Dynamic Cournot Oligopoly with Output Adjustment Cost

by
Chrystie T. Burr

under
Dr. Ferenc Szidarovszky

Agenda

1. Intro – Classical Cournot Oligopoly
2. Intro – Variant: Output Adjustment Cost
3. Best Responses
 1. Continuous Output Adjustment Cost
 2. Discontinuous Output Adjustment Cost
4. Equilibrium Condition
 1. Continuous Output Adjustment Cost
 2. Discontinuous Output Adjustment Cost
5. Conclusion
Classical Cournot Oligopoly

1 of 4

- Researches into the Mathematical Principles of Wealth (1838)
- Several firms produce a homogeneous product
- Outputs are chosen simultaneously by firms
- The goal is to choose the output quantity that will maximize its own profit

Let:
- Firm 1 produces output x_1 and $C_1(x_1)$ is the cost
- Firm 2 produces output x_2 and $C_2(x_2)$ is the cost
- Price is $P(x_1 + x_2)$
- Profit of firm 1 is $P(x_1 + x_2)x_1 - C_1(x_1)$
- Profit of firm 2 is $P(x_1 + x_2)x_2 - C_2(x_2)$
Classical Cournot Duopoly

- Cournot equilibrium = Nash equilibrium

\[\Pi_1(x_1^*, x_2^*) \geq \Pi_1(x_1, x_2^*), \forall x_1 \in X \]
\[\Pi_2(x_1^*, x_2^*) \geq \Pi_1(x_1^*, x_2), \forall x_2 \in X \]

Classical Cournot Oligopoly

- Finding Nash equilibrium: use best response functions

![Diagram 1](image1.png)
![Diagram 2](image2.png)
Classical Cournot Oligopoly

Finding Nash equilibrium: use best response functions

Variant: With Output Adjustment Cost

- When the optimal output increases from one time period to the next, additional cost is required.
- This is called output adjustment cost
- Denoted by K
Output Adjustment Cost

- Two components: marginal cost and fixed cost

\[K = \omega(x^t - x^{t-1}) + \tau \]

- Case 1: Continuous OAC \((\tau = 0)\)

 \[\text{Profit} = x(A - Bs) - \alpha - \beta x - \omega(x^t - x^{t-1}) \]

- Case 2: Discontinuous OAC \((\tau > 0)\)

 \[\text{Profit} = x(A - Bs) - \alpha - \beta x - \omega(x^t - x^{t-1}) - \tau \]

Best Response

with Continuous Output Adjustment Cost

\[\Pi_k = -Bx_k^2 + (A - Bs_k - \beta_k)x_k - \alpha_k \]

\[\Pi_k = -Bx_k^2 + (A - Bs_k - \beta_k - \omega_k)x_k - \alpha_k - \omega x_k^{t-1} \]
Best Response
with Continuous Output Adjustment Cost

\[\Pi_k = -Bx_k^2 + (A - B_{sk} - \beta_k)x_k - \alpha_k \]

Best Response
with Discontinuous Output Adjustment Cost

\[\Pi_k = -Bx_k^2 + (A - B_{sk} - \beta_k - \omega_k)x_k - \alpha_k - \omega_kx_{k-1} - \tau_k \]
Best Response
with Discontinuous Output Adjustment Cost

Case 1: \(L_k - x_{k+1} \frac{\tau_k}{V} > \frac{\tau_k^2}{B} \)

Case 2: \(L_k - x_{k+1} < \frac{\tau_k^2}{B} \)
Equilibrium Condition
with Continuous Output Adjustment Cost

Equilibrium is reached iff for all \(k \), \(x_k^* \) is the best response of firm \(k \), that is

\[
\frac{\partial \Pi_k}{\partial x_k} \bigg|_{x_k=x_k^*+0} \leq 0 \leq \frac{\partial \Pi_k}{\partial x_k} \bigg|_{x_k=x_k^*-0}
\]

Ex. Given \(A = 20, B = 1, L_1 = L_2 = 10, \beta_1 = \beta_2 = \omega_1 = \omega_2 = 5 \), the equilibrium condition becomes

\[
10 - (x_1 + x_2) \leq x_{1,2} \leq 15 - (x_1 + x_2)
\]
Equilibrium Condition
with Discontinuous Output Adjustment Cost

- Very difficult to study the equilibrium cond.-
 1. Infinitely many equilibria
 2. The discontinuity exemplified by the jump in the production level – profit function.

- Therefore the use of computer simulation is needed.

Simulation

- Windows deployable program
- Based on Matt Dabkowski’s *Duopoly Basin Calculator*
 - Iterate all possible initial production levels to find the corresponding equilibria
 - The number of steps taken to reach equilibrium is then categorized by colors.
Algorithm

Initialize
for \(y_0 = y_{\text{min}}; y_0 \leq y_{\text{max}}; y_0 = y_0 + \text{stepsize} \) {
 for \(x_0 = x_{\text{min}}; x_0 \leq x_{\text{max}}; x_0 = x_0 + \text{stepsize} \) {
 Then Determine whether firm x changes its production level in the next time period by comparing the profits generated by the vertices of the two parabolas.
 If converged, stop.
 If not, update. Count ++
 }
}

Simulation Results
Simulation Results

$A = 20, B = 5, L_1 = L_2 = 10, \beta_1 = \beta_2 = \omega_1 = \omega_2 = 1, \tau_1 = \tau_2 = 1$

Sensitivity Analysis

- **Stage 1**: No jump is assumed while the parameters $A, B, \omega_x = \omega_y$ and $\beta_x = \beta_y$ are systematically varied.

- **Stage 2**: Discontinuity in the additional cost function is applied. Only τ varies.
Sensitivity Analysis (Stage 1)

A = 20

Sensitivity Analysis (Stage 1)

A = 25
Sensitivity Analysis (Stage 1)

$B = 0.3$

Sensitivity Analysis (Stage 1)

$B = 0.5$
Sensitivity Analysis (Stage 1)

$B = 0.7$

Sensitivity Analysis (Stage 1)

$B = 0.9$
Sensitivity Analysis (Stage 1)

$\beta = 3$

Sensitivity Analysis (Stage 1)

$\beta = 5$
Sensitivity Analysis (Stage 1)

$\beta = 7$

Sensitivity Analysis (Stage 1)

$\beta = 9$
Sensitivity Analysis (Stage 1)

\[L = 4 \]

Sensitivity Analysis (Stage 1)

\[L = 6 \]
Sensitivity Analysis (Stage 1)

\[L = 8 \]

\[\omega = 0.00001 \]
Sensitivity Analysis (Stage 1)

$\omega = 0.001$

Sensitivity Analysis (Stage 1)

$\omega = 1$
Sensitivity Analysis (Stage 1)

$\omega = 1$

Sensitivity Analysis (Stage 1)

$\omega = 5$
Sensitivity Analysis (Stage 2)

τ = 1.5

Sensitivity Analysis (Stage 2)

τ = 1.9
Summary

- N-firm single product oligopolies with production adjustment cost were examined.
- The best response function is always decreasing, not necessarily continuous, and might have two different values.
- This leads to infinitely many equilibria
- Simulation study shows the sensitivity and convergence rate of the equilibrium set.

Q & A