 2 with the basis 𝜑 1 = |𝑘 1 ⟩|𝑘 3 ⟩ = 𝑒 𝑖 ( 𝑘 1 + 𝑘 3 ) 𝑥 , 𝜑 2 = |𝑘 1 ⟩|𝑘 ′3 ⟩ =
 

𝑖 ( 𝑘 1 + 𝑘 ′3 ) 𝑥 , 𝜑 3 = |𝑘 ′1 ⟩|𝑘 3 ⟩ = 𝑒 
𝑖 ( 𝑘 ′1 + 𝑘 3 ) 𝑥 , 𝜑 4 = |𝑘 ′1 ⟩|𝑘 ′3 ⟩ = 𝑒 

𝑖 ( 𝑘 ′1 + 𝑘 
′
3 ) 𝑥 . With that

otation, and for illustrative example, the cross term (CT) of Eq. (24) be-
omes: ( 𝐶 ( 𝑎 ) 1 , 0 ) 

2 
𝐶𝑇 

= 𝑍 1 𝑊 1 𝜑 1 + 𝑍 1 𝑊 

′
1 𝜑 2 + 𝑍 

′
1 𝑊 1 𝜑 3 + 𝑍 

′
1 𝑊 

′
1 𝜑 4 . 

The cross terms in Eq. (24) enable the exploration of the tensor prod-
ct space of the bipartite system composed of the two subsystems “1 ”
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nd “3 ”, i.e. two chem.bits. To that effect, we are seeking solutions to
qs. (20a –f) which are only driven by the cross terms of Eq. (24) . A
eneral form for these particular solutions in the chemical waveguide
 = 𝑎, 𝑏, 𝑐 is 

 

( 𝑞 ) 
1 , 1 = 

(
𝛼
( 𝑞 ) 
1 𝜑 1 + 𝛽

( 𝑞 ) 
1 𝜑 2 + 𝛾

( 𝑞 ) 
1 𝜑 3 + 𝛿

( 𝑞 ) 
1 𝜑 4 

)
𝑒 𝑖 2 𝜔 𝜏0 (25a)

 

( 𝑞 ) 
2 , 1 = 

(
𝛼
( 𝑞 ) 
2 𝜑 1 + 𝛽

( 𝑞 ) 
2 𝜑 2 + 𝛾

( 𝑞 ) 
2 𝜑 3 + 𝛿

( 𝑞 ) 
2 𝜑 4 

)
𝑒 𝑖 2 𝜔 𝜏0 (25b)

Inserting these expressions into Eqs. (20a –f) gives a set of 24 equa-
ions with the 24 unknowns, 𝛼’s, 𝛽’s, 𝛾 ’s and 𝛿’s. After very extensive
lgebraic manipulations, we get: 

2 𝛼( 𝑎 ) 1 = 𝛼
( 𝑏 ) 
1 = −2 𝛼( 𝑐 ) 1 = 

4 𝑍 1 𝑊 1 

[
𝑑 ′
(
𝑘 1 + 𝑘 3 

)2 + 𝑟 + 3 𝐿 ′
]
− 𝑖 8 𝜔 𝑍 2 𝑊 2 

𝐺 𝛼

(26a) 

2 𝛼( 𝑎 ) 2 = 𝛼
( 𝑏 ) 
2 = −2 𝛼( 𝑐 ) 2 = 

4 𝑍 2 𝑊 2 

[
𝑑 ′
(
𝑘 1 + 𝑘 3 

)2 − 𝑟 + 3 𝐿 ′
]
− 𝑖 8 𝜔 𝑍 1 𝑊 1 

𝐺 𝛼

(26b) 

ith 𝐺 𝛼 = −4 𝜔 2 − [ ( 𝑑 ′( 𝑘 1 + 𝑘 3 ) 2 + 3 𝐿 ′) 2 − 𝑟 2 ] 

2 𝛽( 𝑎 ) 1 = 𝛽
( 𝑏 ) 
1 = −2 𝛽( 𝑐 ) 1 = 

4 𝑍 1 𝑊 

′
1 

[
𝑑 ′
(
𝑘 1 + 𝑘 ′3 

)2 + 𝑟 + 3 𝐿 ′
]
− 𝑖 8 𝜔 𝑍 2 𝑊 

′
2 

𝐺 𝛽

(27a) 

2 𝛽( 𝑎 ) 2 = 𝛽
( 𝑏 ) 
2 = −2 𝛽( 𝑐 ) 2 = 

4 𝑍 2 𝑊 

′
2 

[
𝑑 ′
(
𝑘 1 + 𝑘 ′3 

)2 − 𝑟 + 3 𝐿 ′
]
− 𝑖 8 𝜔 𝑍 1 𝑊 

′
1 

𝐺 𝛽

(27b) 

ith 𝐺 𝛽 = −4 𝜔 2 − [ ( 𝑑 ′( 𝑘 1 + 𝑘 ′3 ) 
2 + 3 𝐿 ′) 

2 
− 𝑟 2 ] 

2 𝛾 ( 𝑎 ) 1 = 𝛾
( 𝑏 ) 
1 = −2 𝛾 ( 𝑐 ) 1 = 

4 𝑍 

′
1 𝑊 1 

[
𝑑 ′
(
𝑘 ′1 + 𝑘 3 

)2 + 𝑟 + 3 𝐿 ′
]
− 𝑖 8 𝜔𝑍 

′
2 𝑊 2 

𝐺 𝛾

(28a) 

2 𝛾 ( 𝑎 ) 2 = 𝛾
( 𝑏 ) 
2 = −2 𝛾 ( 𝑐 ) 2 = 

4 𝑍 

′
2 𝑊 2 

[
𝑑 ′
(
𝑘 ′1 + 𝑘 3 

)2 − 𝑟 + 3 𝐿 ′
]
− 𝑖 8 𝜔𝑍 

′
1 𝑊 1 

𝐺 𝛾

(28b) 

ith 𝐺 𝛾 = −4 𝜔 2 − [ ( 𝑑 ′( 𝑘 ′1 + 𝑘 3 ) 
2 + 3 𝐿 ′) 

2 
− 𝑟 2 ] 

2 𝛿( 𝑎 ) 1 = 𝛿
( 𝑏 ) 
1 = −2 𝛿( 𝑐 ) 1 = 

4 𝑍 

′
1 𝑊 

′
1 

[
𝑑 ′
(
𝑘 ′1 + 𝑘 ′3 

)2 + 𝑟 + 3 𝐿 ′
]
− 𝑖 8 𝜔𝑍 

′
2 𝑊 

′
2 

𝐺 𝛾

(29a) 

2 𝛿( 𝑎 ) 2 = 𝛿
( 𝑏 ) 
2 = −2 𝛿( 𝑐 ) 2 = 

4 𝑍 

′
2 𝑊 

′
2 

[
𝑑 ′
(
𝑘 ′1 + 𝑘 ′3 

)2 − 𝑟 + 3 𝐿 ′
]
− 𝑖 8 𝜔𝑍 

′
1 𝑊 

′
1 

𝐺 𝛾

(29b) 

ith 𝐺 𝛿 = −4 𝜔 2 − [ ( 𝑑 ′( 𝑘 ′1 + 𝑘 ′3 ) 
2 + 3 𝐿 ′) 

2 
− 𝑟 2 ] 

The question that arises is that of the separability of Eqs. (25a ,b).
et us consider a single chemical component in a single waveguide, (b),
xpressed in the bipartite system product basis, namely: 

 

( 𝑏 ) 
1 , 1 = 

(
𝛼
( 𝑏 ) 
1 |𝑘 1 ⟩|𝑘 3 ⟩ + 𝛽

( 𝑏 ) 
1 |𝑘 1 ⟩|𝑘 ′3 ⟩ + 𝛾

( 𝑏 ) 
1 |𝑘 ′1 ⟩|𝑘 3 ⟩ + 𝛿

( 𝑏 ) 
1 |𝑘 ′1 ⟩|𝑘 ′3 ⟩)𝑒 𝑖 2 𝜔𝜏0 

(30) 
Can we rewrite this expression as the product? 

 

( 𝑏 ) 
1 , 1 = 

(
𝜇1 |𝑘 1 ⟩ + 𝜇2 |𝑘 ′1 ⟩)(𝜈1 |𝑘 3 ⟩ + 𝜈2 |𝑘 ′3 ⟩)𝑒 𝑖 2 𝜔𝜏0 (31) 

Eq. (31) is equal to Eq. (30) if 
𝛼
( 𝑏 ) 
1 
𝛽
( 𝑏 ) 
1 

= 

𝛾
( 𝑏 ) 
1 
𝛿
( 𝑏 ) 
1 

. This condition is not gen-

rally satisfied unless the waves for the two OAMs “1 ” and “3 ” are de-
enerate with same characteristic frequencies and wave numbers. Out-
ide this very special case, the first order chemical waves given by Eqs.
25a ,b) are nonseparable in the tensor product space, H 13 . These non-
eparable states are defined in H 13 which dimension 2 2 is exponentially
omplex. In the case of a neuronal tissue with N parallel axons, nonlin-
ar reaction rates scaling as a power of N , and provided that each OAM
upports only two k -levels, the multipartite nonlinear system would ad-
it chemical waves to first order that span an exponentially complex
ilbert product space of dimension 2 N . The amount of information that
ould be encoded or processed by even a few tens of parallel fibers would
hen be massive. From a biological point of view, the spatially extensive
pical dendritic cells in the cerebrum could be envisaged as a mean
f sensing the wave number states, k , of nonseparable states. A wave
umber k relates to the wavelength of a chemical wave and its identifi-
ation necessitates spatial resolution along the parallel fibers. The apical
endrites branch along the parallel fibers and form a large number of
ynapses [14] . The extensive synaptic network between apical dendrites
nd parallel fibers may be able to probe spatial modulations of reactants.

. Conclusion 

The biological wave models of a neurological tissue which have been
resented in this paper (more specifically a highly reduced model of
arallel axons) are based on conventional reaction diffusion theories.
hese models incorporate higher order biology (e.g., multicellular ar-
hitecture through axon-to-axon coupling), lower-order biology (e.g.,
ntra cellular pathway involving a number of chemical reactants) and
xternal chemical stimulation. We have demonstrated theoretically that
he reaction diffusion model with linear intracellular reaction rates offer
he ability to prepare and tune nonseparable superposition of chemical
aves that can propagate along the axons. These waves are products of
 part associated with directional degrees of freedom along the chem-
cal waveguides (axon) and an orbital angular momentum (OAM) part
ssociated with the coupling between the multiple axons. Nonsepara-
le quantum-like Bell states are constructed as a superposition of these
hemical waves, which cannot be factored as a product of a single di-
ectional part and an OAM part. Remarkably, we also find that the am-
litude coefficients of the nonseparable superposition of product waves
re complex quantities, that is they include a phase. By tuning these
omplex amplitudes by varying stimuli distribution between the axons
nd/or frequency, the model is able to navigate a sizeable portion of
he Bell state’s Hilbert space. The dimension of this Hilbert space scales
inearly with the number of chemical waveguides, N , times the number
f chemical reactants (here 2). 

We also showed theoretically, in the case of nonlinear (quadratic) in-
racellular reaction rates, using multiple time scale perturbation theory,
he existence of another type of nonseparable superpositions of chemical
aves that span a Hilbert space with exponential scaling. This space’s
imension scales as the N 

th power of the number of waves that can be
riven effectively by the external chemical stimulus. We show that this
onlinear reaction diffusion model is analogous to a two-partite (subsys-
ems defined by two different OAMs), two-level quantum system (levels
efined by the possible waves that can be stimulated). The amplitudes
ppearing in the nonseparable superposition are also complex quanti-
ies dependent on the frequency and amplitude of the external stimulus.
y tuning these complex amplitudes, the stimulus can make the model
avigate the exponentially scaling Hilbert space. 

It must be admitted that the biological models presented here are
versimplified. The model multicellular architecture (parallel chemi-
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al waveguides) and intracellular pathway (feedback between two re-
ctants) may be a pale representation of the complexity of neuronal cir-
uitry in the cerebral cortex. Nonetheless, these simple models demon-
trate, within plausible conventional reaction diffusion models of bio-
ogical systems, the remarkable ability of describing bio-chemical phe-
omena analogous to quantum mechanics. These phenomena include
oherent superposition of states and nonseparability (i.e., local or classi-
al entanglement). The nonseparability of bio-chemical waves is robust
gainst decoherence as it is not a quantum phenomenon. However, it
ould enable quantum-like parallelism in bio-chemical wave communi-
ation and processing of information with potential relevance to under-
tanding the complexity of brain functions. The possibility of achiev-
ng quantum-like behavior in conventional reaction-diffusion models of
iological tissues challenges the current quantum brain hypothesis and
pens up new avenues for interpretation of real neurological data and/or
esign of new experiments. 
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