Modeling the Effects of Molecular Length Scale Electrode Heterogeneity in Organic Solar Cells

Brian Zacher and Neal R. Armstrong*

Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States

bzacher@email.arizona.edu
Hypothesis to test

Scientific Method approach:

- Observation – electrode homogenization improves performance
- Hypothesis for phenomena
 - δ – characteristic diffusion length
 - D - diffusion coefficient
 - V - average front velocity due to charge generation at D-A interface
- Rooted in electrochemical studies

Thus we hypothesized:

- When $\delta > d$… heterogeneity should not matter.

Figure (B) provides estimates

- $\delta \sim 400$ nm for 4 mA-cm$^{-2}$
- $\delta \sim 200$ nm for 15 mA-cm$^{-2}$
- based on mobility corresponding to CuPc of $\sim 2.9 \times 10^{-4}$ cm2-V$^{-1}$-s$^{-1}$
Evolution of simulation

- Polaron-pair placed across D-A interface
 - Braun’s ‘extension’ of Onsager theory applied to limit recombination
 - Periodically placed depending on theoretical maximum photocurrent

- Equation 1-2 applied to calculate rate for each possible nearest neighbor hop
 - Site i to site j

- Equation 3 applied to calculate probability for each of the possible nearest neighbor hops

- Actual hop selected from the weighted probability and implemented at time determined by Equation 1

Equations of transport

\[V_{ij} = A_{ij} \exp \left(\frac{-\Delta G^*_{ij}}{kT}\right) \]
\[\Delta G^*_{ij} = \frac{\lambda}{4} \left(1 + \frac{\Delta G_{ij}}{\lambda}\right)^2 \]
\[P_{i,+y} = \frac{V_{i,+y}}{V_{i,+y} + V_{i,-y} + V_{i,+x} + V_{i,-x} + V_{i,+z} + V_{i,-z}} \]
‘Flat-band’ simulation

• In contrast to a continuum model simulation approach, this nanometer scale approach is computationally voracious!
 • All simulations were performed at a single-operating point
 • The ‘flat-band’ condition – transport dominated by diffusion
 • Achieved by use of symmetric and ‘neutral’ contacts
 • The ‘flat-band’ condition is NOT \(V_{OC} \)

Some results

Recognize 100 watts-m\(^{-2}\) represents ~10% power conversion efficiency
Some trajectories

(1)

(2)
Conclusions

• We see the effects of heterogeneity for all the electrode constructs implemented

• Our hypothesis predicted we would not see much effect
 • $\delta \sim 400$ nm for 4 mA-cm$^{-2}$
 • $\delta \sim 200$ nm for 15 mA-cm$^{-2}$

• The PVs in our simulation were sensitive to ~2x orders of magnitude less heterogeneity than we predicted

• Our simple hypothesis ignored space-charge effects in vicinity of electrode and trapping by image forces in front of electrically inactive regions
 • Significantly reduces the effective diffusion coefficient (D)

• Interlayers are necessary in low mobility/conductivity active layers to achieve practical power conversion efficiencies
Does the low percentage of electrically active area of the electrode matter for PVs?

- Blocked showerhead

CuPc|C_{60} PHJ @ P_{MAX} => J ~ 3 mA-cm^{-2}

Does this magnitude of current density stress the electrode?

Cu wire => J ~ 10^6 mA-cm^{-2}

Single molecule junctions => 10^{-9} – 10^{-6} mA-molecule^{-1}

with an electrostatic potential of 0.2 V applied (1)

~10^{13} molecules-cm^{-2} => 10^{4} – 10^{7} mA-cm^{-2}

~10^{12} molecules-cm^{-2} => 10^{3} – 10^{6} mA-cm^{-2}