
1. Introduction
Large-scale manufacturing and wide use of Per- and polyfluoroalkyl substances (PFAS) have led to ubiqui-
tous contamination of surface water, soils, sediments, and groundwater (e.g., Brusseau et  al.,  2020; Johnson 
et al., 2022). In particular, field investigations have shown that significant amounts of PFAS have accumulated 
in the vadose zone. Most PFAS are surfactants and experience strong retention in the vadose zone due to adsorp-
tion at air–water and solid–water interfaces. While shorter-chain PFAS appear to be more mobile and are pres-
ent in  deep vadose zones and groundwater, longer-chain PFAS are much more strongly retained and primarily 
remain in the shallow vadose zone even several decades after the contamination events stopped (e.g., Brusseau 
et al., 2020; Gnesda et al., 2022; Guo et al., 2020, 2022; Silva et al., 2020; Zeng et al., 2021). However, field data 
have also demonstrated that longer-chain PFAS do migrate downward to groundwater at some sites, even tens 
to a hundred meters below the land surface (e.g., AFW, 2019; Dauchy et al., 2019). Understanding what factors 
control the long-term leaching of PFAS in the vadose zone and reconciling the conflicting observations are there-
fore critical for assessing risks and mitigating groundwater contamination.

It is widely known that subsurface heterogeneities, such as the presence of macropores, fractures, and soil aggre-
gates, cause preferential transport of contaminants and other solutes (e.g., Brusseau & Rao, 1990; Gelhar, 1986; 
Jones & Wagenet, 1984; Jury & Horton, 2004; Kung, 1990a, 1990b; Nielsen et al., 1973). Zeng and Guo (2021) 
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hypothesized that the migration of longer-chain PFAS to deep vadose zones is caused by heterogeneity-generated 
preferential flow. Based on preliminary numerical simulations using a few idealized heterogeneity representa-
tions including the presence of fractures and lenses of sand and clay, they illustrated that the greater water satu-
ration along heterogeneity-generated preferential flow could destroy air–water interfaces and reduce air–water 
interfacial adsorption, especially for longer-chain PFAS. While these initial findings provide conceptual and 
mechanistic insights, the heterogeneities employed in Zeng and Guo (2021) are simple and significantly under-
represent the often-complex field heterogeneities in the subsurface. Whether the amplified preferential leaching 
of longer-chain PFAS observed in Zeng and Guo (2021) remains a primary factor controlling PFAS leaching in 
more realistic heterogeneous vadose zones is unknown and needs further investigation.

We present a comprehensive analysis of the impact of preferential flow on the long-term leaching of PFAS in 
vadose zones under realistic and generalized representations of subsurface heterogeneities. Our objectives are 
to: (a) quantify to what extent preferential flow reduces the amount of air–water interfacial area in the vadose 
zone accessible by PFAS, and (b) identify and analyze the primary factors controlling the reduction of accessible 
air–water interfacial area and their impact on the long-term PFAS leaching in the vadose zone. We stochasti-
cally generate a series of heterogeneous vadose zones using field-determined geostatistical parameters (Russo & 
Bouton, 1992; Russo et al., 1997). We then conduct multidimensional simulations of PFAS transport to quantify 
the acceleration of PFAS leaching and estimate the accessible air–water interfacial area in the vadose zone. The 
mathematical model accounts for a wide range of PFAS-specific flow and transport processes, including transient 
variably saturated flow, surfactant-induced flow, nonlinear and kinetic adsorption at air–water and solid–water 
interfaces, advection, and dispersion (Guo et al., 2020; Zeng & Guo, 2021).

2. Modeling Soil Water Flow and PFAS Transport in Heterogeneous Vadose Zones
2.1. Mathematical Model for Soil Water Flow and PFAS Transport

We employ the three-dimensional (3D) Richards equation (sometimes also referred to as Richardson-Richards 
equation) (Richards, 1931; Richardson, 1921) to simulate soil water flow in the vadose zone. The transport of 
PFAS is modeled by the 3D advection-dispersion equation coupled with two-domain kinetic adsorption at the 
air–water and solid–water interfaces described in Guo et al. (2020) and Zeng and Guo (2021). More details about 
the governing equations, parameterization, and numerical schemes are provided in Section S2 in Supporting 
Information S1.

2.2. PFAS Leaching in the Vadose Zone

We consider PFAS contamination and subsequent leaching in the vadose zone at a 30 m × 30 m model fire-training 
area (FTA) site (Figure 1a). 30-minute fire-training sessions are assumed to occur every 10 days and last for 
30 years. Each session releases approximately 412.5 L of 1% diluted AFFF solution uniformly to the FTA. Two 
example PFAS representing longer- and shorter-chain compounds (PFOS and PFPeA) are considered in the 

Figure 1. (a) Schematic for Per- and polyfluoroalkyl substances leaching in a heterogeneous vadose zone and (b) example random fields representing the soil 
heterogeneity.
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AFFF solution. A non-reactive solute (NRS) is included for comparison. Detailed parameters for the two PFAS 
and the NRS are presented in Section S2.3.2 in Supporting Information S1.

Our simulations consider a 2D cross-section of the vadose zone beneath the FTA. We stochastically generate 
heterogeneous vadose zones using the geostatistical distributions of soil hydraulic parameters obtained from 
undisturbed soils collected at a field site (Fiori & Russo, 2007; Russo & Bouton, 1992; Russo et al., 1997, 2001). 
The field-determined correlation lengths 𝐴𝐴 (𝜂𝜂𝑥𝑥, 𝜂𝜂𝑧𝑧)  = (80 cm, 20 cm) and coefficients of variances (CV0) are used 
as the base case (Table S3 in Supporting Information S1). We then vary the correlation lengths (10-times smaller 

𝐴𝐴 (𝜂𝜂𝑥𝑥, 𝜂𝜂𝑧𝑧)  = (8 cm, 2 cm)) and coefficients of variance (CV = 0, 0.5CV0, and 1.25CV0; CV = 0 indicates a homoge-
neous vadose zone) to cover different characteristic length scales and strengths of heterogeneity. Additionally, we 
apply these parameters to three types of vadose zones (i.e., clay loam, loam, and sand). The hydraulic parameters 
and the methods to generate the stochastic realizations are presented in Section S2.3.1 in Supporting Informa-
tion S1. These random fields are further correlated to the solid-phase adsorption and are also used to generate 
heterogeneous distributions of air–water interfacial area (methods in Sections S2.2.2–S2.2.3 in Supporting Infor-
mation S1). Two climatic conditions (semiarid vs. humid) are used to examine the impact of different climate 
forcings. The initial and boundary conditions, numerical methods, and other information about the model setup 
are presented in Section S2.4 in Supporting Information S1.

2.3. Method of Analysis

2.3.1. Quantifying PFAS Retention

We quantify PFAS retention in the vadose zone by examining the laterally averaged aqueous concentration of 
PFAS at a specific vertical depth L over time, 𝐴𝐴 𝐶𝐶(𝑡𝑡) . We compare the time at which the centroid of the plume 
arrives at z = L (i.e., the mean travel time of PFAS, T1) to a characteristic travel time Tc of an NRS. We define 

𝐴𝐴 𝐴𝐴𝑐𝑐 = 𝐿𝐿𝜃𝜃∕𝑞𝑞𝑖𝑖𝑖𝑖 , where 𝐴𝐴 𝑞𝑞𝑖𝑖𝑖𝑖 is the mean infiltration rate (cm/s) and 𝐴𝐴 𝜃𝜃 is the mean water content of the domain (cm 3/
cm 3).

To compute the travel time of the plume centroid, we define the n-th temporal moment of 𝐴𝐴 𝐶𝐶(𝑡𝑡) as (e.g., 
Valocchi, 1990)

𝑀𝑀𝑛𝑛 = ∫
∞

0

𝑡𝑡𝑛𝑛𝐶𝐶(𝑡𝑡)𝑑𝑑𝑡𝑡𝑑 (1)

The normalized n-th temporal moment can be defined as

𝜇𝜇𝑛𝑛 = 𝑀𝑀𝑛𝑛∕𝑀𝑀0. (2)

Denoting t0.5 as half of the contamination release period (t0.5 = 15 years for the 30-year active contamination in 
our study), the time at which the plume centroid arrives at z = L can be computed as

𝑇𝑇1 = 𝜇𝜇1 − 𝑡𝑡0.5, (3)

The ratio between T1 and Tc represents the retention PFAS experience when migrating from the land surface to 
z = L, which can be considered as an effective retardation factor,

𝑅𝑅 = 𝑇𝑇1∕𝑇𝑇𝑐𝑐. (4)

2.3.2. Acceleration Ratio of PFAS Leaching in Heterogeneous Vadose Zones

To quantify the accelerated leaching of PFAS in our simulations, we introduce the concept of acceleration ratio. 
We denote the acceleration ratio by β and define it as the ratio between the mean travel time of PFAS in a homoge-
nous vadose zone and that in a heterogeneous vadose zone, which can be related to the retardation factors defined 
in Equation 4 as

𝛽𝛽 = 𝑅𝑅ℎ𝑜𝑜𝑜𝑜𝑜𝑜∕𝑅𝑅ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑜𝑜, (5)

where R homo and R hetero are the effective retardation factors computed from Equation 4 for the homogeneous and 
heterogeneous vadose zones, respectively.

 19448007, 2023, 8, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022G

L
102655 by U

niversity O
f A

rizona L
ibrary, W

iley O
nline L

ibrary on [08/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Geophysical Research Letters

ZENG AND GUO

10.1029/2022GL102655

4 of 10

2.3.3. Accessible Air–Water Interfacial Area

The acceleration of PFAS leaching in heterogeneous vadose zones is likely caused by preferential flows reducing 
the overall air–water interfacial area accessed by PFAS (Zeng & Guo, 2021). To quantify this effect, we determine 
the mean accessible air–water interfacial area of the domain (denoted as 𝐴𝐴 𝐴𝐴𝑎𝑎𝑎𝑎 ) in the presence of heterogeneity and 

compare it to that of a homogenous vadose zone. For each simulation, 𝐴𝐴 𝐴𝐴𝑎𝑎𝑎𝑎 is obtained as follows. We compute 
the retardation factor using the method introduced in Section 2.3.1 using a separate simulation where we keep 
everything the same but apply a low release concentration of PFOS (i.e., C0 = 0.001 mg/L such that air–water 
interfacial adsorption becomes linear) and turn off solid-phase adsorption. More details about this approach to 
estimate 𝐴𝐴 𝐴𝐴𝑎𝑎𝑎𝑎 is presented in Section S2.5 in Supporting Information S1. Then, assuming equilibrium partitioning 
of PFAS in the aqueous phase and at air–water interfaces, the effective retardation factor Raw for air–water inter-
facial adsorption in the domain can be written as 𝐴𝐴 𝐴𝐴𝑎𝑎𝑎𝑎 = 𝐴𝐴𝑎𝑎𝑎𝑎𝐾𝐾𝑎𝑎𝑎𝑎∕𝜃𝜃 , where 𝐴𝐴 𝐾𝐾𝑎𝑎𝑎𝑎 is the mean air–water interfacial 

adsorption coefficient that is essentially constant at a low concentration. 𝐴𝐴 𝜃𝜃 is the mean water content determined 

from the simulation. Because solid-phase adsorption is turned off, Raw = R − 1. 𝐴𝐴 𝐴𝐴𝑎𝑎𝑎𝑎 can then be computed as

𝐴𝐴𝑎𝑎𝑎𝑎 = (𝑅𝑅 − 1)𝜃𝜃∕𝐾𝐾𝑎𝑎𝑎𝑎. (6)

3. Results and Discussion
3.1. Accelerated PFAS Leaching in Heterogeneous Vadose Zones

3.1.1. Breakthrough Concentration and Acceleration Ratio of Leaching

The breakthrough concentration (averaged laterally at L  =  3.5  m below the land surface) and the computed 
acceleration ratio (β) for PFOS, PFPeA, and NRS are presented in Figure 2. For all three vadose-zone types, a 
base heterogeneity case and a homogenous case under semiarid and humid climatic conditions are shown for 
comparison. C0 is the concentration in the 1% diluted AFFF solution released to the land surface. Acceleration 
ratios computed for a broader range of conditions are presented in Table S5 in Supporting Information S1.

As expected, heterogeneity accelerates the leaching of PFAS in the vadose zone, but the acceleration is much 
more amplified for PFOS than for PFPeA. Conversely, heterogeneity leads to almost negligible acceleration 

Figure 2. Simulated breakthrough concentrations at a depth of L = 3.5 m and computed acceleration ratios (β) for PFOS, PFPeA, and NRS. Three types of 
heterogeneous vadose zones (clay loam, loam, and sand) and two climatic conditions (semiarid and humid) are considered.
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of NRS (β  ≈  1). In some cases, β is even slightly smaller than 1 because of the long-tailing effects caused 
by mass-transfer limitations in the lower-permeability zones. Overall, the results suggest that the acceleration 
ratio is a function of PFAS chain length, soil texture, heterogeneity, and climatic conditions. Among the three 
types of vadose zones, heterogeneity leads to greater acceleration in the vadose zone with finer-grain soils (clay 
loam > loam > sand). Conversely, the breakthrough concentrations of NRS among the three vadose-zone types 
are similar and correlate with the infiltration rates due to their much smaller mean travel times. Stronger hetero-
geneity (i.e., greater CV) and drier climate also enhance the acceleration. The mechanisms governing the above 
observations are discussed in Section 3.1.3.

3.1.2. Accessible Air–Water Interfacial Area

Consistent with the acceleration ratios presented in Section 3.1.1, the accessible air–water interfacial area (𝐴𝐴 𝐴𝐴𝑎𝑎𝑎𝑎 ) 
computed from Equation 6 decreases significantly when the vadose zone is heterogeneous (Table S6 in Support-
ing Information S1). For example, in the base heterogeneity case, 𝐴𝐴 𝐴𝐴𝑎𝑎𝑎𝑎 of the clay-loam vadose zone (humid 
climate) decreases by 65% from 1,881 to 659 (cm 2/cm 3). Stronger heterogeneity (i.e., greater CV) leads to a 
greater reduction in 𝐴𝐴 𝐴𝐴𝑎𝑎𝑎𝑎 . Additionally, 𝐴𝐴 𝐴𝐴𝑎𝑎𝑎𝑎 also depends on the scale of the heterogeneity (i.e., the correlation 

length)—𝐴𝐴 𝐴𝐴𝑎𝑎𝑎𝑎 is generally smaller for (ηx, ηz) = (8 cm, 2 cm) than that for (ηx, ηz) = (80 cm, 20 cm), which suggests 

the importance of characterizing heterogeneities at different spatial scales. The mechanisms for the reduced 𝐴𝐴 𝐴𝐴𝑎𝑎𝑎𝑎 
are discussed in Section 3.1.3.

An interesting question is whether 𝐴𝐴 𝐴𝐴𝑎𝑎𝑎𝑎 can be applied as a constant air–water interfacial area to the entire domain 
to effectively predict PFAS leaching in heterogeneous vadose zones. If this is possible, our approach may provide 
a means to upscale air–water interfacial areas at the field scale. To answer this question, we re-conduct the simu-
lations for PFOS using a constant air–water interfacial area throughout the domain that equals the 𝐴𝐴 𝐴𝐴𝑎𝑎𝑎𝑎 derived 
from the original simulation; everything else is kept unchanged. Both the base heterogeneity case and the homo-
geneous case are examined for comparison.

While the breakthrough curves from the constant-Aaw simulations do not capture the high-frequency tempo-
ral variations, the overall agreement with the original simulations is excellent (Figure  3a; the results for the 
loamy vadose zone under humid climate are presented as an example). The cumulative mass discharges from 
the two simulations also agree very well (Figure S9 in Supporting Information  S1). The good agreement is 
further confirmed by the snapshots of the PFOS concentration in space (Figures 3b and 3c) and the mean vertical 
concentration profiles (Figure 3e) at t = 80 years. The constant-Aaw approach also works well for the homogene-
ous case (second row of Figure 3). Between the heterogeneous and homogeneous cases, the front of the PFOS 
plume in the heterogeneous case migrates much faster due to accelerated leaching, and the mean vertical concen-
tration profile is clearly multimodal (Figure 3e, row 1). The excellent match between the constant-Aaw and the 

Figure 3. Comparisons between the original transient simulations (with spatially and temporally varying Aaw computed live), the constant-Aaw transient simulations, 
and the simulations employing a steady-state infiltration rate. Ctot in (b–e) is the total concentration combining mass in the aqueous phase, and air–water and solid–
water interfaces.
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original simulations is surprising, given that the original simulations involve strong dynamics in the air–water 
interfacial area both temporally and spatially.

A closer inspection reveals that the transients of rainfall infiltration have led to both temporal and spatial varia-
tions in the water saturation and air–water interfacial area across the entire vertical depth (see Figures S21 and 
S22 in Supporting Information S1). For example, the temporal variation of laterally averaged Aaw profiles in the 
preferential pathways of the heterogeneous loamy vadose zone is up to ±50%. To further investigate the impact of 
transient infiltration, we conduct simulations using a constant infiltration rate that equals the mean net infiltration 
from the original simulations. All other parameters and conditions are kept the same. The simulated breakthrough 
concentrations (Figure 3a) and spatial mass distributions are almost identical to those from the original transient 
simulations (Figure 3b vs. 3d). This suggests that assuming steady-state water flow (i.e., simulated using the 
long-term averaged net infiltration rate) appears to be adequate for modeling long-term PFAS leaching even for 
strongly heterogeneous vadose zones. However, we note that this finding is based on the range of conditions 
and heterogeneities modeled in the present study. Further investigations especially direct field observations are 
needed to generalize this model-based analysis.

3.1.3. Mechanisms Underlying the Reduced Accessible Air–Water Interfacial Area and Accelerated 
Leaching

Because preferential flow pathways in vadose zones often have higher Sw (e.g., Kung, 1990a, 1990b) and greater 
Sw destroys air–water interfaces, it is likely that the reduced accessible 𝐴𝐴 𝐴𝐴𝑎𝑎𝑎𝑎 is caused by heterogeneity-induced 
preferential flow pathways (Zeng & Guo, 2021). Here we conduct additional analyses to quantify the degree to 
which preferential flow pathways are responsible for the reduced 𝐴𝐴 𝐴𝐴𝑎𝑎𝑎𝑎 and the accelerated leaching.

For each simulation, we obtain the air–water interfacial area and water saturation for each numerical cell at every 
time step and plot them on the Aaw–Sw diagram. For each 𝐴𝐴 (𝐴𝐴𝑎𝑎𝑎𝑎, 𝑆𝑆𝑎𝑎) pair, we also obtain the corresponding Darcy 
water flux and use the size of the circle to denote its magnitude. Denoting qmax = max(|q|) as the maximum Darcy 
flux in space and time, ranking the Darcy water flux identifies the 𝐴𝐴 (𝐴𝐴𝑎𝑎𝑎𝑎, 𝑆𝑆𝑎𝑎) points that belong to the preferential 
flow pathways: we define 0.1qmax to qmax as the preferential flow pathways, <0.01qmax as the slow flow zone, and 
between 0.01qmax and 0.1qmax as the intermediate flow zone. The threshold of 0.1qmax is selected such that the 
“preferential flow” numerical cells form a connected network from the land surface to the bottom of the domain 
(Figure 4a). The simulated 𝐴𝐴 (𝐴𝐴𝑎𝑎𝑎𝑎, 𝑆𝑆𝑎𝑎) pairs for the homogeneous vadose zone are included for comparison. We 
have also included Aaw as a function of Sw for three reference soil types (i.e., sand, clay loam, and clay). The anal-
yses below use the simulations for the clay-loam vadose zone under humid climate as an example. The results for 
the other cases are presented in Figures S11–S15 in Supporting Information S1.

The location of a 𝐴𝐴 (𝐴𝐴𝑎𝑎𝑎𝑎, 𝑆𝑆𝑎𝑎) pair relative to the curves of the three reference soils provides a means to identify 
the soil type of the numerical cell. Consistent with prior studies of preferential flow (e.g., Jury & Horton, 2004; 
Kung, 1990a, 1990b), most of the numerical cells along the preferential flow pathways appear to have finer-grain 
soil types, but their Aaw is relatively small due to high Sw (Zeng & Guo, 2021). The sandy regions also have small 
Aaw, but their Sw and unsaturated hydraulic conductivity (K) are too small to allow water and PFAS to go through. 
These observations concur with the probability distributions of θs, θr, αVG, nVG, Ks, K, Sw, and Aaw for the numer-
ical cells in the two flow zones (Figures 4c1–4c8), which consistently show that the majority of the preferential 
flow pathways are composed of finer-grain soils. The representative Aaw (∼190 cm 2/cm 3) of the preferential flow 
pathways is much smaller than that in the slow flow zone (∼400–741 cm 2/cm 3) and the homogeneous vadose 
zone (∼1,767 cm 2/cm 3, Figure 4c8). Finally, because the Aaw(Sw) function for each soil becomes more nonlinear 
at lower Sw, preferential flow pathways will lead to a greater reduction in 𝐴𝐴 𝐴𝐴𝑎𝑎𝑎𝑎 under a drier climate. This is likely 

why the acceleration ratio and reduction of 𝐴𝐴 𝐴𝐴𝑎𝑎𝑎𝑎 in Sections 3.1.1 and 3.1.2 are greater for the semiarid climate 
than that for the humid climate.

We plot β versus 𝐴𝐴 𝐴𝐴
ℎ𝑜𝑜𝑜𝑜𝑜𝑜

𝑎𝑎𝑎𝑎 ∕𝐴𝐴
ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑜𝑜

𝑎𝑎𝑎𝑎  for PFOS, PFPeA, and NRS (Figure S16 in Supporting Information S1) to further 

illustrate that the accelerated leaching due to the reduced 𝐴𝐴 𝐴𝐴𝑎𝑎𝑎𝑎 is a phenomenon unique to the more surface-active 
longer-chain PFAS. Figure S16 in Supporting Information S1 shows that, for PFPeA and NRS, β remains mostly 

unchanged as 𝐴𝐴 𝐴𝐴
ℎ𝑜𝑜𝑜𝑜𝑜𝑜

𝑎𝑎𝑎𝑎 ∕𝐴𝐴
ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑜𝑜

𝑎𝑎𝑎𝑎  increases. Conversely, for PFOS, β increases almost linearly with 𝐴𝐴 𝐴𝐴
ℎ𝑜𝑜𝑜𝑜𝑜𝑜

𝑎𝑎𝑎𝑎 ∕𝐴𝐴
ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑜𝑜

𝑎𝑎𝑎𝑎  . This 
suggests that the amplified acceleration for more surface-active PFAS is mainly attributed to the reduced 𝐴𝐴 𝐴𝐴𝑎𝑎𝑎𝑎 . 
However, it is interesting that the slope of β starts to decrease for greater 𝐴𝐴 𝐴𝐴

ℎ𝑜𝑜𝑜𝑜𝑜𝑜

𝑎𝑎𝑎𝑎 ∕𝐴𝐴
ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑜𝑜

𝑎𝑎𝑎𝑎  . A closer inspection reveals 
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that it is caused by greater solid-phase adsorption in the finer soil textures along the preferential pathways. This 
indicates that the solid-phase adsorption being correlated to soil heterogeneity can work against the amplified 
accelerated leaching by the reduced air–water interfacial adsorption along the preferential flow pathways under 
certain heterogeneous conditions. To further investigate this aspect, we compare the simulations with and without 
correlating the solid-phase adsorption and soil heterogeneity (Section S4.2 in Supporting Information S1). The 
results suggest a limited impact on the accelerated leaching for the simulations examined in the present study. 
However, we note that the correlation between solid-phase adsorption and soil heterogeneity may become a more 
important factor in vadose zones with much stronger solid-phase adsorption capacities.

3.2. Comments on Additional Factors

In a prior study, Zeng et al. (2021) reported that kinetic solid-phase adsorption has a minimum impact on PFAS 
leaching in homogeneous vadose zones. Our results suggest that PFAS leaching remains insensitive to kinetic 
solid-phase adsorption even in the presence of strongly transient infiltration and preferential flow in highly 
heterogeneous vadose zones (Figure S17 in Supporting Information S1). However, the present study used the 
first-order rate constants determined from soil samples collected at one particular AFFF-impacted site (Schaefer 
et al., 2021). Generalization to other contamination sites will require the use of site-specific parameters for kinetic 
solid-phase adsorption/desorption.

Additionally, we have conducted 3D simulations using the same boundary conditions and geostatistical parame-
ters to confirm the validity of 2D cross-sectional representations of a 3D vadose zone used in the present study. 
The accelerated leaching behavior similar to that in the 2D simulations is observed in the 3D simulations (Figure 
S24 in Supporting Information S1). Finally, the variations among Monte Carlo simulations are relatively small 
(Figures S24 and S25 in Supporting Information  S1), which indicates that the “single-realization” approach 

Figure 4. (a) Spatial distribution of the Darcy flux (averaged in time) for identifying preferential flow pathways. (b) Aaw–Sw diagram for each numerical cell from the 
entire simulation (red, gray, and yellow circles, respectively, indicate the preferential flow pathways, slow flow zones, and numerical cells in the homogeneous case; 
the three solid Aaw–Sw curves correspond to the reference soils: clay, clay loam, and sand. (c1–c8) Probability distributions of θs, θr, αVG, nVG, Ks, K, Sw, and Aaw. The 
maximum Darcy flux in the domain (qmax) is 3.47 cm/d.
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suggested by prior studies (e.g., Ababou et al., 1988; Polmann et al., 1991; Russo et al., 1994) is valid for the 
analyses in the present study.

4. Summary and Conclusion
We present a series of multidimensional numerical experiments to examine PFAS leaching in heterogeneous 
vadose zones. The mathematical model accounts for transient variably saturated flow, surfactant-induced flow, 
and advective and dispersive transport processes coupled with kinetic and nonlinear adsorption at air–water and 
solid–water interfaces. The heterogeneous vadose zones are randomly generated using field-determined geosta-
tistical distributions. These random parameter fields are then correlated to the solid-phase adsorption and are also 
used to generate heterogenous distributions of air–water interfacial area.

The simulations suggest that while the presence of heterogeneity and preferential flow leads to accelerated leach-
ing for all PFAS, the more surface-active long-chain PFOS experiences much stronger acceleration. The ampli-
fied acceleration for PFOS is caused by the significantly reduced accessible air–water interfacial area in the 
preferential flow pathways. In addition to the surface activity of PFAS, the acceleration is more prominent for 
vadose zones with stronger heterogeneity and under drier climate conditions. Depending on the specific condi-
tions, the leaching of PFOS is accelerated by 1.1–4.5 times for the scenarios examined in the present study.

Our study suggests that it is critical to characterize soil heterogeneities for accurate predictions of PFAS leaching 
in the vadose zone. Numerical simulations indicate that both smaller- and greater-scale heterogeneities can lead to 
accelerated leaching of PFAS in the vadose zone, which may explain the leaching of long-chain PFAS to the deep 
subsurface at some sites despite that the vadose zone is relatively homogeneous in each soil layer (e.g., Dauchy 
et al., 2019). Finally, the accelerated leaching in heterogeneous vadose zones due to the reduced accessible air–
water interfacial area also applies to other surface-active contaminants and particles where accumulations at the 
air–water interfaces contribute to their retention in the vadose zone (e.g., Abdel-Fattah & El-Genk, 1998; Sharma 
et al., 2008; Wan & Tokunaga, 2002).

Data Availability Statement
All the datasets used in the present study are included in the paper and its supporting information, tables, and 
figures. These datasets are also available at https://doi.org/10.5281/zenodo.7699345. The numerical model used 
to conduct the numerical simulations has been reported previously by Guo et al. (2020) and Zeng and Guo (2021).
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