logo
Subsurface Flow Physics Group
Towards energy and the environment
Dr. Bo Guo

Journal Papers

2024

1. Anomalous adsorption of PFAS at the thin-water-film air–water interface in water-unsaturated porous media.
    W. Zhang and B. Guo. Water Resources Research, e2023WR035775, (2024). [pdf]

2. Modeling of flow and transport in multiscale digital rocks aided by grid coarsening of microporous domains.
    B. Shi, H. Jiang, B. Guo, J. Tian, and C.Z. Qin. Journal of Hydrology, 131003, (2024). [pdf]

3. An integrated analytical modeling framework for determining site-specific soil screening levels for PFAS.
    J. Smith, M. L. Brusseau, and B. Guo. Water Research, 121236, (2024). [pdf]

4. Impacts of Topography‐Driven Water Redistribution on Terrestrial Water Storage Change in California Through Ecosystem Responses.
    X.Y. Zhang, Y. Fang, G.Y. Niu, P.A. Troch, B. Guo, L.R. Leung, M.A. Brunke, P. Broxton, and X. Zeng. Water Resources Research, e2023WR035572, (2024). [pdf]

5. Coupling of polyhydroxybutyrate and zero‐valent iron for enhanced treatment of nitrate pollution within the Permeable Reactive Barrier and its downgradient aquifer.
    W. Yu, T. Zheng, B. Guo, Y. Tao, L. Liu, N. Yan, and X. Zheng. Water Research, 121060, (2024). [pdf]

2023

1. Pore-scale modeling of PFAS transport in water-unsaturated porous media: Air–water interfacial adsorption and mass-transfer processes in thin water films.
    S. Chen and B. Guo. Water Resources Research, e2023WR034664, (2023). [pdf]

2. Predicting Interfacial tension and adsorption at fluid–fluid interfaces for mixtures of PFAS and/or hydrocarbon surfactants.
    B. Guo, H. Saleem, and M. L. Brusseau. Environmental Science & Technology, (2023). [pdf]

3. Reduced accessible air–water interfacial area accelerates PFAS leaching in heterogeneous vadose zones.
    J. Zeng and B. Guo. Geophysical Research Letters, 50, e2022GL102655, (2023). [pdf]

4. Revising the EPA dilution-attenuation soil screening model for PFAS.
    M. L. Brusseau and B. Guo. Journal of Hazardous Materials Letters, 4, 100077, (2023). [pdf]

2022

1. Wetting Dynamics of Spontaneous Imbibition in Porous Media: from Pore Scale to Darcy Scale.
    C.Z. Qin, X. Wang, M. Hefny, J. Zhao, S. Chen and B. Guo. Geophysical Research Letters, 49, e2021GL097269, (2022). [pdf]

2. An adaptive hybrid vertical equilibrium/full multidimensional model for compositional multiphase flow.
    B. Becker, B. Guo, I. Buntic, B. Flemisch, and R. Helmig. Water Resources Research, 58, e2021WR030990, (2022). [pdf]

3. A screening model for quantifying PFAS leaching in the vadose zone and mass discharge to groundwater.
    B. Guo, J. Zeng, M. L. Brusseau, and Y. Zhang. Advances in Water Resources, 160, 104102, (2022). [pdf]

4. The impact of multiple-component PFAS solutions on fluid-fluid interfacial adsorption and transport of PFOS in unsaturated porous media.
    D. Huang, H. Saleem, B. Guo, M. L. Brusseau. Science of The Total Environment, 806, 150595, (2022). [pdf]

5. Air–water interfacial adsorption of C4-C10 perfluorocarboxylic acids during transport in unsaturated porous media.
    Y. Lyu, B. Wang, X. Du, B. Guo, M. L. Brusseau. Science of The Total Environment, 831, 154905, (2022). [pdf]

6. Transformation in the Stability of Tide-induced Upper Saline Plume Driven by Transient External Forcing.
    Y. Fang, T. Zheng, B. Guo, H. Zhan, H. Wang, X. Zheng, M. Walther. Water Resources Research, 58, e2021WR031331, (2022). [pdf]

7. PFAS concentrations in soil versus soil porewater: Mass distributions and the impact of adsorption at air–water interfaces.
    M. L. Brusseau and B. Guo. Chemosphere, 134938, (2022). [pdf]

2021

1. Model validation and analyses of parameter sensitivity and uncertainty for modeling long-term retention and leaching of PFAS in the vadose zone.
    J. Zeng, M. L. Brusseau, and B. Guo. Journal of Hydrology, 127172, (2021). [pdf]

2. Air–Water Interfacial Areas Relevant for Transport of Per and Poly-Fluoroalkyl Substances.
    M. L. Brusseau and B. Guo. Water Research, 117785, (2021). [pdf]

3. Multidimensional simulation of PFAS transport and leaching in the vadose zone: impact of surfactant-induced flow and subsurface heterogeneities.
    J. Zeng and B. Guo. Advances in Water Resources, 155, 104015, (2021). [pdf]

4. A hybrid multiscale framework coupling multilayer dynamic reconstruction and full-dimensional models for CO2 storage in deep saline aquifers.
    T. Zheng, B. Guo, and H. Shao. Journal of Hydrology, 126649, (2021). [pdf]

5. Impact of a hydrocarbon surfactant on the retention and transport of perfluorooctanoic acid in saturated and unsaturated porous media.
    Y. Ji, N. Yan, M.L. Brusseau, B. Guo, X. Zheng, M. Dai, H. Liu, and X. Li. Environmental Science & Technology, 55(15), 10480-10490, (2021). [pdf]

6. Ideal versus Nonideal Transport of PFAS in Unsaturated Porous Media.
    M. L. Brusseau, B. Guo, D. Huang, N. Yan, and Y. Lyu. Water Research, 202, 117405, (2021). [pdf]

7. Perfluoroalkyl and Polyfluoroalkyl substances (PFAS) in Groundwater at a Reclaimed Water Recharge Facility.
    T. Canez, B. Guo, J. C. McIntosh, and M. L. Brusseau. Science of The Total Environment, 791, 147906. [pdf]

8. A pore-network-based upscaling framework for the nanoconfined phase behavior in shale rocks.
    S. Chen, J. Jiang, and B. Guo. Chemical Engineering Journal, 417, 129210. [pdf]

9. Testing the validity of the miscible-displacement interfacial tracer method for measuring air–water interfacial area: Independent benchmarking and mathematical modeling.
    A. E. Ouni, B. Guo, H. Zhong, and M. L. Brusseau. Chemosphere, 128193, (2021). [pdf]

2020

1. Fully implicit dynamic pore-network modeling of two-phase fow and phase change in porous media.
    S. Chen, C. Z. Qin, and B. Guo. Water Resources Research, 56, e2020WR028510, (2020). [pdf]

2. Characterization of the Micro-scale Surface Roughness Effect on Immiscible Fluids and Interfacial Areas in Porous Media Using the Measurements of Interfacial Partitioning Tracer Tests.
    H. Jiang, B. Guo, and M. L. Brusseau. Advances in Water Resources, 146, 103789, (2020). [pdf]

3. PFAS concentrations in soils: Background levels versus contaminated sites.
    M. L. Brusseau, R. H. Anderson, and B. Guo. Science of The Total Environment, 140017, (2020). [pdf]

4. A mathematical model for the release, transport, and retention of per- and polyfluoroalkyl substances (PFAS) in the vadose zone.
    B. Guo, J. Zeng, and M. L. Brusseau. Water Resources Research, 56, e2019WR026667, (2020). [pdf]
    *News coverage: UA News, Phys.org, AAAS EurekAlert, ScienceDaily, The Medical News, Technology Networks,
      Futurity, Chem Europe, Scitech Daily, Electronics360.

5. Pore-scale modeling of fluid-fluid interfacial area in variably saturated porous media containing micro-scale surface roughness.
    H. Jiang, B. Guo, and M. L. Brusseau. Water Resources Research, 56, e2019WR025876, (2020). [pdf]

6. Low-concentration tracer tests to measure air–water interfacial area in porous media.
    M. L. Brusseau, Y. Lyu, N. Yan, and B. Guo. Chemosphere, 250, 126305, (2020). [pdf]

2019

1. A guideline for appropriate application of vertically-integrated modeling approaches for geologic carbon storage modeling.
    K. W. Bandilla, B. Guo, and M. A. Celia. International Journal of Greenhouse Gas Control, 91, 102808, (2019). [pdf]

2. Multiscale formulation of pore-scale compressible Darcy-Stokes flow.
    B. Guo, Y. Mehmani, and H. A. Tchelepi. Journal of Computational Physics, 397, 108849, (2019). [pdf]

3. Dynamic pore-network modeling of air–water flow through thin porous layers.
    C. Z. Qin, B. Guo, M. A. Celia, and R. Wu. Chemical Engineering Science, 202, 194-207, (2019). [pdf]

4. Vertically-integrated dual-continuum models for CO2 sequestration in fractured reservoirs.
    Y. H. Tao, B. Guo, K. W. Bandilla, and M. A. Celia. Computational Geosciences, 23, 273-284, (2019). [pdf]

5. Effects of image resolution on sandstone porosity and permeability as obtained from X-ray microscopy.
    K. Guan, M. Nazarova, B. Guo, H. A. Tchelepi, A. R. Kovscek, and P. Creux. Transport in Porous Media, 127, 233-245, (2019). [pdf]

2018

1. Modelling hydraulic fracturing with a point-based approximation for the maximum principal stress criterion.
    Q. S. Liu, L. Sun, X. H. Tang, and B. Guo. Rock Mechanics and Rock Engineering, 1-21, (2018). [pdf]

2. Image-based micro-continuum model for gas flow in organic-rich shale rock.
    B. Guo, L. Ma, and H. A. Tchelepi. Advances in Water Resources, 122, 70-84, (2018). [pdf]

3. An adaptive multiphysics model coupling vertical equilibrium and full multidimensions for multiphase flow in porous media.
    B. Becker, B. Guo, K. W. Bandilla, M. A. Celia, B. Flemisch, and R. Helmig. Water Resources Research, 54, 2017WR022303, (2018). [pdf]
    * Won the "Best SimTech PhD Student Publication 2018/2019" Award, see news at the University of Stuttgart.

2017 and earlier

1. A pseudo vertical equilibrium model for slow gravity drainage dynamics.
    B. Becker, B. Guo, K. W. Bandilla, M. A. Celia, B. Flemisch, and R. Helmig. Water Resources Research, 53, 2017WR021644, (2017). [pdf]

2. Vertically integrated dual-porosity and dual-permeability models for CO2 sequestration in fractured geological formation.
    B. Guo, Y. H. Tao, K. W. Bandilla, and M. A. Celia. Energy Procedia, 114, 3343-3352 (2017). [pdf]

3. Applicability of Vertically Integrated Models for Carbon Storage Modeling in Structured Heterogeneous Domains.
    K. W. Bandilla, B. Guo, and M. A. Celia. Energy Procedia, 114, 3312-3321 (2017). [pdf]

4. Multilayer vertically-integrated model with vertical dynamics for CO2 sequestration in layered geologic formations.
    B. Guo, K. W. Bandilla, J. M. Nordbotten, M. A. Celia, E. Keilegavlen, and F. Doster. Water Resources Research, 52(8), 6490-6505 (2016). [pdf]

5. Flow regime analysis for geologic CO2 sequestration and other subsurface fluid injections.
    B. Guo, Z. Zheng, M. A. Celia, K. W. Bandilla, and H. A. Stone. International Journal of Greenhouse Gas Control, 53, 284-291 (2016). [pdf]

6. Axisymmetric flows from fluid injection into a confined porous medium.
    B. Guo, Z. Zheng, M. A. Celia, and H. A. Stone. Physics of Fluids, 28, 022107 (2016). [pdf]

7. Flow regimes for fluid injection into a confined porous medium.
    Z. Zheng, B. Guo, I. C. Christov, M. A. Celia, and H. A. Stone. Journal of Fluid Mechanics, 767, 881-909 (2015). [pdf]
    * Won the Robert H. Socolow CMI Best Paper Award for Postdoctoral Fellows, see news at Princeton CMI.

8. A vertically integrated model with vertical dynamics for CO2 storage.
    B. Guo, K. W. Bandilla, F. Doster, E. Keilegavlen, and M. A. Celia. Water Resources Research, 50(8), 6269-6284 (2014). [pdf]

9. Application of Vertically-Integrated Models with Subscale Vertical Dynamics to Field Sites for CO2 Sequestration.
    B. Guo, K. W. Bandilla, E. Keilegavlen, F. Doster, and M. A. Celia. Energy Procedia, 63, 3523-3531 (2014). [pdf]