Budhu, M "Soil Mechanics and Foundations" Errata (First Printing)

Despite the many layers of checking, some typographical, drafting and other errors slipped though in the first printing of the text and CD. The author sincerely apologies for these errors. For updates point your browser to: http://www.u.arizona.edu/~budhu

Page	Correction
Pages 28	Step 4:
	Replace Gravel = 3% by Gravel = 0
	Replace Sand = 95.8% by Sand = 98.8%
Page 74	Problem 2:12. Add Clay to silt ratio is 3:1 in the last line.
Pages 88, 89: Eqs.	Replace the first and last [] by {}. The {} denotes vectors.
(3.10), (3.13), (3.14)	
Page 114 Eq.(3.68)	Replace q_s/H_o by $2q_s/\pi$
Page 129, 9 th line	Replace $q_2 = q_2 + \Delta q_2$ by $q_2 = q_1 + \Delta q_2$
from bottom of page	
Page 164, Eq. (4.30)	Replace sin Mz/H _{dr} and (sinMz/H _{dr}) respectively by
and Eq. (4.32)	$\sin (Mz/H_{dr})$
Page 170 Step 4	The equation should read
	$u_{i,j+1} = u_{i,j} + 0.25(u_{i-1,j} - 2u_{i,j} + u_{i+1,j})$
Page 185, Eq. (4.47)	Replace t^2 by r^2
Page 190, 3 rd line	Replace $(1 - e_0)$ by $(1 + e_0)$
from Step 2	
Page 196, Problem	Add. At the start of the loading the sample height was 19.17mm.
4.1, line 2	
Page 197, Problem	circular embankment, 10m diameter, with
4.17,line 2	
Page 202, Fig. 5.3	Change e_z to ε_z
(b)	
Page 220, Fig. 5.17	Replace σ'_{p} and σ'_{cs} by ϕ'_{p} and ϕ'_{cs}
(c)	
Page 222, Step 3,	Replace horizontal by vertical
line 2	
Page 233	See link Example 5.7
Page 276, Step 5	$q_{f} = 110$
	$p'_{f} = \frac{n}{M} = \frac{166}{0.66} = 166.7 \text{kPa}$
	Add Me 0.00
Page 279, lines 3	Replace q/p by q/p'
and 5	
Page 285, Fig E6.3d	Delete q_f and p'_f from the e and p' axes respectively.
Page 288, Fig 6.13	Replace ε_d by ε_q
and $2^{n\alpha}$ line in $2^{n\alpha}$	
paragraph from	
bottom.	

	Total volumetric stains: $\varepsilon_p = \Delta \varepsilon_p^e + \Delta \varepsilon_p = (38 + 35) \times 10^{-4} = 73 \times 10^{-4}$
	Total shear strains: $\varepsilon_q = \Delta \varepsilon_q^e + \Delta \varepsilon_q^p = \{(82 + 11) + 50\} \times 10^{-4} = 173 \times 10^{-4}$
Page 299	Replace Step 7 to Step 14 by
	Step7:
	$\Delta \varepsilon_{\rm p} = \frac{1}{1 + e_{\rm o}} \left\{ \left(\lambda - \kappa\right) \ln \frac{p_{\rm G}'}{p_{\rm c}'} + \kappa \ln \frac{p_{\rm E}'}{p_{\rm D}'} \right\} = \frac{1}{1 + 1.15} \left\{ \left(0.25 - 0.05\right) \ln \frac{262.9}{250} + 0.05 \ln \frac{228}{224} \right\} = 51 \times 10^{-4}$
	Step 8: $\Delta \varepsilon_p^p = \frac{\lambda - \kappa}{1 + e_o} \ln \frac{p'_G}{p'_c} = \frac{(0.25 - 0.05)}{1 + 1.15} \ln \frac{262.9}{250} = 45 \times 10^{-4}$
	Step 9: $\Delta \varepsilon_{q}^{p} = \Delta \varepsilon_{p}^{p} \frac{q}{M^{2}(p' - \frac{p'_{c}}{2})} = 45 \times 10^{-4} \frac{83.9}{0.94^{2} \left(228 - \frac{262.9}{2}\right)} = 44 \times 10^{-4}$
	Step 10: $\Delta \varepsilon_q^e = \frac{\Delta q}{3G} = \frac{12}{3 \times 4207} = 1.0 \times 10^{-3}$
	Step 11: $\Delta \varepsilon_q = \Delta \varepsilon_q^e + \Delta \varepsilon_q^p = (10 + 44) \times 10^{-4} = 54 \times 10^{-4}$
	Step 12: $\varepsilon_{p} = (\Delta \varepsilon_{p}^{e})_{initial} + \Delta \varepsilon_{p} = (26 + 51) \times 10^{-4} = 77 \times 10^{-4}$
	Step 13: $\varepsilon_q = (\Delta \varepsilon_q^e)_{initial} + \Delta \varepsilon_q = (57 + 54) \times 10^{-4} = 111 \times 10^{-4}$
	Step 14: $\varepsilon_1 = \varepsilon_q + \frac{\varepsilon_p}{3} = (111 + \frac{77}{3}) \times 10^{-4} = 137 \times 10^{-4}$
Page 308, Figure 6 16, caption	Replace Σ by σ
Page 327, equation (7.21)	$d_c = 1 + 0.2 \frac{D_f}{B}$
Page 336, Example	
7.5, Line 3	Insert 'Sm below' after at Replace a_a by a_a
Step 2, line 4	
Page 337, Eq. 7.31	Replace e_i by e_L
Page 343 Step 2 line 2	Keplace % by 5/2 and 0.94 by 0.89
Page 346 step 3 line	Replace 0.94 by 0.89 and 18 mm by 17 mm
Page 347	Step 5: line 2, replace $\mu_s = 0.4(0.5)^{38} = 0.52$ by $\mu_s = 0.45(0.5)^{38} = 0.59$
	Replace $\mu_{emb} = 1 - 0.4 \frac{4}{5} (1 + \frac{4}{2} \times 0.5) = 0.47$ by $\mu_{emb} = 1 - 0.04 \frac{4}{5} (1 + \frac{4}{2} \times 0.5) = 0.94$
	Step 6: line 3, replace 0.52 by 0.59, 0.47 by 0.94, 0.011m by 0.026m and 11mm by 26mm
Pages 353 and 354	Replace equations (7.53) to (7.56) with the following
	Axisymmetric

	$I_{co} = 0.1 + 0.8 \left(\frac{z}{B}\right)_{for} \qquad \frac{z}{B} \le \frac{1}{2} $ (7.53)
	$I_{co} = \frac{2}{3} - \frac{1}{3} \left(\frac{z}{B} \right)_{for} \qquad 2 \ge \frac{z}{B} > \frac{1}{2} $ (7.54)
	Plane strain
	$I_{co} = 0.2 + 0.3 \left(\frac{z}{B}\right)_{for} \frac{z}{B} \le 1$ (7.55)
	$I_{co} = \frac{2}{3} - \frac{1}{6} \left(\frac{z}{B} \right)$ for $4 \ge \frac{z}{B} > 1$ (7.56)
Page 349, Step 1	$\frac{H_0}{R_0} = \frac{H_1}{R_0} = \frac{H_1}{R_0}$
D 250	After D, insert D, replace fable B1 by fable B1.2
Page 359 Step 2 line 4	Paplace 1.5/3 hy 1.5/1.5 and 0.01 hy 0.81
Step 2 line 4	Replace 0.01 by 0.81 and 3.7 by 3.3
line 12	Replace $2.5/5.5$ by $4.0/2.75$ and 0.92 by 0.73
line 15	Replace 0.92 by 0.73 and 8.8 by 9.3
Page 360 line 3	Replace $3.7 + 8.8 + 6.9 = 19.4$ mm by Replace $3.3 + 9.3 + 6.9 = 19.5$ mm
Page 365. Exercise	$2(1 + \tan^2 \phi')$
7.1	Replace $N_{\mu} = \frac{2(1 + \tan \psi)}{(1 + \tan \psi)}$ by
	$\frac{1}{\sqrt{2-(1+\tan^2\phi')}(1-\tan^2\phi')}$
	$N = \frac{2 \tan \phi' (\tan^2 \phi' - 3)}{2 \sin 3 \phi'}$
	$\int \left[\left(1 + \tan \phi' \right)^2 - 2 \right] \left(1 - \tan \phi' \right)^{-1} \cos \phi' - \sin 3\phi'$
Page 367, Problem 7.11, line 9	Replace $E_u = 1000$ kPa by $E_u = 100$ MPa and $E' = 900$ kPa by $E' = 90$ MPa Add OCR = 10 after $C_r = 0.035$
Page 380, Table	$s_{\mu} - 25 \qquad s_{\mu} - 25$
8.3,line 3	$\frac{1}{100} \frac{1}{100} \frac{1}$
Page 387, Table 8.7, line 11	Replace $C \ge 0.4$ by $C \le 0.4$
Page 394, Solution 8.6 line 5	Group: Perimeter = $4(2s + D) = \dots$
Page 403, Solution 8.8. line 6	Group piles: $L_g = B_g = 2s + D = \dots$
Page 412, Problem	The OCR for the top, middle and bottom layers are 1.2, 2 and 4 respectively.
8.3, Figure P8.3	
Page 413, Problem 8.5, Figure P8.5	The saturated unit weights of the sand and clay are 17.5 kN/m ³ and 18.5 kN/m ³ respectively.
Page 413, Problem 8.6 line 1	loose fill ($\phi'_{cs} = 15^\circ$, $\gamma_{sat} = 15kN/m^3$)
line 4	$\phi'_{cs} = 28^{\circ}$, OCR = 8 and $\gamma_{sat} = 18 \text{kN/m}^3$
Page 414, Problem 8.8, line 3	$0.45 \text{m} and E_p = 20,000 MPa.$
Page 422, Section	Replace ΔH by Δh
9.5.1. line 5	
Page 461	Equation (10.21): Change $-\beta/2$ to $+\beta/2$

	Replace H^2 by H^2 where H is the vertical distance from the heel
	Equation (10.25): Add $\cos\beta$ after $K_{\alpha B} = 1/K_{\alpha B} =$
Page 473, Solution	Replace H_0 by H^2
10.3, Step 2, line 2	
and line 4	
Page 475, Step 4,	Replace both H_0 by H_0^2
Page 485 line 10	Peplace D is greater by D is not greater
Page 489 line 8	Replace (M:iO)a by (M)
Page 494 Figure	The diagram showing the distribution of the nore water pressure should start at the ground water
E10.7b	level not at the anchor location.
Page 500	Figure E10.8e: Delete the bottom portion below and including D and replace 2m by 1m
C	Level 3 (Fig. E10.8e)
	Delete next two lines
	Third line: Replace $D + C_2 = 104.6 \text{ x } 3 \text{ by } C_2 = 104.6 \text{ x } 1 = 104.6 \text{ kN/m}$
	Delete fourth line
	Step 5: Third line that $1 = 0 = 0 = 104 C + 104 C = 200.2 \text{ JN}/m$
	I hird line should read $C = C_1 + C_2 = 104.6 + 104.6 = 209.2 \text{ KN/m}$
Page 503 line 12	
1 age 505, mie 12	Replace the first H_0 by H_0^2
Page 508, line 17	Replace 7 by 3.5 and 725.2 by 363
Line 16	Replace 725.2 by 363 and 10 by 5.
Page 509, line 3	Replace 8.4 by 4.2 and 1262.5 by 631
Line 2 from bottom	P_{enlace} 1262.5 by 631 and 12.8 by 6.4
Page 511 line 13	
	Replace H by H ² _o
Page 534, Figure	Replace W by W _j
Page 536 11.8.1	Replace 11 4a by 11 5c
Bishon's Method	
line 19	
Page 536, 11.8.1	Replace $\sum W_{X} = \sum T \mathbf{P} = 0$ by $\sum W_{X} = \sum T \mathbf{P} = 0$
Bishop's Method,	$ \sum_{j=1}^{n} w_j x_j = \sum_{j=1}^{n} I_j K = 0 $ by $\sum_{j=1}^{n} w_j x_j - \sum_{j=1}^{n} I_j K = 0 $
equation (11.19)	
Page 539 Equation	Replace $\tan \theta_j$ by $\tan \Phi'_j$
(11.36)	
Pages 569, 570	Replace all negative δ values with positive values. The values on the ordinate for the top left
	hand graph on page 569 are 1, 100 not 0.1 and 1
Page 571 3.6	$Peplace 11.6 \times 10^{-4} hy - 3.25 \times 10^{-5}$
Page 571, 3.0	Replace SP by SP-SC
Page 571, 2.12	Replace 0.835 by 0.71 and 1.085 by 0.96
Page 571, 2:10	Replace 17 3 by 22 4 and 8 9 by 11 6
Page 571, 3.16	Replace 57kPa by 134 kPa
Page 572, 4.12	Replace (c) $4.1 \times 10^{-4} \text{ m}^2/\text{kN}$ by $1.6 \times 10^{-4} \text{ m}^2/\text{kN}$
Page 572, 4.14	Replace (c) 30.003 by (c) 31.02
Budhu IR	
Resource CD	
(Solution manual	
Solution 9.6	The calculation for a is:
	$a = \frac{b}{\cos\beta} - \cos\beta\sqrt{b^2 - H^2 \cot^2\beta} = \frac{65}{\cos 26.6} - \cos 26.6\sqrt{65^2 - 20^2 (\cot 26.6)^2} = 26.8m$

	and q is
	$q = ak \sin \beta \tan \beta = 26.8 \times 100 \times 1 \times 10^{-6} \times \sin 26.6 \times \tan 26.6 = 6 \times 10^{-4} cm^3 / \sec^2 \beta$
Solution 9.7	The calculation for q is:
	$q = 2kf = 2 \times 1.2 \times 10^{-6} \times 3.6 \times 100 = 8.64 \times 10^{-4} cm^3 / sec$
Solution 9.8	H = 1m + 8m = 9m = 900cm
	The calculation for q is:
	$q = khN_f/N_d = 1 \times 10^{-5} (cm^2/sec) \times 900 (cm) \times 8.5/6 = 12.8 \times 10^{-3} cm^3/sec.$