
1. Introduction
The western United States (US) has been experiencing more severe, frequent, and longer droughts characterized 
by anomalously low precipitation and exacerbated by high temperatures due to anthropogenic warming (Luo 
et al., 2017; Ullrich et al., 2018; Williams et al., 2020). Since 2000, the western US may have been in the second 
driest megadrought in the past 1,200 years as indicated by tree-ring reconstructions of summer soil moisture 
(Williams et al., 2020). This megadrought is likely associated with cooler-than-normal sea-surface temperature 
(SST) in the eastern tropical Pacific (Cook et al., 2018), warmer-than-normal SSTs in the north Atlantic (Feng 
et al., 2011), and poleward expansion of the subtropical ridge (Ault et al., 2016; Ting et al., 2018), leading to 
less precipitation in winter. In addition, the warming-induced increases in evaporative demand in summer and 
associated reductions in runoff and soil moisture (Ault et al., 2016; Ting et al., 2018) contribute substantially to 
the drought severity (Williams et al., 2020). Land surface feedbacks may amplify and perpetuate droughts that 
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are triggered by SST anomalies (Hong & Kalnay, 2000; Schubert et al., 2004; Xue & Shukla, 1993). In other 
words, land surface states and land-atmosphere interactions are of great importance to drought predictabilities 
in the mid-latitude land regions (Koster, Suarez, & Heiser, 2000). However, current climate models or Earth 
System Models (ESMs) still have deficiencies in representing various key land surface processes. For exam-
ple, ESMs substantially underestimate evapotranspiration (ET) especially during droughts (Dong et al., 2022; 
Zhao et al., 2022) due to model deficiencies in representing key hydrological processes such as plant and soil 
hydraulics, snow sublimation, and topography-driven lateral flow. In this study, we focus on the impacts of 
topography-driven lateral subsurface flow on terrestrial water storage change over California, a region that has 
been experiencing a megadrought during the past decades.

Topography-driven lateral subsurface flow modulates water, energy, and biogeochemical (e.g., carbon) fluxes 
through water redistribution and land-atmosphere interactions differently depending on regional climates and 
surface conditions (Chang et al., 2018; Fan et al., 2019; Maxwell & Condon, 2016; Maxwell & Kollet, 2008; 
Shrestha et  al., 2015). Lateral subsurface flow increases the ratio of transpiration to evapotranspiration or T/
ET (Chang et al., 2018; Maxwell & Condon, 2016), improves plant water use efficiency (Chang et al., 2018) 
and photosynthesis (Govind et al., 2011), and thus enhances ecosystem drought resilience (Chang et al., 2018; 
Hoylman et al., 2018; Maxwell & Kollet, 2008; Tai et al., 2021). For example, using multiple remote sensing 
products, Tai et  al.  (2020) observed increasing vegetation productivity and less precipitation sensitivity with 
greater topography convergence in a forested watershed in the Rocky Mountains. The strong coupling between 
terrestrial water and carbon cycles also produces much greater modeled soil carbon concentrations in the valleys 
than the hilltops globally due to hillslope flow convergence (Subin et al., 2014). The changes of land surface heat 
fluxes associated with lateral subsurface flow can feed back to the atmosphere through land-atmosphere interac-
tions, affect the atmospheric boundary layer development, and thus change the lower atmospheric variables, such 
as cooling air temperatures and enhancing precipitation (Arboleda Obando et al., 2022; Maxwell et al., 2007). 
Barlage et  al.  (2021) demonstrated that a high-resolution representation of the intercell lateral groundwater 
flow substantially reduces summer warm-and-dry bias in the central US. It should be noted that the modeled 
impacts of lateral subsurface flow on soil moisture and related ecohydrological variables are scale-dependent and 
become more prominent at finer resolutions (Barlage et al., 2021; Ji et al., 2017; Krakauer et al., 2014; Shrestha 
et al., 2015, 2018). The explicit implementation of lateral subsurface flow to ESMs is essential to achieve better 
future climate projections, especially given the increased prevalence of droughts.

ESMs are important tools to understand and predict global climate changes. Despite the importance of 
topography-driven lateral subsurface flow, most ESMs operate on grid box sizes of around 100 km and only 
represent one-dimensional (1-D) vertical flow through the soil matrix (Fan et al., 2019; Hazenberg et al., 2016; 
Subin et al., 2014; Swenson et al., 2019). Early land models in ESMs represented land surface hydrology as a 
simple bucket and highly parameterized heterogeneous land surface characteristics and associated lateral subsur-
face flow (Schaake et al., 1996; Yang & Dickinson, 1996). Recognizing the importance of lateral subsurface flow, 
land models started to implicitly represent lateral subsurface flow by considering static subgrid variabilities, 
such as soil moisture or water table depth (Warrach et al., 2002). For example, the TOPMODEL concept used in 
many land models uses a topographic wetness index (or wetness index) to represent topographic effects on the 
static subgrid heterogeneity of soil moisture and thus partially captures hillslope hydrologic responses (Beven & 
Kirkby, 1979; Chen & Kumar, 2001; Famiglietti & Wood, 1991, 1994; Koster, Suarez, Ducharne, et al., 2000; Niu 
et al., 2005; Stieglitz et al., 1997; Yang & Niu, 2003). Despite its simplicity and efficiency, TOPMODEL cannot 
explicitly describe dynamic subsurface flow with small-scale hydrological variations over complex terrain. In 
addition, the next-generation hyper-resolution ESMs require sophisticated and realistic hillslope-scale hydrology 
representations.

Numerous studies have begun to explicitly represent lateral subsurface flow movement in ESMs with various 
complexities. Many studies have been conducted to couple three-dimensional (3-D) groundwater models with land 
surface models that solves 3-D variably saturated Richards equation (Bisht et al., 2017; Kollet & Maxwell, 2008; 
Kuffour et  al.,  2020; Maxwell & Miller,  2005; Niu et  al.,  2014; O'neill et  al.,  2021; Tian et  al.,  2012; York 
et al., 2002). To reduce the computational burden, quasi-3D schemes were developed to represent intercell (2-D) 
lateral saturated subsurface flow and vertical soil water flow separately (Fan et al., 2007; Felfelani et al., 2021; 
Shen et al., 2013; Xie et al., 2012; Zeng, Xie, et al., 2018; Zeng et al., 2016). Recently, Qiu et al. (2023) incor-
porated intercell lateral unsaturated and saturated flow in a land model. But the high computational cost, the 
data volume, and complexity required by these 3-D and quasi-3D approaches constrains their uses for global 
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applications. An alternative practical method is to couple the 1-D Richards equation with intracell (1-D) lateral 
flow along representative hillslopes (Chaney et al., 2016, 2018, 2021; Hazenberg et al., 2015; Subin et al., 2014; 
Swenson et al., 2019). A hybrid-3D hillslope hydrological model (H3D) developed by Hazenberg et al. (2015) 
can simulate hillslope hydrology responses comparable to the complex 3D physically-based model, CATchment 
HYdrology CATHY (Paniconi et al., 2003; Paniconi & Putti, 1994; Paniconi & Wood, 1993) at much higher 
computational efficiency saving computational time by up to three orders of magnitude (Hazenberg et al., 2016). 
H3D couples a 1-D vertical flow model with a pseudo-2D lateral flow model represented by the hillslope-storage 
Boussinesq (hsB) equation. The 1-D hsB equation can reproduce the 2-D lateral saturated subsurface flow at the 
hillslope scale (Hilberts et al., 2004; Paniconi et al., 2003; Troch et al., 2003). This computationally efficient H3D 
provides a promising way to incorporating hillslope-scale hydrology to ESMs.

In this work, we coupled the hsB equation of H3D (Hazenberg et al., 2015; Troch et al., 2003) to the land model 
(ELM) of the Energy Exascale Earth System Model (E3SM) that, like many other ESMs, does not represent 
lateral subsurface flow movement. We tested our new model (ELMH3D) over California, which has experienced 
increasingly severe droughts and heatwaves. We also quantified the influences of explicit lateral flow on modeled 
hydrological fluxes and states that are important to drought assessment and predictions. Lastly, we performed 
multiple sensitivity experiments to better understand the sensitivity of subsurface runoff changes to the hillslope 
parameters.

2. Methods
2.1. Data

2.1.1. Climate Forcings

The meteorological data used to drive all model experiments is from the National Land Data Assimilation System 
Phase 2 (NLDAS-2) for 1980–2015 (Xia et al., 2012). This data set includes hourly 0.125° precipitation, short-
wave and longwave downward radiation, wind speed, specific humidity, surface air temperature and pressure 
covering the contiguous United States (CONUS). The non-precipitation forcing data of NLDAS-2 is derived by 
spatially and temporally disaggregating the analysis fields of the NCEP North American Regional Reanalysis 
(NARR) with vertical adjustment to account for terrain height differences between NLDAS-2 and NARR (Xia 
et al., 2012). The topographically adjusted Climate Prediction Center (CPC) CONUS daily gauge data is tempo-
rally disaggregated into hourly NLDAS-2 precipitation (Xia et al., 2012). The hourly temporal disaggregation 
weights are from NCEP hourly Stage II Doppler radar precipitation data, half-hourly CPC-Morphing technique 
data (Joyce et al., 2004), and 3-hourly NARR data.

2.1.2. Model Validation Data

To calibrate and validate model performances, we used monthly observed runoff, snow water equivalent (SWE), 
ET, and terrestrial water storage anomaly (TWSA). We obtained the observed monthly runoff from the US 
Geological Survey (USGS) for the two-digital hydrological unit code (HUC) 18, which covers all of California. 
This runoff data set is generated by incorporating streamflow observations, the drainage basins of stream-
flow gages, and HUC boundaries (Brakebill et al., 2011). We used 4-km daily SWE from the University of 
Arizona (UA) to validate modeled SWE from 1982 to 2015. The UA SWE data set is derived by assimilat-
ing ground-based snow observations from National Resource Conservation Service Snow Telemetry and the 
National Weather Service Cooperative Observer networks and gridded precipitation and temperature data from 
the Parameter-elevation Regressions on Independent Slopes Model (Broxton et al., 2016; Dawson et al., 2017; 
Zeng, Broxton, & Dawson, 2018). We also used the 0.5° monthly FLUXNET Model Tree Ensembles (MTE) 
gridded ET data set to assess modeled ET during 1982–2011. The FLUXNET MTE data is generated by 
upscaling FLUXNET in situ observations of water, carbon, and energy fluxes with the MTE machine learning 
method to the global scale, which has been used by various studies (Jung et al., 2011; Ma et al., 2017; Zhang 
et  al.,  2022). The UA SWE and FLUXNET MTE products were bilinearly interpolated to a spatial resolu-
tion of 0.125° to be consistent with our model outputs. We used 1° monthly Gravity Recovery and Climate 
Experiment (GRACE) Release 05 Level-3 TWSA products during 2003–2015 derived from spherical harmonics 
(SH) solutions from the University of Texas Center for Space Research (CSR), the Jet Propulsion Laboratory 
(JPL), and the GeoForschungsZentrum (GFZ), because the gain factor for Release 06 SH products are not 
accessible currently. We multiplied three GRACE SH products with their gain factors to compensate for the 
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signal leakage issues (Landerer & Swenson, 2012). We also used monthly half-degree GRACE/GRACE-FO 
Release 06 (RL06) Level-3 mass concentration solutions (Mascons) from JPL and the NASA Goddard Space 
Flight Center (GSFC) and 0.25° RL06 Mascons from CSR. Then, we averaged these three SH (GRACESH) 
and Mascons  (GRACEMascons) products to reduce the noise associated with different solutions, respectively 
(Sakumura et al., 2014).

2.2. Models and Experiments

2.2.1. The ELM Model

The ELM version 1 of E3SM is developed based on the Community Land Model version 4.5 (CLM 4.5) with 
new parameterizations of soil hydrology and biogeochemistry (Leung et al., 2020). The subgrid heterogeneity 
of each grid cell is represented through a hierarchy system of three subgrid levels including five land units, soil/
snow columns, and up to 16 plant functional types (PFTs). The five land units include glacier, lake, urban, natural 
vegetation, and crops. Each grid cell has one soil/snow column on the vegetated land unit as well as additional 
columns for other land units, as applicable. Land surface data with a spatial resolution of 0.125° over the NLDAS 
domain is generated using the tool provided by ELM. This surface data set primarily describes the fractions 
of land units (e.g., lake and vegetation), soil properties, characteristics of each vegetation type, topography, 
and others in a model grid. The subgrid spatial distribution of PFTs is derived from the Moderate Resolution 
Imaging Spectroradiometer and Advanced Very High Resolution Radiometer satellite observations (Lawrence & 
Chase, 2007) and kept static throughout the entire model experiments. The variable soil thickness is represented 
by the 30 arcsec (∼1 km) global data set of bedrock depth (Pelletier et al., 2016). The default ELM has only one 
soil column in a model grid, while for the hillslope model the soil column is divided into several soil columns 
along one representative hillslope. Each of the soil columns shares the same land surface properties (e.g., PFTs, 
soil thickness, and slope angle) of the model grid.

In this study, we mainly focus on soil hydrology and runoff generation. Total runoff is the sum of saturation-excess 
surface runoff (Qover; mm/s), subsurface runoff (Qdrai; mm/s), infiltration-excess surface runoff (more exactly, 
runoff of surface ponded water) (Qh2osfc; mm/s), and runoff from glaciers and lakes (Qrgwl; mm/s). Qrgwl is the 
imbalance term in the water budget of glaciers and lakes, which may be negative. Two options of runoff schemes, 
VIC (Variable Infiltration Capacity) and the TOPMODEL-based (a topography-based hydrological model), 
are provided in ELM. We chose the TOPMODEL scheme in the default and modified model experiments (see 
Section 2.2.3). Surface (Qover) and subsurface (Qdrai) runoff are parameterized based on the simple TOPMODEL 
(SIMTOP) concept (Niu et al., 2005). But subsurface runoff (or groundwater discharge) is largely reduced for 
frozen soils by multiplying an ice impedance factor (Θice) in ELM (Equation 1). The frozen soil permeability 
(Equation 3) is also remarkably reduced by multiplying Θice in the default ELM option of soil hydraulic property 
scheme (Swenson et al., 2012). The detailed equations for other runoff components were included in Supporting 
Information S1 (Text S1).

𝑄𝑄𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = Θ𝑑𝑑𝑖𝑖𝑖𝑖 × 𝑞𝑞𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 × 𝑖𝑖−𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠×𝑧𝑧𝑤𝑤𝑤𝑤 (1)
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where 𝐴𝐴
𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖

𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠
 is the ice fraction for the soils under the groundwater table; Ω is an adjustable parameter with a 

default value of 6; qdrai,max is the maximum subsurface runoff (mm/s); 𝐴𝐴 𝐴𝐴𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 10 sin(𝛼𝛼) ; α is the gridcell 
mean topographic slope angle in radians; fsub is a decay factor for subsurface runoff with a default value of 
2.5; zwt is the water table depth (m); ki and ksat,i are the actual and saturated soil hydraulic conductivity at soil 
layer i (mm/s), respectively; θi and θsat,i are the volumetric soil liquid water and porosity at soil layer i; bi is the 
Clapp-Hornberger pore size distribution index determined by soil texture at soil layer i, and Nlevsoi is the number 
of soil layers.
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2.2.2. Implementing the Representative Hillslope Lateral Flow Model Into ELM

To properly represent hillslope hydrological responses at a low computational cost, we replaced the SIMTOP 
subsurface runoff scheme (Equation 1) with the hsB equation of H3D (Equation 4). The hsB equation is derived by 
combining the Boussinesq equation with the hillslope width function (Hazenberg et al., 2015; Troch et al., 2003) 
based on the assumption that the average water table depth as a function of distance from the seepage face is 
constant (Fan & Bras, 1998).

𝑓𝑓
𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
=

1

𝑤𝑤

𝜕𝜕
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(
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(
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))
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where f is the drainable porosity, h (m) is the height of the saturated zone perpendicular to the hillslope bedrock 
with a slope angle α, w (m) is the width of the hillslope at a given distance x (m) from the outflow point, kl(h) 
(m/s) is the lateral saturated hydraulic conductivity at height h. Rsat is the recharge rate between the unsaturated 
and saturated zones (m/s). The iterative implicit finite difference method is used to numerically solve the hsB 
equation with an iteration criterion of 𝐴𝐴 𝐴
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where ∆T (seconds) is the time step, j is the lateral node number, t is the time of interest, and s is the iteration step. 
𝐴𝐴 Δ𝑥𝑥𝑈𝑈𝑗𝑗

 and 𝐴𝐴 Δ𝑥𝑥𝐿𝐿𝑗𝑗
 is the distance (m) relative to the center of upper j + 1 and lower j − 1 node. wj is the width on the 

center of node j. j − 0.5 and j + 0.5 represent the lower and upper bounds of node j.

For the upper lateral boundary, zero lateral flux is assumed flowing into the top of the hillslope. Therefore, the 
numerical equation for the upper node N is:
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For the lower lateral boundary at the seepage face of the hillslope, a kinematic wave approximation is applied  
(𝐴𝐴
𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 0 , Equation 7). We further developed an extreme seepage face boundary condition in this study (See Appen-

dix A). Equations 5–7 result in a tridiagonal matrix of (N + 1) equations at the iteration step s + 1.
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0

)

)

+ Δ� cos(�)����
�
0

 (7)

To numerically implement the hsB equation in the ELM model, we divided the soil column into a series of equal-length 
(in the x direction along the hillslope), laterally connected soil columns to form a hillslope (Figure 1). Each gridcell has 
a single representative hillslope for the vegetated land unit. The lowest soil column is treated as the lowland directly 
exchanging water fluxes with the river channel. Since we applied the kinematic boundary condition to the lowland, 
we did not explicitly account for dynamic water exchanges between lowlands and river channels. The height of the 
saturated zone (h) is computed by subtracting the water table depth from the bedrock depth. The term 𝐴𝐴 (cos(𝛼𝛼)𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠) is 
removed in the hsB code implementation in ELM because aquifer mass changes due to groundwater recharge have 
been represented after solving the 1-D Richards equation in ELM. We set the iteration standard of δth < 0.1 mm. The 
timestep for the hsB solver (∆tfine) in ELM is initially set as the temporal resolution of the atmospheric forcing, dt (e.g., 
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3,600 s in this study). If the solver cannot converge within 20 iterations, ∆tfine is reduced to half of the previous ∆tfine, 
returning the previous iteration with the updated smaller time step. The model would stop if the hsB solver cannot 
converge with the smallest ∆tfine = 10 s. We used an operator splitting approach to update the soil water state through 
two steps. First, we solved the 1-D vertical flow within the soil column represented by the mass-based form of the 
Richards equation with zero bottom flux into the bedrock. Second, soil water within the saturated zone is updated due 
to lateral flow (subsurface runoff) that is controlled by total hydraulic gradients. The gridcell-averaged subsurface 
runoff is the sum of lateral flows from each soil column in the grid cell weighted by their own hillslope area, instead 
of the original SIMTOP subsurface runoff scheme (Equation 1).

In this study, each hillslope is discretized into five soil columns (i.e., node 0–4) with a total length of 500 m 
(100 m for each column). Three theoretical hillslope width functions are used to represent convergent, divergent, 
and uniform hillslope planforms (Equations  8–10). The hillslope width function computes the width for the 
upper (wj+0.5) and lower (wj−0.5) interfaces and the center (wj) of each node. Then, the width of each node for the 
hillslope is recomputed by matching the total hillslope area to the total area of the vegetated land unit in each 
gridcell. f is treated as the specific yield at the top of the saturated zone. α is directly obtained from the ELM 
land surface  input data. We parameterized kl(h) by multiplying the vertical saturated hydraulic conductivity at 
the top of the saturated zone with an anisotropic factor (ζ). To simplify the downscaling process, the land surface 
properties and forcing inputs for all hillslope soil columns in each gridcell, such as soil properties, bedrock depth, 
and distributions of PFTs, are identical to the single soil column in each gridcell of ELM.

𝑤𝑤𝑗𝑗+0.5 = exp

(

ℎ𝑠𝑠 ∗
𝑗𝑗 + 1

𝑁𝑁 + 1

)

;𝑤𝑤−0.5 = 1.0 (8)

𝑤𝑤𝑗𝑗+0.5 = exp

(

−ℎ𝑠𝑠 ∗
𝑗𝑗 + 1

𝑁𝑁 + 1

)

; 𝑤𝑤−0.5 = 1.0 (9)

𝑤𝑤−0.5 = 𝑤𝑤𝑗𝑗+0.5 = 1.0 (10)

Figure 1. Numerical implementation of a hybrid-3D hillslope hydrological model. (left) the spatial view of a hillslope with 
a total length L consisting of N vertical soil columns with equal length (∆x) on the top of bedrock with a topographic slope α. 
W represents the width of hillslope at a distance from the lower border of the lowest column (column 0). j represents the index 
of hillslope column center. The land surface properties (e.g., bedrock depth and vegetation distribution) and forcing inputs on 
each column are the same. d represents the depth of overland flow. (right) the vertical dimension of a hillslope column. The 
vertical flow travels through multiple soil layers with varying soil layer thickness (Δzi) and water conditions (𝐴𝐴 𝐴𝐴𝑖𝑖 , ψi) on top 
of the impermeable bedrock with zero bottom flux, which is solved by the θ-based form of the Richards equation (Zeng & 
Decker, 2009). i represents the index of vertical soil layers. h is the height of saturation zone, and ∇ is water table. VSFM is 
the acronym of vertical soil flow model.
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where N is the number of soil columns in one representative hillslope, hs is the total hillslope length (m), j repre-
sents the node number spanning from 0 (valley) to N (hilltop), and wj is half of the sum of wj−0.5 and wj+0.5.

2.2.3. Model Experiments

We conducted three experiments: (a) ELM with variable bedrock depth (ELMdefault); (b) ELMmod that is based on 
ELMdefault but with multiple code modifications and alternative parameterization options of soil hydraulic proper-
ties to enhance infiltration amounts; and (c) ELMH3D that is based on ELMmod but explicitly represents subsurface 
runoff along convergent hillslopes through the hsB equation (Table 1). ELMdefault is found to be deficient in water 
infiltration into the soil, leading to minimal (and unrealistic) dry summer baseflow over California (as discussed 
in Section 3). To reduce these deficiencies, we made several major revisions in ELMmod as follows (also see 
Table 1) based on our modeling experience and manual calibrations:

1.  To reduce saturated-excess runoff and thus increase infiltration, we modified both the decay factor of SIMTOP 
surface (fover = 0.5) and subsurface runoff (fsub = 2.5) to 2 as Niu et al. (2005) suggested; fover = 0.5 generally 
produces too much saturation-excess runoff in desert regions.

2.  We changed fc (0.4) and μ (0.14) to 0.8 and 2.0 and increased the maximum infiltration rates (qin,max), respec-
tively, to reduce infiltration-excess runoff and thus increase water fluxes to deeper soil layers.

3.  For frozen soils, we used a scheme from Niu and Yang (2006) that considers fractional permeable area in 
a model grid and computes the soil hydraulic properties based on total soil moisture rather than soil liquid 

Model Initial conditions Parameterization options Code

ELMdefault θi = 0.15 Scheme of soil hydraulic properties = Swenson et al. (2012) maxfpi = 0.25

zwt = zibed − 0.01 k = 0.1, ssi = 0.033

fc = 0.4, μ = 0.14

fover = 0.5, fsub = 2.5

Soil stress method = Lee and Pielke (1992) 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = max(0.2, 𝑎𝑎𝑎𝑎𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎) 

Precipitation partitioning = Lawrence et al. (2019) 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = (1 − 𝑓𝑓𝑠𝑠𝑖𝑖𝑠𝑠) ∗ 𝑖𝑖𝑖𝑖𝑖𝑖(10
(−Ω∗(𝑖𝑖𝑖𝑖𝑖𝑖𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖(1∶3)))∗ℎ𝑘𝑘𝑠𝑠𝑖𝑖𝑠𝑠(1∶3)

) 

organic3d (Read from surface data)

ELMmod

𝐴𝐴 𝐴𝐴𝑖𝑖 =

⎧

⎪

⎨

⎪

⎩

0.6 ∗ 𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 (𝑖𝑖 𝑖 5)

𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 (𝑒𝑒𝑒𝑒𝑠𝑠𝑒𝑒)

 

Scheme of soil hydraulic properties = Niu and Yang (2006) maxfpi = 0.15

k = 0.5, ssi = 0.08

fc = 0.8, μ = 2.0

fover = 2, fsub = 2

𝐴𝐴 𝐴𝐴𝑤𝑤𝑤𝑤 =

⎧

⎪

⎨

⎪

⎩

𝐴𝐴𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 ∗ 0.3 (𝑛𝑛𝑛𝑛𝑧𝑧𝑛𝑛𝑧𝑧𝑧𝑧𝑧𝑧 𝑛 6)

𝐴𝐴𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 ∗ 0.5 (𝑧𝑧𝑛𝑛𝑒𝑒𝑧𝑧)

 

Soil stress method = Sakaguchi and Zeng (2009) beddep = max(2, aveDTB)

𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = (1 − 𝑓𝑓𝑠𝑠𝑖𝑖𝑠𝑠) ∗ 𝑖𝑖𝑖𝑖𝑖𝑖(ℎ𝑘𝑘𝑠𝑠𝑖𝑖𝑠𝑠(1 ∶ 3)) 

Precipitation partitioning = Jordan (1991) organic3d = 0

ELMH3D Same as ELMmod Same as ELMmod Same as ELMmod
convergent hillslope (length: 500 m)

anisotropic ratio (ζ) = 10

Note. θi is volumetric soil water content, θsat,i is soil porosity of the i th soil layer, and i is the index of soil layers. zwt is water table depth (m), zibed is the depth to bedrock 
(m), and nlevbed is the number of vertical soil layers. maxfpi is the maximum canopy interception fraction. k is the shape factor for snow accumulation in the snow cover 
fraction computation. ssi is the irreducible water saturation of snow. fc is a global constant threshold beyond which local surface water bodies within a grid cell are 
connected and runs off. μ is a global constant scaling parameter in the computation of interconnected surface water fraction. fover and fsub are decay factors for surface and 
subsurface Runoff, respectively. beddep is the bedrock depth, and aveDTB is the surface input of bedrock depth (m). qin,max is the maximum infiltration capacity (mm/s). 
fsat is the saturated fraction of a gridcell. Ω is a soil ice impedance parameter. icefrac is the volumetric soil ice fraction. hksat is saturated soil hydraulic conductivity 
(mm/s). organic3d is the soil organic matter fraction. 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴 and min are the maximum and minimum functions, and 1:3 represents soil layers 1–3 from the top.

Table 1 
The Parameterization Scheme and Code Changes in ELMdefault, ELMmod, and ELMH3D
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water content and the ice impedance factor, Ω (Swenson et al., 2012), to enhance frozen soil permeability and 
infiltration rates; a recent study indicates that higher frozen soil permeability favors streamflow predictability 
due to the presence of macropores formed by ice volume expansion during freezing (Agnihotri et al., 2023).

4.  We set the minimum bedrock depth as 2 m in ELMmod instead of 0.2 m in ELMdefault. In mountainous regions 
with a shallow bedrock depth (Figure 2c), infiltrated water travels through the shallow soils in a shorter period, 
raising the water table more rapidly than for deeper soils and thus leading to too quick surface runoff and 
subsurface runoff.

5.  We set wetter initial conditions in ELMmod to quickly achieve an equilibrium state due to higher hydraulic 
conductivity.

The only difference between ELMmod and ELMH3D is the subsurface runoff representation. We also performed 
multiple sensitivity experiments to investigate the impacts of alternative hillslope parameterizations (i.e., the 
anisotropic ratio, hillslope planforms, column numbers, and boundary conditions) on subsurface runoff gener-
ation and other water balance components. All model experiments were configured over the HUC-2 region 18 
basin covering California (−124.9375°W to −112.4375°W, 31.3125°N to 43.8125°N; Figure 2) at a spatial reso-
lution of 0.125° and a timestep of 1 hr. We ran the offline model experiments in the prescribed satellite phenol-
ogy mode driven by NLDAS-2 during 1980–2015 for 8 loops (with the first 7 loops totaling 252 years as model 

Figure 2. (a) Elevation (m), (b) topographic slope angle (in degree), (c) bedrock depth (m), and (d) aridity index (precipitation divided by potential evapotranspiration) 
over the HUC2-18 region.
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spinup) and kept monthly outputs of the last loop for the following analysis. We assessed the model performances 
using the Kling-Gupta Efficiency (KGE) (Gupta et al., 2009) and linear trends. The KGE metric measures the 
Euclidian distance of the correlations, the variabilities, and the means from the ideal points.

3. Results and Discussions
3.1. Modeled Runoff, Snow Water Equivalent, and Evapotranspiration

Figure 3 shows a comparison of modeled runoff, SWE, and ET by ELMdefault, ELMmod, and ELMH3D with availa-
ble observations. Compared with the USGS runoff from 1980 to 2015, ELMH3D achieves the best KGE of 0.76, 
followed by ELMdefault (0.47) and ELMmod (0.37). The mean annual runoff of ELMH3D, ELMdefault, and ELMmod 
are 242, 261, and 270 mm, respectively, which are all greater than the observed runoff (223 mm). ELMdefault and 
ELMmod overestimate spring runoff peaks and cannot sustain later dry summer baseflow (Figures 3a and 3d) 
because the infiltration rates are too low. In contrast, ELMH3D reproduces the rising and falling runoff limbs, 
runoff peaks, and summer low flows. ELMH3D also simulates monthly ET with a higher KGE of 0.8 than ELMdefault 
(0.71) and ELMmod (0.70) during 1982–2011. ELMH3D, ELMdefault, and ELMmod underestimate the mean annual 
ET by 72 mm (18%), 92 mm (23%), and 100 mm (25%) relative to FLUXNET (398 mm), respectively. ELMH3D 

Figure 3. Monthly (a) runoff (mm/month), (b) snow water equivalent (SWE; mm/month), and (c) evapotranspiration (ET; 
mm/month) of observations (red circles), ELMdefault (black lines), ELMmod (green lines), and ELMH3D (blue lines) during the 
period of available observations. The Kling-Gupta Efficiency (KGE) values of ELMdefault/ELMmod/ELMH3D are provided on 
the top left of panel (a–c). Monthly climatology of (d) runoff and (e) ET of observations, ELMdefault, ELMmod, and ELMH3D 
with mean annual values (mm/y) on the top. Obs means observations here.
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well represents the timing and magnitude of monthly ET climatology, while ELMdefault has an ET peak that 
is too early, and ELMmod generates less ET (Figure 3e). All three models show acceptable and similar SWE 
performance with KGEs of ∼0.5 against UA SWE during 1982–2015 (Figure 3b). ELMmod and ELMH3D show 
slightly higher SWE because we used the Jordan (1991) snow/rain partitioning scheme instead of a linear ramp 
in ELMdefault (Lawrence et al., 2019) and increased the snow liquid water capacity and snow accumulation factor 
(Table  1). The underestimated SWE in most of the mountainous regions (Figure S1 in Supporting Informa-
tion S1) is probably due to systematic precipitation and air temperature errors from NLDAS-2 (Hao et al., 2023). 
In summary, ELMH3D outperforms ELMdefault and ELMmod in simulating monthly runoff, SWE, and ET over the 
California River Basin.

Figure 4 compares the three major runoff components among the three models. ELMdefault with the original param-
eters values and schemes (Table 1) and the shallow bedrock depth in mountainous regions (Figure 2c) produces 
high saturation-excess surface runoff (Figure  4a) and runoff of surface ponded water (or infiltration-excess 
runoff) (Figure 4c), resulting in low groundwater recharge (Figure 4d) and subsurface runoff (or groundwater 
discharge, Figure 4b). With all the changes listed in Table 1, ELMmod produces greater infiltration, groundwater 
recharge (Figure 4d), and groundwater discharge as expected (Figure 4b). ELMH3D produces almost the same 
magnitude of recharge as ELMmod (Figure 4d) but much less groundwater discharge (Figure 4b), and the deficit is 
balanced by more runoff of surface ponded water (Figure 4c). The larger ponded water runoff by ELMH3D is due 
mainly to exfiltration of groundwater from lower soil columns of the hillslope, contributing to total surface runoff 
(Figure 4a). The negative groundwater recharge values (or groundwater capillary rise) during summer (Figure 4d) 
suggest that groundwater moves upward to moisten the dry soil above through capillary forces, supporting tran-
spiration. Compared to ELMmod, ELMH3D predicts a greater groundwater capillary rise during June–July, support-
ing the greater ET in the early drying periods (Figure 3e).

Figure 4. Monthly climatology of (a) surface saturation-excess runoff (Qover; mm/month), (b) subsurface runoff (Qdrai; mm/
month), (c) runoff of surface ponded water (Qh2osfc; mm/month), and (d) groundwater recharge (Qrecharge; mm/month) of 
ELMdefault, ELMmod, and ELMH3D during 1980–2015 with mean annual values (mm/y) of ELMdefault/ELMmod/ELMH3D on the 
top of each panel. Note that the y-axis values differ between panels. Qrecharge below the red dashed line indicates negative 
groundwater recharge (or groundwater capillary rise).
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3.2. Modeled Terrestrial Water Storage Anomaly

The modeled TWSA, that is, the sum of snow, canopy-intercepted water, surface ponded water, and subsur-
face soil water, is assessed against GRACESH and GRACEMascons TWSA during 2003–2015 (Figure 5). To be 
consistent with GRACE products, the modeled TWSA was computed by subtracting the mean monthly TWS 
during 2004–2009 from the monthly TWS. ELMH3D produces the highest KGEs (0.82 and 0.65) followed by 
ELMmod (0.53 and 0.29) and ELMdefault (0.39 and 0.20), compared to GRACESH and GRACEMascons. ELMdefault 
and ELMmod largely underestimate seasonal and interannual TWSA variations, while ELMH3D matches better 
with both GRACE measurements, especially during the recent record-breaking drought years (2013–2015). 
All the three simulations, GRACESH, and GRACEMascons show statistically significant declining trends quan-
tified by the Mann-Kendall non-parametric test. Compared with ELMdefault (−0.44 mm/month) and ELMmod 
(−0.58 mm/month), ELMH3D has a drying TWSA trend (−0.88 mm/month) that is much closer to GRACESH 
(−0.72 mm/month) and GRACEMascons (−1.30 mm/month). GRACESH generally suffers more signal degrada-
tion and leakage errors relative to GRACEMascons. Consequently, GRACESH underestimates the actual decadal 
TWS decline and seasonal amplitudes, especially near coastal regions (Landerer & Swenson, 2012). Despite 
the better agreement between ELMH3D and the GRACE products, ELMH3D cannot fully capture the ground-
water depletion (extremely low TWSA) probably because anthropogenic activities (e.g., groundwater pump-
ing) are not represented in the model. Because TWSA reflects the accumulative changes of water inputs 
and ET loss, we compared the accumulative monthly ET during 2003–2015 among the three simulations. 
The accumulative ET (4,079 mm) simulated by ELMH3D exceeds that of ELMdefault (3,761 mm) and ELMmod 
(3,743  mm). Accumulative transpiration and soil evaporation of ELMH3D are 167 and 174  mm more than 
those of ELMmod, respectively. Because the only difference between ELMH3D and ELMmod is the subsurface 
runoff treatment, this suggests that lateral subsurface flow  enhances ET loss through water redistribution 
along hillslopes.

To better understand the enhanced ET associated with hillslope representations in ELMH3D, we compared ET 
and related variables of ELMH3D to those of ELMmod spatially and temporally during the last three drought 

Figure 5. Monthly terrestrial water storage anomaly (TWSA; mm) of GRACESH (red circles), GRACEMascons (light-green 
triangles), ELMdefault (solid black line), ELMmod (solid green line), and ELMH3D (solid blue line) with their trend lines (dashed 
lines) during 2003–2015. The Kling-Gupta Efficiency (KGE) values in the order of ELMdefault/ELMmod/ELMH3D against 
GRACESH are provided on the top left, below which are KGE values in the order of ELMdefault/ELMmod/ELMH3D against 
GRACEMascons. The linear trends of ELMdefault/ELMmod/ELMH3D/GRACESH/GRACEMascons are shown on the lower left (mm/
month). Here, GRACESH represents the averaged TWSA among JPL, CSR, and GFZ spherical harmonics (SH) solutions. 
GRACEMascons is the averaged TWSA of JPL, CSR, and GSFC mass concentration solutions (Mascons).
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years (2013–2015). The summer climatology difference of ET, plant transpiration, soil evaporation, and plant 
water stress between ELMH3D and ELMmod during 2013–2015 all passed the Student's t test at a confidence 
level of 95%. ELMH3D produces up to 50% increases of ET loss compared to ELMmod primarily in the moun-
tainous regions (Figure  6a) that have relatively wet climates and moderate topographic slopes (Figure  7). 
Transpiration dominates the ET increases of ELMH3D compared to ELMmod (Figure 6b), while soil evaporation 
mainly contributes to the ET differences in alpine areas and desert areas (south and east of the Sierra Nevada; 
Figure 6c). The soil evaporation difference agrees with that of the top 10 cm soil water content (Figure 7d). 
ELMH3D produces a higher transpiration than ELMmod by reducing water stress (Figure 6d) due to more avail-
able root-zone soil water (Figure 7e).

Figure 8 describes the distribution of differences between each ELMH3D column and ELMmod in the summer 
climatology of ET and related variables during 2013–2015 for relatively steep slopes (slopes between 6° and 
10°). ET and its components, plant water stress, and root-zone soil water from ELMH3D show gradually smaller 
differences with those of ELMmod from lowlands to hilltops because of flow convergence. Interestingly, all five 
ELMH3D columns show higher transpiration relative to ELMmod for 75% of the region due to less water stress 
associated with greater root-zone soil water. Soil evaporation simulated by ELMH3D also show similar distribu-

Figure 6. (a) Relative differences in summer evapotranspiration (ET) climatology (%) during 2013–2015 between ELMH3D and ELMmod. (b) The contribution of 
summer transpiration (T) climatological differences to summer ET climatological differences (∆T/∆ET; %) during 2013–2015. Panel (c) same as (b) but for summer 
soil evaporation climatological differences. Panel (d) same as (a) but for plant water stress (BTRAN), in which red indicates less water stress, and blue means the 
opposite.
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Figure 7. Summer climatology difference between ELMH3D and ELMmod during 2013–2015 in (a) soil evaporation (ΔE; mm/month), (b) transpiration (ΔT; mm/
month), (c) evapotranspiration (ΔET; mm/month), (d) total soil water on the top 10 cm (ΔSOIL10CM; mm), and (e) plant water stress (ΔBTRAN) across the study 
region. The aridity index (AI, precipitation divided by potential evapotranspiration) is shown in (f).

Figure 8. Summer climatology difference during 2013–2015 between each column of ELMH3D and ELMmod in (a) soil evaporation (ΔE; mm/month), (b) transpiration 
(ΔT; mm/month), (c) evapotranspiration (ΔET; mm/month), (c) plant water stress factor (ΔBTRAN), (e) root-zone soil water, and (d) ΔT/ΔE in regions with 
topographic slope between 6° and 10°. C1–C5 indicates ELMH3D columns from lowlands to hilltops.
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tion patterns to transpiration. Figure 9 shows the monthly basin-averaged ET 
difference between ELMH3D and ELMmod and the transpiration contributions 
to the difference along with aridity index during 2013–2015. We defined 
aridity index as the ratio of precipitation to potential evapotranspiration. 
We found over 90% of ET increases of ELMH3D coming from transpiration, 
especially during dry summers. The dominant transpiration role reflects a 
strong plant drought resilience associated with water redistribution caused 
by lateral flow. However, the higher ET could potentially result from less 
runoff generated by ELMH3D compared to ELMmod. To fairly evaluate the 
impact of hillslope on ET, we set the anisotropic ratio to 100 (ζ = 100) (the 
Faniso100 experiment) to match the mean annual runoff (264 mm) with that 
of ELMmod (270 mm) during our simulation period (1980–2015). Surpris-
ingly, the difference between Faniso100 and ELMmod in summer mean ET and 
its components, plant water stress, and root-zone soil water showed similar 
distributions like that between ELMH3D and ELMmod, despite much smaller 
magnitudes (Figure S2 in Supporting Information S1). Summer ET and tran-
spiration differences between Faniso100 and ELMmod barely change relative 
to the differences between ELMH3D and ELMmod in the hillslope bottom, 
indicating the strong resilience in the flow convergence zone. Therefore, 
ELMH3D and Faniso100 experiments demonstrate that model representations 
of hillslope can enhance summer ET at a spatial resolution of 1/8th degree.

3.3. Model Sensitivity Results

To explore the impacts of hillslope parameterizations on modeled water 
balance, we conducted four groups of additional experiments based on 
ELMH3D by changing the lateral hydraulic conductivities, idealized hillslope 

planforms (divergent and uniform), soil column numbers, and boundary conditions (Table 2). Lateral hydraulic 
conductivity is generally parameterized by multiplying the vertical saturated hydraulic conductivity with ζ on the 
order of 10–100 in hydrology studies (Kumar, 2004). We performed two experiments by only changing the aniso-
tropic ratio from 10 in ELMH3D to 50 in Faniso50 and 100 in Faniso100. Monthly subsurface runoff peak greatly 
increases from ∼14 mm in ELMH3D to ∼40 and ∼50 mm in Faniso50 and Faniso100, respectively (Figure 10a). 
Because of the fast subsurface drainage, Faniso50 and Faniso100 show less summer flows compared to ELMH3D. 
Mean annual subsurface runoff of Faniso50 and Faniso100 are 94 and 126 mm more than ELMH3D (101 mm; 
Table 2), respectively. Correspondingly, surface runoff produced by Faniso50 and Faniso100 rapidly declines due 
to the deeper water table associated with the fast subsurface runoff (Figure S3 in Supporting Information S1). 

We also found less surface water runoff in both sensitivity experiments 
associated with less surface water (Figure S4 in Supporting Information S1) 
probably due to larger infiltration capacities of drier soils (Figure S3 in 
Supporting Information  S1). Transpiration is slightly reduced in Faniso50 
and Faniso100, reflecting the strong root extractions of root-zone soil water. 
Also, the magnitudes of soil evaporation and transpiration in Faniso50 and 
Faniso100 are nearly the same as that of ELMH3D, suggesting the impact of 
lateral hydraulic conductivity on ET reaching a maximum.

The Divergent and Uniform model experiments were conducted based on 
ELMH3D but with divergent and uniform planforms, respectively. Compared 
to ELMH3D with convergent planform, the Divergent and Uniform experi-
ments show smaller subsurface runoff peaks (Figure  10b) because of the 
smaller hydraulic gradients associated to the divergent and uniform hillslope 
shapes (Figure S5 in Supporting Information S1). We found greater mean 
annual surface water runoff and less subsurface runoff in the Divergent 
and Uniform experiments (Table 2). The deeper water table (Figure S3 in 
Supporting Information S1) due to increased surface water runoff results in 

Figure 9. Monthly (a) evapotranspiration (ΔET: black line; mm/month) and 
transpiration difference (ΔT: blue line; mm/month) between ELMH3D and 
ELMmod, (b) ΔT/ΔET (black line) and aridity index (AI: precipitation/potential 
ET; thick red line) averaged across the study region. The horizontal dashed red 
line represents an aridity index of 0.5, below which are dry periods.

Experiment Ev Ec Es Qdrai Qover Qh2osfc Qrgwl Q

ELMH3D 226 28 69 101 64 80 −3 242

Faniso50 218 28 58 195 36 32 −3 261

Faniso100 217 28 56 227 25 16 −3 264

Uniform 228 28 73 77 42 120 −3 236

Divergent 229 27 76 61 18 157 −3 232

nh3dc10 226 28 70 97 73 74 −3 240

nh3dc20 228 28 73 85 81 74 −3 237

seepage 225 28 66 117 60 72 −3 245

Note. Ev (transpiration), Ec (canopy evaporation), Es (soil evaporation), Qdrai 
(subsurface runoff), Qover (surface runoff), Qh2osfc (surface water runoff), Qrgwl 
(surface runoff from lakes and glaciers), Q (total runoff).

Table 2 
Annual Water Balance Components (mm/y) in the ELMH3D and Sensitivity 
Tests
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less surface runoff in the Divergent and Uniform experiments relative to ELMH3D. Small increases of soil evap-
oration and transpiration probably result from longer soil water residence time through the hillslope associated 
with smaller hydraulic gradients (Figure S5 in Supporting Information S1).

We also changed the number of vertical soil columns for each gridcell from 5 in ELMH3D to 10 (nh3dc10) 
and 20 (nh3dc20) to test whether the number of vertical soil columns influences modeled hillslope hydrology. 
Figure 10c shows slight subsurface runoff decreases in nh3dc10 and nh3dc20 during spring and summer due to 
smaller hydraulic gradients (Figure S5 in Supporting Information S1). The mean annual subsurface runoff is 97 
and 85 mm, respectively. Mean annual surface runoff is slightly increased in both experiments due to shallower 
water tables compared with ELMH3D (Figure S3 in Supporting Information S1). However, ET components and 
surface water runoff are barely changed. In summary, it is not necessary to have more than five soil columns to 
reflect the hillslope water balance well on the current model horizontal grid size of 1/8°.

The lower boundary conditions at the seepage face of the hillslope directly influences the water exchanges between 
the hillslope bottom and river channel. Currently, ELMH3D assumes zero total hydraulic gradients between the 
lowest soil column and river channels. Since we have not coupled ELMH3D with the ELM river transport model 
(Li et al., 2013), we performed an experiment with extreme conditions of zero flow in the river channel (seepage). 
In other words, groundwater freely travels through the interface between the hillslope lower boundary and river 
channels. The seepage experiment shows higher subsurface runoff mainly in wet seasons compared with ELMH3D 
(Figure 10d). Mean annual subsurface runoff is increased from 101 mm (ELMH3D) to 117 mm in the seepage 
experiment. Mean annual surface runoff, soil evaporation, and transpiration are hardly changed from those of 
ELMH3D. Mean annual surface water runoff is reduced because of the enhanced infiltration capacity reflected by 
deeper water tables (Figure S3 in Supporting Information S1).

4. Discussion
Our sensitivity tests suggest that subsurface runoff is most sensitive to the anisotropic factor, ζ (or lateral satu-
rated hydraulic conductivities, ks,l). Numerous laboratory-based and field-based methods have been developed 
to measure small-scale (e.g., small soil cores) ks,l (Dorsey et al., 1990; Mohanty et al., 1994; Youngs, 1987). 
However, small-scale ks,l measurements consistently underestimate large-scale (e.g., hillslope-scale) ks,l due 
to the lack of information about spatial heterogeneity, especially in the fields where macropores are present 
(Brooks et al., 2004). Due to the high experimental cost, only a few studies have estimated hillslope-scale ks,l 
through trench and drains experiments (Brooks et al., 2004; Chappell & Lancaster, 2007; Dunne & Black, 1970; 

Figure 10. Monthly subsurface runoff climatology (mm/month) between ELMH3D (black line) and sensitivity tests in (a) the 
anisotropic ratio, (b) hillslope planforms, (c) columns numbers, and (d) boundary conditions.
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Pirastru et al., 2022). Therefore, modelers usually calibrate ks,l based on streamflow/baseflow or simply by relat-
ing ζ with the clay content (Beven et al., 1995; Chen & Kumar, 2001; Fan et al., 2007; Grayson et al., 1992; 
Kumar, 2004; Wigmosta et al., 1994; Zeng et al., 2016). In this study, we manually calibrated ζ to a value of 10 
(spatially constant) by matching the simulated runoff with the observed monthly runoff. We also conducted an 
additional ELMH3D run that parameterizes ζ as the clay percentage from the ELM surface input. However, this 
run performed worse than the one with our manually calibrated ζ (=10) (figures not shown). Undoubtedly, these 
calibrated ks,l may not represent the actual large-scale ks,l due to the intrinsic uncertainties in model structure and 
parameter (Beven et al., 1995; Grayson et al., 1992). To realistically parameterize ks,l, modelers and field hydrol-
ogists should work together to experimentally determine ks,l at the scale of modeling domain if applicable (Brooks 
et al., 2004; Pirastru et al., 2022). Besides large-scale ks,l measurements, pedotransfer functions connecting ks,l 
with easily-observed variables (e.g., soil properties, vegetation, and climates) and upscaling methods might be 
necessary for global applications (Chen & Kumar, 2001).

In this study, we assigned each grid cell with a single representative hillslope that was simplified through a width 
distribution function without accounting for land surface heterogeneities along the hillslope. Many methods have 
been developed to realistically group hydrologically similar areas that are primarily controlled by topography, 
such as elevation bands (Ke et al., 2013; Nijssen et al., 1997), topographic units (Tesfa & Leung, 2017), height 
above nearest drainage area bands (Nobre et al., 2011), and by using clustering approaches (Chaney et al., 2016; 
Newman et al., 2014). Recently, gridcell-based and catchment-based hierarchical multivariate clustering methods 
have been developed to generate hydrologically connected characteristic hillslopes with explicit hillslope-scale 
surface heterogeneities defined (Chaney et al., 2018, 2021; Huang et al., 2022). These advanced spatial tessella-
tion methods combined with various climate downscaling methods (Gaur & Simonovic, 2018; Tesfa et al., 2020) 
can better derive representative hillslopes to represent hillslope-scale hydrology in ELMH3D for the future work.

While we made multiple assumptions in parametrizing representative hillslopes and lateral flow movement, 
ELMH3D represents a step toward more realistic and mechanistic description of hillslope-scale hydrology in 
large-scale global models (e.g., E3SM). Instead of a straightforward application of Darcy's law to describe lateral 
flow along representative hillslopes in ESMs like many other studies (Chaney et al., 2016, 2018, 2021; Subin 
et al., 2014; Swenson et al., 2019), the hsB model combines the Darcy's law with the continuity equation and 
explicitly accounts for hillslope shapes that can approximate 2-D hillslope lateral flow through a 1-D equation 
(Troch et al., 2003). The hsB lateral flow scheme coupled with the 1-D Richards equation (i.e., H3D) has demon-
strated comparable accuracy with the 3-D CATHY model but reduces computation time by up to 2–3 orders of 
magnitude (Hazenberg et al., 2015, 2016; Troch et al., 2003). Compared to ELMdefault, the additional computation 
cost in ELMH3D is primarily caused by increasing the number of vertical soil columns to describe the representa-
tive hillslopes. Currently, ELMH3D with 5 vertical soil columns only takes twice as much time to run at the same 
configuration as ELMdefault. The adaptive time stepping scheme used in ELMH3D ensures the computational effi-
ciency and stability for both regional and global simulations.

To understand the impact of lateral flow on the ecosystem, we analyzed the modeled soil moisture and water 
table depth. The modeled surface soil moisture (0–10  cm) of ELMH3D and ELMmod agree with that of an 
observation-based product (Wang et al., 2021) over California during 1980–2015 (Figure S6 in Supporting Infor-
mation S1). Only slight difference in surface soil moisture between ELMH3D and ELMmod exists because lateral 
flow mainly affects the saturated zone, instead of the soil surface. ELMH3D produces deeper water table over 
the Central Valley relative to ELMmod due to the different schemes of groundwater discharge used in the two 
models. Groundwater discharge in ELMH3D, which is simulated by hsB with the seepage (or equilibrium) lateral 
boundary condition at the hillslope bottom, is independent of the water table depth, and therefore, the model 
produces greater groundwater discharge despite small topographical relief in the valley. However, ELMmod with 
the TOPMODEL baseflow scheme, which is an exponential function of the water table depth, produces negligi-
ble discharge when the water table depth is deep (for instance >10 m). In addition, the deeper water table in the 
valley modeled by ELMH3D can be attributed to the deficiencies in representing lateral water transport between 
model grids. All model simulations generate much shallower water table up in the mountains than that of Fan 
et al. (2013) because of the depth-to-bedrock data set (Pelletier et al., 2016) used as the lower boundary of the 
model (Figure S7 in Supporting Information S1; Figure 2c). Further studies need to combine more observa-
tions of the critical zone (e.g., soil depth and hydraulic properties) with model representations of groundwater 
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lateral flow between grids and interactions with river water level to improve the modeled water table depth (Fan 
et al., 2019).

Previous studies have shown the importance of lateral flow on transpiration partitioning and ecosystem productiv-
ities through computationally more expensive model experiments at hyper resolutions with explicit 3-D ground-
water models (Chang et al., 2018; Maxwell & Condon, 2016). ELMH3D is not only computationally efficient at 
coarser resolutions but also able to represent the effects of groundwater lateral flow movement on ecosystem 
drought response, paving the way to representations of the ecohydrological effects in global models. The better 
modeled TWSA decline by ELMH3D highlights the necessity of lateral groundwater flow model representation 
because most ESMs and large-scale hydrological models substantially underestimate the observed drying TWSA 
trends globally (Scanlon et al., 2018). Consistent with Fan et al. (2019), greater transpiration enhancement in 
ELMH3D occurred in regions characterized with seasonally dry climates (dry summers following wet winters and 
springs) and moderate topographic slopes (Figures 6–8). We also conducted ELMH3D experiments at 0.25-degree, 
0.5-degree, and 1-degree resolution to explore the impacts of horizontal grid size on modeled ET during drought 
years. Modeled ET enhancements caused by lateral groundwater flow decrease with increasing grid size and 
almost disappear with a grid size of 1°, potentially resulting from unrepresentative climates and unresolved land 
surface properties (Figure 11). This suggests that more effective and accurate subgrid representations of land 

Figure 11. Summer climatology difference in (a) evapotranspiration (ΔET; mm/month) and (b) transpiration (ΔT; mm/
month) during 2013–2015 between ELMH3D and ELMmod at grid sizes of 0.125, 0.25, 0.5, and 1°; (c) aridity index 
(precipitation divided by potential ET) and (d) slope (°) distributions at grid sizes of 0.125, 0.25, 0.5, and 1° over the 
California basin.
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surface characteristics and climatic forcing are required to fully reflect the ecosystem responses to lateral ground-
water flow for coarser resolution models.

5. Conclusion
In summary, we implemented the lateral saturated flow model of a hybrid-3D hydrological hillslope model into 
ELMv1 to explicitly represent hillslope-scale hydrological rainfall-runoff responses with acceptable computa-
tional costs. Despite the simplifications (compared with a full 3-D hydrological model), the new model exhibits 
better hydrological performances in simulating runoff, ET, and TWSA over the California Basin than models 
without representations of lateral flow along hillslopes. The redistribution of soil water along hillslopes driven by 
topographic relief results in higher transpiration and ET over the mountainous regions with mediate topographic 
slopes and seasonally dry climates than at the hilltops, which cannot be achieved without an explicit lateral flow 
representation. As a result, our new model can better reproduce the declining trend of the GRACE TWSA by 
enhancing ecosystem drought resilience caused by water convergence through terrain-driven lateral groundwa-
ter flow. Our model produces much greater ET than ELMmod, particularly during the dry period from 2013 to 
2015 with more than 90% of the ET increase coming from plant transpiration. The magnitude of enhanced ET 
from ELMH3D is positively correlated with topographic slope angles. This study indicates that models which do 
not explicitly represent subgrid lateral groundwater flow may underestimate transpiration-dominated ET during 
droughts over mountainous regions.

Appendix A
The numerical equation of the hsB on the seepage face of the lower lateral boundary (Figure A1):
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= 1
�0

1
Δ�0

[(sin �)(�0.5�0.5ℎ0.5 −�−0.5�−0.5ℎ−0.5)
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where f is the drainable porosity. h (m) is the height of the saturated zone perpendicular to the hillslope bedrock 
with a slope angle α. w (m) is the width of the hillslope at a given distance x (m) from the outflow point. k (m/s) 
is the lateral saturated hydraulic conductivity at height h. The subscripts of 0, 0.5, and −0.5 represent the center, 
upper boundary, and lower boundary of the lowest column. Here, seepage flux means the water flux traveling 

Figure A1. The seepage face of the lowest column directly connecting rivers. b and a represent the water table height of the 
lowest column and the river height at the lower boundary of the lowest column (x = −0.5), respectively. x = 0 indicates the 
column center, and x = 0.5 means the upper boundary of the lowest column.
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in the interface between soil unsaturated zone and air. The saturated flux means the water flux traveling in the 
interface between soil saturated zone and river. We assumed the river is dry in the seepage experiment, that is, 
saturated flux is zero.

𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑤𝑤−0.5

𝑏𝑏

∫
𝑠𝑠

𝑘𝑘−0.5

(ℎ0 − (ℎ−1 + 𝑧𝑧 − 𝑠𝑠))

0.5Δ𝑥𝑥0

𝑑𝑑𝑧𝑧 = 𝑤𝑤−0.5𝑘𝑘−0.5

ℎ0
2

Δ𝑥𝑥0

 

where a is the bottom of the saturated zone (a = 0) of the lower boundary (m). b is the top of the saturated zone 
of the lower boundary (m), and h0 is the total head on the center of the saturated zone in the lowest column (m). 
b = h0. Δx0 is the length of the lowest column (m). w−0.5 is the lowest column width on the lower lateral boundary.

Data Availability Statement
The data used in this study are all available online: NLDAS-2 data (http://www.emc.ncep.noaa.gov/mmb/nldas/); 
the FLUXNET-MTE ET data (https://www.bgc-jena.mpg.de/bgi/index.php/Services/Overview); the University 
of Arizona SWE data (https://nsidc.org/data/nsidc-0719/versions/1); the monthly USGS Water Watch hydro-
logical unit runoff data (https://waterwatch.usgs.gov/); the GRACE TWSA data (http://grace.jpl.nasa.gov); 
the JPL GRACE/GRACE-FO RL06 Mascon Solutions (https://grace.jpl.nasa.gov/data/get-data/jpl_global_
mascons/); the CSR GRACE/GRACE-FO RL06 Mascon Solutions (http://www2.csr.utexas.edu/grace); the 
GSFC GRACE/GRACE-FO RL06 Mascon Solutions (https://earth.gsfc.nasa.gov/geo/data/grace-mascons). The 
ELMv1 code can be downloaded from http://github.com/E3SM-Project/E3SM.
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