Leica TCS STED

Beyond the Limits!
• Sharper Focus for New Insights
• Easy Access to Superresolution
• Combined Power of STED and Confocal!
• Upgrade to STED – Anytime!
Substantial progress has been achieved in life sciences such as structural biology, basic medical research, cell biology and biochemistry over the last few years – linked with a strong increase in the application of fluorescence microscopy based methods. The precise characterization of cells and large cellular compartments has now become standard practice.

Nevertheless, as soon as it comes to the analysis of smaller structures, for instance viruses, membrane vesicles, etc., researchers are faced with the well known Abbe barrier of about 200 nm lateral resolution. The effort to bypass this limit ranges from laborious and expensive (e.g. electron microscopy) to indirect and sophisticated fluorescence measurement solutions.

With the integration of the groundbreaking STED concept into the approved broadband confocal platform Leica TCS SP5 we have created a new class of microscope, the Leica TCS STED. Its superresolution capacity allows confocal imaging with a resolution 2 to 3 times higher than could ever be achieved in a conventional scanning microscope – without compromising on usability. We call this: superresolution at a mouse click.

Leica TCS STED
Beyond the Limits!
Some Applications of STED Microscopy

Cell Architecture

Cellular structures depend on the presence of cytoskeletal proteins, such as actin and tubulin. STED allows discriminating single fibers with significantly higher resolution compared to conventional confocal microscopy.

![F-Actin and β-Tubulin](image)

Physiology: Muscle Research

Isolated myofibrils from slow skeletal muscle (rat soleus muscle) stained for sarcomeric myosin with a mouse monoclonal antibody that recognizes the myosin heads and thus visualizes the A-bands as double bands. The red signal shows the M-bands in the middle of the sarcomere, stained with a polyclonal rabbit antibody against a titin M-band epitope.

![Titin and Myosin](image)
Unveiling the molecular organization of presynaptic active zones is relevant for the understanding of the nervous system. STED microscopy was applied for distribution analysis of active zone protein Bruchpilot, which is conserved between flies and mammals (Wagh et al., Neuron, 2006; Kittel et al., Science, 2006).

Membrane domains

Analysis of the spatial distribution of syntaxin within the basal plasma membrane of PC12 cells. STED microscopy allowed the investigation of cluster density and the determination of average cluster sizes of 50 – 60 nm. [Science, Sieber JJ., 2007]

And more:
- Synapse formation
- Neuron-Glia Interaction
- Active zones
- Membrane biology
- Micro-/Nanodomains
- Vesicle transport
- Cell morphology
- Signal transduction
- Receptor studies
- Bacteriology
“To break a barrier it’s good to have a competent partner such as Leica.”

Prof. Stefan W. Hell
Max Planck Institute for Biophysical Chemistry, Göttingen, Germany

\[
\Delta X = \frac{\lambda}{2n \sin \alpha \sqrt{1 + \frac{1}{T_{sat}}}}
\]

Lateral resolution of a STED microscope can be approximated by the upper equation

Lateral resolution improvement:
Full width half maximum (FWHM) confocal: 250 nm (635 nm excitation),
FWHM STED: 90 nm

Sharper Focus for New Insights

Think of a light microscopist as a painter – the tinier the details he is interested in, the finer the brush he uses. Leica TCS STED technology delivers the “finest brush” ever in far field microscopy. It enables you to acquire images richer in detail than you ever thought possible.

With Stefan Hell’s award-winning invention of Stimulated Emission and Depletion (STED) technology, a new chapter in fluorescence microscopy has begun. In a Leica TCS STED microscope the sample is illuminated by two pulsed laser beams, tightly synchronized. The 635 nm wavelength excites the fluorophores of the sample the same way a conventional confocal system does. The excitation laser pulses are directly followed by a ring shaped illumination of a Ti:Sapphire Infrared laser. This pulse inhibits the fluorescence in the outer regions of the illuminated spot.

The result: A smaller fluorescence spot that allows much more accurate scanning than with other methods using focused light. The fluorescing area is practically decreased at least 5 fold-equivalent to increased resolution. STED microscopy is in principle not limited by diffraction any more. A wealth of unknown details is revealed, setting the stage for new insights. Synapse formation, vesicle transport, receptor – ligand interactions – just some examples of applications that can be observed directly in the intact specimen with this new superresolution microscope.

STED technology opens completely new horizons for your research – this is real “Visual Biochemistry”.

The future oriented and promising technology has been realized in an ultra precise and Leica patented device in combination with our state-of-the-art broadband confocal, the Leica TCS SP5. The result is a highly stable and easy to use system, ready for the challenges of tomorrow: The Leica TCS STED.
The STED process

Diffraction unlimited resolution – functioning principle of the STED Microscope

The key of resolution enhancement is the downsizing of the fluorescent spot. This is achieved by STimulated Emission Depletion (STED): The fluorophores in the sample are excited by the pulses of the 635 nm laser (green). These pulses are directly followed by a pair of perpendicularly polarized beams from a red shifted stimulating light pulse (725 – 850 nm) – the STED pulse (red). It induces a depletion of the excited dye molecules before they can leave the excited state by emitting detectable fluorescence photons. Due to the doughnut shaped point spread function of the depletion light, fluorescence inhibition by the STED process applies only to the outer regions of the spot. The inner part of the doughnut remains unaffected from this depletion process.

Page 6, bottom right: The totality (i.e. saturation) of fluorescence reduction in the outer regions is important for resolution improvement. The size of the remaining fluorescent area depends on the depletion efficiency, that is controlled by laser power, sample, staining etc.
Liprin distribution in the neuronal active zone of a Drosophila larva. Left: confocal image; right: STED image
Easy Access to Superresolution

The STED functionality is fully integrated into the Leica Application Suite (LAS AF). This user friendly and ergonomic platform has become a highly approved tool for microscopists. As soon as you are familiar with Leica LAS AF you are able to operate the STED system without needing to study new workflows. Your benefit? Time for your important research.

Click on a tab and work in confocal or STED mode. Depletion laser settings, scan speed, scan format and more can be saved in Leica’s standardized Instrument Parameter Settings (IPS). Storage and recall of numerous dye and sample specific settings is achieved a click of the mouse.

Start in the confocal mode, adjusting the necessary parameters such as zoom, scan field, detectors and their sensitivity. According to your specific sample and needs, use the internal photomultipliers or switch to avalanche photodiodes. Move on to the STED tab, where the specific parameters are already preadjusted. Fine tune the settings like excitation laser power and detector gain if desired. Then capture the STED image with just one button.

This concept minimizes undesired bleaching during the preadjustment process. The user deals with the relevant parameters only. It simplifies image acquisition and ensures maximal working efficiency. It’s as simple as that!

Auto-Aligning for Reproducible Results and Ease of Use

Time and space are important: Perfect synchronization of the laser pulses and nanometer accuracy of the beam alignment are a must for maximum depletion efficiency, equivalent to best resolution. In the Leica TCS STED this is realized by a patented and software controlled auto-alignment routine. Complex adjustments are history – calibration at a mouse click.
Combined Power of STED and Confocal

Find STED technology and the full versatility of the TCS SP5 combined in one system. The Leica TCS STED is not only a superresolution microscope but also a fully equipped multiphoton confocal system with up to five internal spectral detectors. Profit from the patented innovations of our broadband confocal, such as spectral detectors, the AOBS or the Tandem Scanner. With the fully integrated pulsed IR-Laser controlled by an electro-optical modulator you can do every kind of multiphoton experiment such as deep tissue penetration, ROI-scanning, etc.

With this combination of advanced technologies you are prepared for all future challenges – and you have two leading microscopy systems in one: The Leica TCS SP5 broadband confocal for high resolution and high speed imaging and the Leica TCS STED system for superresolution imaging. Toggle between the two worlds of resolution at your fingertips!

The powerful and highly versatile Leica TCS STED is ideal for imaging core facilities, even as a standalone confocal microscope.
Upgrade to STED – Anytime!

(Not yet) ready for STED? – Don’t worry! STED is available as an upgrade for TCS SP5.

You might not need STED-resolution today but you think about using it tomorrow? We have the solution: You can upgrade your Leica TCS SP5 to STED – anytime. The necessary adaptations will be tailor-made for your present SP5 confocal microscope. The system grows with your demands. With a TCS SP5 you are ready for STED and prepared for the future.

Direct Optical Imaging – no Computational Artifacts

Until now, resolution in light microscopy was limited by diffraction as described by Ernst Abbe. Images of higher resolution have been obtainable only with computational methods such as deconvolution algorithms.

Today, these limitations are history. The groundbreaking improvement of a STED-microscope is superresolution achieved by an interplay of optics and photophysics. The image quality is independent of algorithm accuracy. It is purely optical. Excitation, depletion using the doughnut-shaped laser profile and emission are well understood and seamlessly integrated processes. This makes the system so easy to operate and its results scientifically reliable. Depending on the sample, particle distances of less than 70 nm have been clearly resolved.

Resolution improvement based on mathematical data processing can be applied additionally to STED images. Conventional deconvolution algorithms can be used, considering the STED-specific shape of the point spread function (PSF).

The STED Workflow
1. Place your sample on the microscope stage
2. Activate the CCD-camera
3. Select the area of interest in your sample
4. Go to confocal mode
5. Adjust your settings
6. Go to STED mode
7. Capture your image
8. That’s it!
Improved colocalization analysis

Separating neighbouring organelles, vesicles or protein clusters by using different fluorescent tags and application of colocalization analysis is an important approach in biomedical research.

The resolution enhancement achieved by Stimulated Emission Depletion brings a completely new level of accuracy to colocalization studies. The STED detector channel (PMT 4) can be easily combined with up to four spectral confocal channels of the Leica TCS SP5. This allows you to use all common dyes for multicolor imaging parallel to your diffraction unlimited imaging in the STED channel based on ATTO 647N or ATTO 655 dyes.

Maximum sample flexibility

Each sample is different, last but not least in brightness. Users examining a broader range of samples with different intensities require a system with maximum flexibility in sensitivity and dynamics.

The Leica TCS STED fully adapts to your needs with its perfectly harmonized highly dynamic spectral photodetectors and extremely sensitive avalanche photo diodes. Use the spectral internal detectors for bright signals to get the maximum dynamic range. When cells are less bright, just switch on the APDs – sensitivity at a mouse click.

This flexibility to work with different kinds of samples and staining intensities leads to maximal imaging freedom on the nanometer scale.
Dedicated optics enable highest resolution

For obtaining optimal STED efficiency, exact overlap of the focal plane from excitation and depletion laser is essential. The large spectral shift between excitation and depletion wavelength of up to 150 nm requires a dedicated objective. Our STED objective features perfect chromatic correction to get the highest resolution possible. Moreover, it works perfectly for standard confocal imaging.

Fast visualization for instant results

The Leica TCS STED is equipped with a fully integrated DFC 350FX CCD camera. This enables fast visualization of the STED-dye labeled samples – which emit fluorescence in the far red spectral range and are therefore invisible to the human eye. The integrated camera makes it easy to identify appropriate cells or cellular regions. As the air-cooled CCD camera is fully controlled by LAS AF, there is no need to employ any additional software for camera imaging.

We talk science

Leica Microsystems assists you in driving your research by providing outstanding application support and consultancy. Our skilled bio-medical application specialists understand your experiments from sample preparation and basic imaging to advanced analytical protocols. They are available to support you before and after the installation of the system, ensuring efficient generation of top quality results.

With the new Leica TCS STED you conquer uncharted territories; the fundamentally improved resolution allows you to gather more information from your intact specimen than ever before. A very simple workflow, the full automation and perfect integration into the Leica TCS SP5 platform make STED technology a tool for everyday use. Enjoy the versatility of Leica confocal systems. Optimally adjusted components, such as the CCD camera, the STED objective or the avalanche photo diodes, provide you with a multitude of options – for full flexibility and maximum efficiency every day.

Confocal and Multiphoton Base System

- Inverted microscope Leica DMI6000 CS with fluorescence optical outfit Leica EL6000
- Spectral confocal laser scanning system Leica TCS SP5 (Tandem Scanner optional)
- Visible lasers with AOTF control
- AOBBS® (Acousto-Optical Beam Splitter)
- Up to 5 spectral detector channels:
 - 4 confocal/two photon & 1 STED channel
 - 2 external APD (Avalanche Photo Detector) channels for highest sensitivity (1 usable for STED)

Leica DFC 350FX CCD camera
Full integration into LAS AF for accessibility with one click
Acknowledgements:

We gratefully acknowledge the following scientists for providing images and samples, respectively:

1. Rat myofibrils
 Green: Myosin heads, ATTO 647N, Red: Titin, Cy2
 Courtesy Dr. Elisabeth Ehler, Kings College London, England

2. Neuromuscular Junctions of Drosophila Larvae
 Green: Liprin, ATTO 647N, Red: Bruchpilot, Cy3
 Courtesy Prof. Dr. Stephan Sigrist & Werner Fouquet,
 University of Würzburg, Germany

3. Microtubular Network in Vero Cells
 β-Tubulin, ATTO 647N
 Leica Microsystems CMS, Mannheim, Germany

4. Actin Fibers from Ptk cells
 F-Actin, ATTO 647N
 Leica Microsystems CMS, Mannheim, Germany

6. Bruchpilot
 Courtesy Prof. Dr. Stephan Sigrist & Werner Fouquet,
 University of Würzburg, Germany

7. Mouse fibroblasts
 Transmitted Light (DIC)
 Courtesy of Dr. Günter Giese,
 Max Planck Institute for Medical Research, Heidelberg, Germany

8. Drosophila melanogaster (eye section)
 Red: F-Actin, Cy3, Blue: Nuclei, DAPI, Green: pigmented cells, GFP
 Courtesy of Anne Galy, IGBMC, Strasbourg-Illkirch, France

9. Membrane domains on plasma membrane sheets from PC12 cells
 Syntaxin-1, ATTO 647N
 Sample: Courtesy Dr. Thorsten Lang, Max Planck Institute for
 Biophysical Chemistry, Göttingen, Germany
1 Incoupling IR laser for STED
2 Incoupling 635 nm laser
3 Beam splitting prism
4 Phase filter
5 Beam combining prism
6 Dichroic LP650
7 Avalanche Photo Detectors (APD)
8 Visible range AOTF
9 IR EOM
10 AOBS
11 Multi function port
12 Confocal detection pinhole
13 Filter- and polarizer wheel
14 X1 – emission port
15 Spectrophotometer prism
16 Tandem Scanner
17 Field rotation optics
18 Photomultiplier 1, 2, 3 & 5
19 Photomultiplier 4 (STED)
20 Reflected light nondescanned detectors
21 Transmitted light detector

www.leica-microsystems.com/STED
Leica Microsystems —
the brand for outstanding products

Leica Microsystems operates internationally in four divi-
sions, where we rank with the market leaders.

- **Life Science Research Division**
 Leica Microsystems’ Life Science Research Division sup-
 ports the imaging needs of the scientific community with
 advanced innovation and technical expertise for the
 visualization, measurement and analysis of microstruc-
tures. Our strong focus on understanding scientific appli-
cations puts Leica Microsystems’ customers at the lead-
ing edge of science.

- **Industry Division**
 The Leica Microsystems Industry Division’s focus is to
 support customers’ pursuit of the highest quality and
 result by providing the best and most innovative imaging
 systems for their needs to see, measure and analyze the
 microstructures in routine and research industrial appli-
cations, in materials science and quality control, in
 forensic science investigations, and educational applica-
tions.

- **Biosystems Division**
 The Biosystems Division of Leica Microsystems brings
 histopathology labs and researchers the highest-quality,
 most comprehensive product range. From patient to
 pathologist, the range includes the ideal product for each
 histology step and high-productivity workflow solutions
 for the entire lab. With complete histology systems fea-
turing innovative automation and Novocastra™ reagents,
 the Biosystems Division creates better patient care
 through rapid turnaround, diagnostic confidence and
 close customer collaboration.

- **Surgical Division**
 The Leica Microsystems Surgical Division’s focus is to
 partner with and support micro-surgeons and their care
 of patients with the highest-quality, most innovative sur-
gical microscope technology today and into the future.

Leica Microsystems’ mission is to be the world’s first-choice provider of innovative solutions to our
customers’ needs for vision, measurement and analysis of micro-structures.

Leica, the leading brand for microscopes and scientific instruments, developed from five brand
names, all with a long tradition: Wild, Leitz, Reichert, Jung and Cambridge Instruments. Yet Leica
symbolizes innovation as well as tradition.

Leica Microsystems – an international company
with a strong network of customer services

Australia:
- North Ryde
 - Tel. +61 2 8870 3500
 - Fax +61 2 8870 3505

Austria:
- Vienna
 - Tel. +43 1 486 80 50 0
 - Fax +43 1 486 80 50 30

Belgium:
- Groot Bijgaarden
 - Tel. +32 2 796 96 50
 - Fax +32 2 796 96 68

Canada:
- Richmond Hill/Ontario
 - Tel. +1 905 762 3900
 - Fax +1 905 762 8937

Denmark:
- Hørlev
 - Tel. +45 4544 0111
 - Fax +45 4544 0111

France:
- Rueil-Malmaison
 - Tel. +33 1 47 32 85 85
 - Fax +33 1 47 32 85 86

Germany:
- Wetzlar
 - Tel. +49 64 1 28 40 00
 - Fax +49 64 1 28 41 55

Italy:
- Milan
 - Tel. +39 02 5257 4881
 - Fax +39 02 5257 4374

Japan:
- Tokyo
 - Tel. +81 3 5421 2800
 - Fax +81 3 5421 2896

Korea:
- Seoul
 - Tel. +82 2 514 85 45
 - Fax +82 2 514 85 48

Netherlands:
- Rijswijk
 - Tel. +31 70 4132 100
 - Fax +31 70 4132 109

People’s Rep. of China:
- Hong Kong
 - Tel. +852 2564 6699
 - Fax +852 2564 4163

Singapore:
- Tel. +65 6779 7823
 - Fax +65 6773 0628

Spain:
- Barcelona
 - Tel. +34 93 494 93 30
 - Fax +34 93 494 93 52

Sweden:
- Kista
 - Tel. +46 8 625 45 45
 - Fax +46 8 625 45 10

Switzerland:
- Heerbrugg
 - Tel. +41 71 726 34 34
 - Fax +41 71 726 34 44

United Kingdom:
- Milton Keynes
 - Tel. +44 1908 246 246
 - Fax +44 1908 809 992

USA:
- Bannockburn/Illinois
 - Tel. +1 847 405 0123
 - Fax +1 847 405 0164

and representatives of Leica Microsystems
in more than 100 countries.

www.leica-microsystems.com