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Abstract Efficient multiphysics (or hybrid) models that can adapt to the varying complexity of physical
processes in space and time are desirable for modeling fluid migration in the subsurface. Vertical
equilibrium (VE) models are simplified mathematical models that are computationally efficient but rely
on the assumption of instant gravity segregation of the two phases, which may not be valid at all times or
at all locations in the domain. Here we present a multiphysics model that couples a VE model to a full
multidimensional model that has no reduction in dimensionality. We develop a criterion that determines
subdomains where the VE assumption is valid during simulation. The VE model is then adaptively
applied in those subdomains, reducing the number of computational cells due to the reduction
in dimensionality, while the rest of the domain is solved by the full multidimensional model. We analyze
how the threshold parameter of the criterion influences accuracy and computational cost of the new
multiphysics model and give recommendations for the choice of optimal threshold parameters. Finally,
we use a test case of gas injection to show that the adaptive multiphysics model is much more
computationally efficient than using the full multidimensional model in the entire domain,
while maintaining much of the accuracy.

1. Introduction

Numerical modeling of subsurface flow often faces the challenge of long time periods and large spatial
domains. For example, multiphase flow models for conventional underground natural gas storage, large-scale
CO2 storage, and storage of compressed air or hydrogen in the subsurface have to deal with spatial domains
in the range of kilometers to hundreds of kilometers in horizontal length and tens to hundreds of meters in
vertical height and time scales ranging from hours to thousands of years (Nordbotten & Celia, 2011). In addi-
tion, due to the uncertainty of geological parameters, a large number of simulation runs (e.g., Monte-Carlo
simulation) may be required for risk assessment. To help investigate potential storage sites, determine opti-
mal operational parameters, and ensure safety of operation, it is therefore desirable to have computational
models that are robust and fast and give an accurate prediction of the system.

The most efficient model at a specific time during the simulation or at a specific location in the domain can
be used by coupling models of different complexity (multiphysics or hybrid model). Multiphysics models
are robust and computationally efficient on domains with varying complexity because they can adaptively
match model complexity to domain/process complexity for different parts of the domain, which significantly
reduces computational costs. Developing and analyzing these multiphysics models is an ongoing, vibrant
field of research, spanning the entire community of hydrology and computational physics. Here we focus on
multiphysics models for multiphase flow in porous media.

An overview of multiphysics models for multiphase flow can be found in Wheeler and Peszyńska (2002)
and for different coupling strategies in Helmig et al. (2013). Models that couple the transition from one
submodel to another in time are distinguished from models that couple in space. Furthermore, coupled mod-
els in space can be overlapping within one domain, for example, coupling of different processes like flow
and geomechanics (see White et al., 2016, for a comprehensive framework) or coupling of different scales
(see, e.g., Kippe et al., 2008, for a review of multiscale methods for elliptic problems in porous media flow).
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They can also be coupled in separate subdomains with shared interfaces, for example, models for flow inside
discrete lower-dimensional fractures embedded in the porous matrix (see, e.g., Sahimi, 2011; Singhal & Gupta,
2010 for a comprehensive review) or compartments with different models coupled in one domain. The mod-
els in those coupled compartments can be of different complexity, for example, a black-oil model, a two-phase
flow model and a single-phase flow model (Peszyńska et al., 2000), where each model is applied in a different
subregion of the domain depending on the number and type of fluids present. Another example of coupling
compartments is a multiscale model coupling a Darcy-scale and a pore-scale model (Tomin & Lunati, 2013).
This framework allows considering pore-scale fluxes only in some regions of the domain, while Darcy fluxes
are used in the rest of the domain. Coupling subdomains with different models often involves the so-called
mortar methods (Belgacem, 1999; Bernardi et al., 1994) that use Lagrange multipliers at the interfaces to
realize the coupling. Another group of coupling schemes exploits similarities between the individual math-
ematical equations of the subdomains to couple models without requiring specifically constructed coupling
conditions. One example of such a coupled model was developed by Fritz et al. (2012). This multiphysics
model considers two-phase multicomponent flow only where both phases are present and solves a simpler
one-phase model that is a degenerate version of the two-phase model everywhere else. The approach was
extended to nonisothermal flow by Faigle et al. (2015), using a subdomain in which nonisothermal effects
are accounted for and a subdomain where simpler, isothermal equations are solved. The method is shown to
be accurate and significantly reduces computational cost. Another example is presented by Guo et al. (2016),
where multiscale vertically integrated models that can capture vertical two-phase flow dynamics are coupled
for gas migration in a layered geological formation. The coarse scale consists of several horizontal layers that
are vertically integrated. They are coupled together by formulating a new coarse-scale pressure equation that
computes the vertical fluxes between the layers. In each coarse-scale layer, horizontal and vertical fluxes are
determined on the fine scale. The transport calculation on the fine scale is coupled to the coarse scale sequen-
tially. A recent work published on arXiv presents a multiresolution coupled vertical equilibrium (VE) model for
fast flexible simulation of CO2 storage (Møyner & Møll Nilsen, 2017). This framework allows the coupling of
different dimensions, while the subdomains need to be determined a priori.

In this paper we develop a multiphysics framework that allows coupling of spatially nonoverlapping subdo-
mains and adaptively selects subdomains during the simulation run. We target gas injection and migration in
saline aquifers (e.g., natural gas, compressed air, and hydrogen storage) as an example application of a system
with spatially and temporally varying complexity of physical processes. Gas injected into a saline aquifer leads
to a two-phase flow system, in which gas moves laterally outward from the injection point and at the same
time upward due to buoyancy. The overall spatial extent of the gas plume is important in general, but a much
more detailed flow field is desired near the well than farther away, for example, for well management. In addi-
tion, gas near the well migrates in the vertical as well as horizontal direction during injection and extraction,
while farther away from the well hydrostatic pressure profiles may have developed in the vertical direction.
At these larger distances, the gas may be considered to be in VE with the brine phase, which is exploited by
so-called VE models that solve vertically integrated equations and analytically reconstruct the solution in the
vertical direction using the VE assumption. In subdomains where the VE assumption is valid, VE models give
accurate solutions at significantly lower computational costs. Therefore, a full multidimensional model may
be applied close to the injection well, while a VE model covers the domain farther from the well.

In a first step we develop a multiphysics model that couples a full multidimensional two-phase model to a VE
model with reduced dimensionality. The VE model assumes that vertical flow is negligible and thus represents
a model of lower complexity. The VE model is applied in regions of the domain where the VE assumption holds,
while the full multidimensional model is applied in the rest of the domain. We design a criterion to adaptively
identify the subdomains where the VE model can be applied during the simulation. For the coupling of the
subdomains, we exploit the fact that all fine-scale variables of the VE model can be reconstructed at every
point in the vertical direction. This leads to the introduction of subcells in the VE grid columns at the interface.
We achieve the coupling through the fluxes across the subdomain boundaries from the full multidimensional
cells to the subcells. The resulting system is solved monolithically.

The paper is structured as follows. We first introduce the full multidimensional and the VE model. We then
present our coupled multiphysics model with the calculation of the fluxes across the boundaries between
submodels. Following that, we develop and analyze criteria for VE and present the adaptive algoritm.
Lastly, we show the applicability of our approach on a test case of gas injection in an aquifer and give
recommendations for choosing the optimal threshold parameter for the adaptive algorithm.
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2. Full Multidimensional Model and VE Model

We first present the general three-dimensional governing equations for two-phase flow in a porous medium.
Then we derive the coarse-scale and fine-scale equations for the VE model by vertically integrating the
three-dimensional governing equations.

2.1. Full Multidimensional Model: Governing Equations
The three-dimensional continuity equation for each fluid phase 𝛼, assuming incompressible fluid phases and
a rigid solid matrix, is

𝜙
𝜕s𝛼
𝜕t

+ ∇ ⋅ u𝛼 = q𝛼, 𝛼 = w, n, (1)

where 𝜙 is the porosity (−), s𝛼 is the phase saturation (−), t is the time (T), u𝛼 is the Darcy flux (L∕T), and q𝛼 is
the source/sink term (1∕T). The phase 𝛼 can either be a wetting phase with a subscript “w” or a nonwetting
phase with a subscript “n,” resulting in two equations that need to be solved for a two-phase system. The fluid
phases are assumed incompressible for simplicity of presentation.

The extension of Darcy’s law for multiphase flow states that for each phase 𝛼,

u𝛼 = −k𝜆𝛼
(
∇p𝛼 + 𝜚𝛼g∇z

)
, 𝛼 = w, n, (2)

where k is the intrinsic permeability tensor (L2) and 𝜆𝛼 is the phase mobility ([L T]/M) with 𝜆𝛼 = kr,𝛼

𝜇𝛼
and kr,𝛼

being the relative permeability (−) of phase 𝛼, which depends on the wetting phase saturation sw and often
needs to be determined empirically. 𝜇𝛼 is the viscosity (M/[L T]) of phase 𝛼, p𝛼 is the phase pressure (M/[L T 2]),
𝜚𝛼 is the phase density (M∕L3), g is the gravitational acceleration (L∕T 2), and z is the vertical coordinate (L)
pointing upward.

The two equations (one for each phase) resulting from (1) with Darcy’s law (equation (2)) inserted are solved
for the four primary unknowns, p𝛼 and s𝛼 , by using the closure equations sw + sn = 1 and pc(sw) = pn − pw,
where pc(sw) is the capillary pressure function, which is assumed to be a function of wetting phase
saturation sw.

2.2. VE Model: Coarse-Scale and Fine-Scale Equations
A less dense phase injected into a porous formation tends to move upward and segregate from the denser
resident phase due to buoyancy. This buoyant segregation can be used to simplify the governing equations of
fluid flow, utilizing the VE assumption (Lake, 1989; Yortsos, 1995). The VE assumption postulates that the two
fluid phases have segregated due to buoyancy and that the phase pressures have reached gravity-capillary
equilibrium in the vertical direction. With the VE assumption, the form of the pressure distribution in the verti-
cal direction is known a priori. This can be used to simplify the governing equations of fluid flow by integrating
over the vertical direction, which leads to a reduction of dimensionality. The details along the vertical direction
can be reconstructed from the imposed equilibrium pressure distribution. VE models are cast into a multi-
scale framework by identifying the detailed solution in the vertical direction as the fine scale and the vertically
integrated equations as the coarse scale (Nordbotten & Celia, 2011). We refer to vertically integrated variables
as coarse-scale variables, denoted by uppercase letters and to the variations along the vertical direction as
fine-scale variables that are denoted by lowercase letters.

In the following we assume that the nonwetting phase is less dense than the wetting phase and that the
nonwetting phase consequently forms a plume below a no-flow upper boundary. We consider an aquifer
with the top and bottom closed to flow. The full multidimensional governing equation (1) is integrated over
the vertical direction from the bottom of the aquifer, 𝜉B, to the top of the aquifer, 𝜉T , which results in the
coarse-scale equations for the VE model:

Φ
𝜕S𝛼
𝜕t

+ ∇ ⋅ U𝛼 = Q𝛼, 𝛼 = w, n, (3)
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with the depth-integrated parameters and depth-averaged saturation:

Φ = ∫
𝜉T

𝜉B

𝜙dz, (4)

S𝛼 = 1
Φ ∫

𝜉T

𝜉B

𝜙s𝛼dz, (5)

U𝛼 = ∫
𝜉T

𝜉B

u𝛼,//dz, (6)

Q𝛼 = ∫
𝜉T

𝜉B

q𝛼dz, (7)

with the subscript “//” denoting the plane of the lower aquifer boundary. The depth-integrated Darcy flux is
found by vertically integrating Darcy’s law over the height of the aquifer as

U𝛼 = −KΛ𝛼

(
∇P𝛼 + 𝜚𝛼g∇𝜉B

)
, 𝛼 = w, n, (8)

with the depth-integrated permeability and depth-averaged mobility:

K = ∫
𝜉T

𝜉B

k//dz, (9)

Λ𝛼 = K−1 ∫
𝜉T

𝜉B

k//𝜆𝛼dz. (10)

The coarse-scale pressure P𝛼 of phase 𝛼 in the vertically integrated Darcy’s law is defined as the phase pressure
at the bottom of the aquifer. We use this form of the integrated equation as presented by Nordbotten and
Celia (2011), without normalizing by the aquifer height. The saturation and the mobility retain their physical
dimensions, while all other parameters are depth-integrated, which changes their dimension.

Two closure equations are required again to solve for the four unknown primary variables P𝛼 and S𝛼 : Sw +
Sn = 1 and the coarse-scale pseudo capillary pressure Pc(Sw) = Pn − Pw that relates the coarse-scale pressure
difference at the bottom of the aquifer to the coarse-scale saturation. The coarse-scale nonwetting phase
pressure at the bottom of the aquifer Pn is constructed from the linear extension of the pressure distribution
for the nonwetting phase inside the plume to regions below that.

After the coarse-scale problem is solved, the fine-scale solution in the vertical direction can be reconstructed
based on the coarse-scale quantities P𝛼 and S𝛼 . The fine-scale pressure is reconstructed based on the above
stated assumption of a hydrostatic pressure profile. Given the two fine-scale phase pressures at every point in
the vertical direction, the fine-scale capillary pressure function pc(sw) can be inverted to give the fine-scale sat-
uration profile. The fine-scale saturation is used to calculate the fine-scale relative permeability. By integrating
the fine-scale relative permeability using (10), the coarse-scale relative permeability is updated.

3. Coupling VE Model With Full Multidimensional Model

In this section we present the coupling scheme to couple the two models at the interfaces of the subdomains.
The coupling of the subdomains is implemented in a monolithic framework. We exploit similarities between
the full multidimensional governing equations (1) and (2) and the VE coarse-scale governing equations (3) and
(8), which have the same form. They balance a storage term consisting of a porosity and the time derivative
of the saturation with fluxes and a source/sink term, while the flux term is calculated with the gradient of
driving forces, pressure and gravity, multiplied by a term describing flow resistance. In the case of the VE
model the quantities are depth-integrated over the height of the VE column. In the following we present
the formulation of fluxes across the subdomain interfaces and the computational algorithm for the coupled
multiphysics model.

3.1. Fluxes Across Subdomain Boundaries
We discretize space with a cell-centered finite volume method. Figure 1 shows a possible configuration of
grid cells with two subdomains and one shared boundary between them. In this example we consider a
two-dimensional domain, where the first two grid columns are part of the full multidimensional subdomain
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Figure 1. Schematic of the computational grid with subcells (dotted lines) at
the interface between two subdomains. Black dots denote the calculation
points of the primary variables in both subdomains. Gray dots denote the
calculation points of the primary variables for subcells, which can be seen as
fine-scale cells of the vertical equilibrium (VE) model.

and the third and fourth grid column are part of the VE subdomain. The
black dots indicate the location of the calculation points for the primary
variables. For the full multidimensional model the calculation points are
located in the cell center; for the VE model, at the bottom of the domain.

Fluxes between two full multidimensional cells and between two VE cells
are determined using a two-point flux approximation. We require flux con-
tinuity across the subdomain boundary. For the calculation of fluxes across
the subdomain boundary, the VE grid column directly adjacent to the
subdomain boundary is refined into full multidimensional subcells in the
vertical direction, with each subcell corresponding to a neighboring full
multidimensional cell (see gray dots and dotted lines in Figure 1). Fluxes
are formulated across the interface between each full multidimensional
cell and the neighboring VE subcell. For each full multidimensional cell
there is only one flux across the interface to the adjacent VE subcell. The
flux over the subdomain boundary to the VE cell is computed as the sum
of the fluxes from the neighboring full multidimensional cells.

The total Darcy flux is

utot = uw + un = −k𝜆tot

(
∇p𝛼 + fn∇pc + fw𝜚wg∇z + fn𝜚ng∇z

)
. (11)

In the following we exploit the fact that the primary variables at the calculation points of the VE subcells can
be expressed analytically via the primary variable of the VE cell. This is because the solution in the vertical
direction can be reconstructed analytically using the VE assumption in the VE subdomain. With this, the total
normal Darcy flux from a full multidimensional cell denoted with superscript “i” to a VE subcell denoted with
superscript “j*” can be constructed as

uij∗
tot = uij∗

w + uij∗
n = −kij∗𝜆

ij∗
tot

(
pj∗

w − pi
w

Δx
+ f ij∗

n

pj∗
c − pi

c

Δx
+ f ij∗

w 𝜚wg∇z + f ij∗
n 𝜚ng∇z

)
, (12)

where pj∗
w is the reconstructed pressure and pj∗

c the reconstructed capillary pressure at the calculation point
of the VE subcell. The reconstructed pj∗

w and pj∗
c have the following form:

pj∗
w = Pj

w − 𝜚wgz∗,

pj∗
c = pc(s

j∗
w),

(13)

with Pj
w the coarse-scale pressure of the VE cell, z∗ the z coordinate of the calculation point of the VE subcell,

and sj∗
w the reconstructed wetting phase saturation at the node in the middle of the subcell. The mobilites

for the VE subcells are based on the average wetting phase saturation within the subcell, s̄∗w. We apply full
upwinding for the mobilities, so that they are either taken directly from the full multidimensional cell or the
reconstructed subcell in the VE column:

𝜆ij∗
𝛼

=

{
𝜆i
𝛼
(si

w) if pi
𝛼
> pj∗

𝛼 ,

𝜆
j∗
𝛼 (s̄

j∗
w) if pi

𝛼
< pj∗

𝛼 .
(14)

For pi
𝛼
= pj∗

𝛼 , the flux is 0 and the choice of mobility does not matter.

This concept is used for all cells at the interface between the full multidimensional subdomain and the VE
subdomain. The flux from a VE cell to neighboring full multidimensional cells is determined as the sum of
the individual fluxes over the subdomain boundary from VE subcells to full multidimensional cells. Following
this approach, all fluxes are the same as calculated from either the VE cell side or the full multidimensional
cell sides.

3.2. Computational Algorithm
The full multidimensional governing equations (1) and (2) and the VE coarse-scale governing equations (3)
and (8) can in principle be solved fully implicitly, sequentially implicitly, or sequentially with a combination
of implicit and explicit schemes. Here we reformulate the governing equations into a pressure and a satura-
tion equation and solve them sequentially with an implicit pressure, explicit saturation (IMPES) algorithm. The
pressure equation is solved in an implicit manner with a single computational matrix for the entire domain
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(multidimensional plus VE subdomains), and therefore, we do not use iterations between subdomains. Specif-
ically this means that the pressure in the different subdomains is solved simultaneously and each VE cell and
each full multidimensional cell contribute one row to the pressure matrix. For cells at the subdomain inter-
faces the velocity is constructed as shown above with the help of the VE subcells. For VE cells at the subdomain
boundary the fluxes from all neighboring cells are taken into account. Once the fluxes have been calculated
from the pressure solution, the saturations are updated explicitly for each cell using the saturation equation.
The corresponding saturation equation for VE cells at the subdomain interface again takes into account all
fluxes from neighboring full-dimensional cells and VE cells.

The saturation is lagged one time step in the IMPES algorithm, meaning the values from the last time step are
used for capillary pressure and all other secondary variables that depend on the saturation. The phase fluxes
are computed from the pressure field solved in the pressure step, resulting in a mass-conservative scheme.
We note that the IMPES algorithm assumes a weak coupling between pressure and saturation equations. If
saturations change significantly during one time step, iterating between the pressure and saturation step of
the IMPES algorithm or a fully implicit scheme becomes necessary. This applies regardless of the coupling
within the domain.

4. Criteria for VE and Adaptive Coupling

In this section we first discuss general criteria for VE. We then develop criteria to determine when and where
to apply a VE subdomain in the multiphysics model and analyze their behavior. In a third step, we present an
algorithm that adaptively moves the boundaries between subdomains.

4.1. Criteria for VE
We identify two groups of criteria that determine whether the VE assumption holds: One is referred to as a
global criterion, and the other is referred to as a local criterion. The global criterion gives an a priori estimate
of the time after which the VE assumption holds in the entire spatial domain, for example, the segregation
time tseg (Nordbotten & Dahle, 2011):

tseg =
H𝜙(1 − swr)𝜇w

kr,wkvg(𝜚w − 𝜚n)
, (15)

with H the height of the aquifer, swr the residual wetting phase saturation, and kv the vertical component of the
permeability tensor. Practically, we chose the characteristic value for the wetting phase relative permeability
kr,w to be 1, which leads to a smallest possible segregation time. The VE model gives accurate results for time
scales that are much larger than the segregation time.

The local criterion can determine if the VE assumption is valid for a specific point in time and space. This is
usually an a posteriori criterion, which means the information is only known during runtime based on the
computed solution, unlike the global criterion, which can be evaluated before the solution is computed. As a
result the global criterion is typically very approximative in nature. Additionally, in a realistic geological setup,
there may be regions of the model domain (e.g., near the well and local heterogeneities) where the VE assump-
tion does not hold, even provided that the simulation time is much larger than the segregation time. Around
the well the fluid phases will not reach VE at any time, especially considering frequently alternating injection
and extraction cycles. In contrast to that, VE may be reached locally within the plume even before the segre-
gation time has been reached. Because the global criterion gives average information for the entire domain,
it is unsuited to identify local regions where the VE assumption holds. We will therefore use the local criterion
to determine the applicability of the VE model for each vertical grid column in the domain at every time step.

We develop two local criteria that can be used to determine if the wetting and nonwetting phases in a grid
column have reached VE. For the first criterion we compare the full multidimensional profile of wetting-phase
saturation in the vertical direction to the VE profile that would develop if the phases were segregated and
hydrostatic pressure conditions had been reached. The difference indicates how far away the two fluids are
from VE. The approach for the second criterion is the same, except that we compare relative permeability
profiles of the wetting phase. For nonlinear relative permeability functions the relative permeability profile will
differ from the saturation profile and the two local criteria will give different values. Although the saturation
profile is directly linked to the state of VE in the column, the relative permeability profile is more relevant to
the calculation of the coarse-scale relative permeability and thus applies more directly to the development of
the plume.
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Figure 2. Vertical profiles in one column. Left: wetting phase saturation, right: wetting phase relative permeability using
a Brooks-Corey relationship with pore size distribution index 𝜆 = 2.0 and entry pressure pe = 105 Pa. The blue curve
is the result of the full multidimensional solution, and the orange curve is the reconstructed profile that would develop
if the fluid phases were in equilibrium. The difference between profiles is depicted as striped areas.

The VE profiles are reconstructed from the total volume of gas inside the grid column, in the same way as the
fine-scale saturation and relative permeability profiles in the VE model are constructed. We can compute the
area of the differences between the profiles (see Figure 2) and use that to develop the criteria. Specifically, we
normalize the computed area with the height of the VE profile and define csat and crelPerm as the criteria values
for saturation and relative permeability respectively:

csat =
∫ 𝜉T
𝜉B

|sw − s∗w|dz

HVE
, (16)

crelPerm =
∫ 𝜉T
𝜉B

|kr,w − k∗
r,w|dz

HVE
. (17)

The VE assumption can be considered to be valid in a grid column during a time step when the criterion value
ccrit is smaller than a threshold value 𝜖crit, where the threshold is a constant value that has to be chosen by
the user.

We use profiles of saturation or relative permeability to determine the state of VE because they show a notice-
able variation between the VE subdomains and the full multidimensional subdomains. This does not require
much additional computational effort as the saturation and relative permeability profiles are needed anyway
to determine upscaled mobilities. We note that pressure profiles could also be used for the criteria, though
we have not explored this in much depth.

4.2. Criteria Analysis
We analyze the behavior of the two local criteria for VE over space and time as well as for different simulation
parameters. In our two-dimensional test case we inject methane (CH4) from the left over the entire thickness
(30 m) of an initially brine-saturated domain. We use conditions that are typical for gas storage in 1,000-m
depth. Bottom and top are closed to flow, and Dirichlet conditions are prescribed on the right-hand side with
sw = 1.0 and a hydrostatic distribution of the brine phase pressure pw, starting with 107 Pa at the top. We chose
our domain long enough so that the gas will not reach the right-hand side boundary during the simulation.
We assume a density of 59.2 kg/m3 and a viscosity of 1.202 × 10−5 Pa ⋅ s for CH4. The density of the brine
phase is assumed to be 991 kg/m3, and the viscosity of the brine phase 5.23 × 10−4 Pa ⋅ s. We uniformly
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Figure 3. Criterion values for the criteria based on saturation and relative permeability respectively. (a) over the entire
length of domain for three times: 2tseg, 3tseg, and 5tseg (b) over dimensionless time for a grid column with 20-m
distance from the injection location and a grid column with 200-m distance from the injection location.

inject 0.0175-kg⋅s−1⋅m−1 CH4 for 240 hr. The permeability is assumed to be 2,000 mD; and the porosity 0.2.
For relative permeability and capillary pressure we use Brooks-Corey curves with pore size distribution index
𝜆 = 2 and entry pressure pe = 105 Pa. We use a grid resolution of 1 m in both horizontal and vertical direction
and estimate the segregation time with (15) as tseg = 48 hr.

We compute the criterion values in each numerical grid column of the two-dimensional domain and compare
them in space and time, as shown in Figure 3. We plot criterion values of both criteria over the length of the
two-dimensional domain for three different times and over dimensionless time t∕tseg for two vertical grid
columns. For our chosen injection scenarios the criterion based on relative permeability gives higher values
than the saturation criterion. This is due to the strong nonlinearity of the relative permeability function. On
one hand, brine held back inside the region of the gas plume contributes less to the relative permeability
criterion than to the saturation criterion since the relative permeability will be almost 0 for small wetting
phase saturations. On the other hand, small gas-phase saturations below the gas plume in equilibrium lead
to very large criterion values of the relative permeability criterion. This makes the relative permeability profile
deviate strongly from the VE profile in the region below the VE gas plume. In conclusion, if the gas plume
in equilibrium is small compared to the height of the aquifer, the relative permeability criterion will lead to
higher values than the saturation criterion.

Around the injection location both criteria show very high values (Figure 3a). Here the brine and gas phases
are not in equilibrium during the simulation since the gas phase moves continuously upward during injection.
Farther away from the injection point the criteria values decrease steeply, which shows that the two phases
are much closer to equilibrium. The saturation criterion stays constant over most of the length of the plume,
while the relative permeability criterion increases slightly toward the leading edge of the plume. This is due
to the decreasing thickness of the plume toward the leading edge which, as explained, is penalized more by
the relative permeability criterion.

For early simulation times a nonmonotonic behavior of both criteria can be observed over the length of the
domain in Figure 3a. This is due to the small thickness of the plume in early times and the grid discretization. In
some parts of the domain the vertical location of the gas plume will correspond well with the vertical spacing
of the computational grid, while in others the saturation will be more smeared out due to the finite size of
the grid cells. This effect grows less important as the gas plume height increases with time and contains an
increasing number of cells in the vertical direction. Both criteria include a normalization with the height of the
VE plume, which leads to a large peak in criterion values when the leading edge of the gas plume moves into
a cell that has previously been fully saturated with brine. This can be observed in Figure 3b for early times.
The peak in criterion value is followed by a nonmonotonic decrease for both criteria. This is again due to the
finite size of the cells and a simultaneous increase of VE gas plume height.

BECKER ET AL. 8



Water Resources Research 10.1029/2017WR022303

We define requirements for good a posteriori criteria for VE to compare the two local criteria that we
developed. In practice, a good local criterion for VE should

1. locally start at a high value for early injection times and decrease over time steeply until tsim > tseg then tend
toward 0 and

2. show enough difference in value when comparing grid columns close to injection and far away from it.

Both criteria fullfill the second requirement with very large differences in criterion values at the injection and
farther away from it (Figure 3a). For a fixed location in space as in Figure 3b the criteria values seem to flatten
out with time and it appears that they converge to a low, nonzero value. This value is defined by the finite
grid size in the vertical direction beyond which the approximation of the vertical profile cannot be further
improved. In comparison, the criterion based on the relative permeability shows an overall more promising
behavior. It decreases faster for earlier times, and it shows differences also when comparing values at the
leading edge and the middle of the plume.

Since the local criterion depends on the simulation result of the full multidimensional model, the results
depend on the resolution of the grid. If the grid is too coarse, it will take longer for the brine phase to drain
out of the plume because part of the gas will be smeared out over the grid cells by numerical diffusion. This
inaccuracy will directly be reflected by the local criterion because the profiles in the vertical direction will not
resemble VE. In those cases, higher criterion values can occur although in a real scenario the two phases may
already be in equilibrium. The local criterion is only able to give information about the real physical behav-
ior of the system when grid resolution is fine enough and the full multidimensional model gives accurate
enough results.

4.3. Adaptive Coupling
During the simulation, regions where the VE assumption is valid can appear or disappear and change in loca-
tion and size. At the beginning of injection, the less dense nonwetting phase is usually not in equilibrium with
the denser wetting phase. Over time, the wetting phase drains out of the plume and the area where the VE
model can be applied increases. Around the well, the flow field will always have components in the vertical
direction and require a full multidimensional resolution at all times. Furthermore, even an already segregated
plume can reach heterogeneous zones that require a full multidimensional resolution for accuracy. An efficient
model therefore adapts automatically to changes during the simulation.

We develop an algorithm for adaptation that applies the VE model in all regions where the VE assumption
is valid and tests the validity in every time step. The location of the boundaries between the two submod-
els are found based on the local criteria for VE from the last time step. The local criterion is evaluated for
each full multidimensional grid column before each time step. If the criterion value ccrit is smaller than a
user-defined threshold value 𝜖crit, the grid column is assumed to be in VE. Depending on the criterion value
and the threshold, either one of the following decisions is made for each grid column:

1. A full multidimensional grid column stays full multidimensional if the VE criterion is not met (ccrit ≥ 𝜖crit).
2. A full multidimensional grid column is turned into a VE column if the VE criterion is met (ccrit < 𝜖crit), and

the column is not a direct neighbor to a column where the criterion is not met.
3. A VE grid column is turned into a full multidimensional grid column if it is a direct neighbor to a column

where the criterion is not met.

The criterion value is used directly to turn full multidimensional grid columns into VE columns. The third
requirement from above is required to turn VE columns back into full multidimensional cells. Together with
the second requirement it results in a buffer zone around the VE columns, which is made up of full multidi-
mensional columns (see Figure 4). It guarantees that a VE column is converted back to a full multidimensional
column before the flow field returns to full multidimensional at this location. This approach with one layer of
buffer cells assumes that the subdomain boundary does not need to be moved more than one cell into the
horizontal direction in each time step, which should be guaranteed by fulfilling the Courant-Friedrichs-Lewy
criterion of the explicit time stepping. For stability reasons (e.g., to prevent frequent switching of columns
from VE to full multidimensional and back) the buffer zone can be extended to have more than one layer.
We note that Yousefzadeh and Battiato (2017) apply a similar buffer zone for a hybrid multiscale model for
single-phase transport in porous media, by enlarging the subdomain where continuum-scale equations are
invalid. Their coupling conditions lead to the coupling error being bounded by the upscaling error, which can
be minimized by placing the coupling boundary further away from the reacting front.
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Figure 4. Buffer zone between full multidimensional subdomain and
vertical equilibrium (VE) subdomain: one (or several) grid column(s) that
fulfill the requirement of vertical equilibrium (according to the applied
criterion) but are still kept as full multidimensional grid columns to detect
changes in the flow field.

With the VE criteria used in this approach all single-phase columns will be
converted to VE columns (except for buffer cells). However, in cases where
the detailed vertical movement of a single phase is of interest (e.g., a leaky
well or a fault zone that could be reactivated), we think it best to apply
a spatially and temporally fixed full multidimensional subdomain to this
region. First, those critical regions are known beforehand and usually need
to be meshed accordingly. Second, even a different criterion, for example,
a vertical flux criterion that would work for single-phase columns in theory,
cannot detect the later onset of vertical movement in a single-phase grid
column, because the grid column would have been converted to a VE grid
column before that.

5. Results and Discussion

In this section, we use a heterogeneous test case to test accuracy, robust-
ness, and computational efficiency of the multiphysics model. We compare
the solution against results from a full multidimensional model and a VE
model. Based on the comparison, we develop guidelines for the choice of
the threshold value 𝜖crit. The multiphysics model and the full multidimen-
sional model are both implemented in DuMux (Ackermann et al., 2017;
Flemisch et al., 2011).

In the test case, we again inject CH4 into a previously brine-saturated domain (see Figure 5). We uniformly
inject 0.0175-kg ⋅s−1⋅m−1 gas for 192 hr. The scenario is equal to the one used to analyze the VE criterion
values with the same geological parameters and the same fluid properties. Additionally, a low-permeability
lens directly below the top boundary of the aquifer is added (klens = 2mD). The lens is located at 100-m
distance from the injection location with a length of 20 m and a height of 10 m. The entry pressure of the
low-permeability lens is kept the same as inside the domain. The gas will pool in front of the lens and flow
around it while a small part of the gas may migrate into the lens. This creates a full multidimensional flow
pattern that can only be resolved accurately with a full multidimensional simulation. For simplicity, we solve
the injection scenarios in two dimensions (horizontal and vertical directions). However, we note that this is
not a necessity for the coupling algorithm. We choose a grid resolution of 1 m in the horizontal direction and
(in the full multidimensional subdomain) 0.23 m in the vertical direction and apply the relative permeability
criterion to identify subregions. We vary the threshold value between 0.01 and 0.06 to analyze its influence on
the simulations and develop recommendations for the choice of the threshold value. A full multidimensional
solution is obtained on a two-dimensional grid with a grid resolution of 1 m in the horizontal direction and
0.23 m in the vertical direction.

5.1. Comparison Between Models
We show the resulting gas-phase saturation distribution of the adaptive multiphysics model with a thresh-
old value of 0.03 for different times in Figure 6. At the beginning of simulation, only the single-phase region
is turned into a VE subdomain by the adaptive algorithm, which means that the entire gas plume is located
within the full multidimensional subdomain. After a few simulated hours, a second VE subdomain starts
developing in the middle of the plume where, according to the criterion, the two fluid phases have reached VE.

Figure 5. A test of gas injection for the adaptive model. A low-permeability
lens is located at the top of the aquifer at 100-m distance from the injection
location.

When the plume reaches the low-permeability lens, a full multidimen-
sional region develops around it and accurately captures the flow of gas
around the obstacle. Farther away from the lens, another VE subdomain
develops after some time. During the entire simulation, the area around
the injection stays a full multidimensional subdomain as expected. The
advancing thin leading edge is always resolved in full dimensions as well,
because water constantly drains out of it. The full multidimensional region
around the leading edge of the plume serves here as an indicator for het-
erogeneous regions like the lens, that would otherwise not be recognized.

We compare the results from the adaptive multiphysics model with
a threshold value of 0.03, full multidimensional model, and VE model
in Figure 7. The newly developed multiphysics model compares well
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Figure 6. Gas-phase distribution for the adaptive multiphysics model with a threshold value of 0.03 (left) and for the full
multidimensional solution calculated on a two-dimensional grid (right) for a series of simulation times after injection.
Subdomain boundaries are marked by dotted lines. The reconstructed solution is shown in the VE subdomains.
The domain is homogeneous except for a low-permeability lens at 100-m distance from the injection location.

Figure 7. Gas-phase distribution for the adaptive multiphysics model with
a threshold value of 0.03 (top), full multidimensional solution calculated
on a two-dimensional grid (middle), and full vertical equilibrium (VE) model
(bottom). The simulation time is t = 180 hr.

with the full multidimensional model: The horizontal extent of the plume
is represented correctly as is the diversion of the gas around the low-
permeability lens. Differences to the full multidimensional solution are evi-
dent in the VE subdomain region, where a higher brine phase saturation
is calculated in the plume. In the full multidimensional model the brine
phase is retained at a low saturation within the gas plume due to its low
mobility resulting from the nonlinear relative permeability relationship.
Vertical drainage in this state continues only at a very low rate and is not
reproduced by the VE model, which assumes that no brine phase above
residual saturation is held back in the gas plume. This could be improved
by a pseudo-VE model that assumes a pseudo-residual brine phase satura-
tion in the plume, which is higher than the residual saturation and reduced
dynamically due to slow vertical drainage (Becker et al., 2017). We note that
the full multidimensional model does not necessarily give better solutions
in the VE subdomain. If the VE assumption is valid, the VE model may be
equally as accurate or more accurate than the solution of the full multidi-
mensional model since it does not rely on a finite grid discretization in the
vertical direction (Bandilla et al., 2014; Celia et al., 2015; Nilsen et al., 2011).
The full VE model leads to an underestimation of the horizontal extent of
the plume because it is assumed that the gas is in equilibrium with the
brine phase at all locations. This leads to the gas-phase entering the lens
since the entry pressure here is not different than in other parts of the
domain. Because of the low permeability in the lens, large parts of the gas
phase that have entered the lens are retained there.

The adaptive multiphysics model is significantly faster than the full mul-
tidimensional model even though this is a small test case. Table 1 shows
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Table 1
Relative Average Number of Cells (Compared to the Full Multidimensional
Model) and Relative CPU Times for Full VE Model, Adaptive Multiphysics Model
(With Different Threshold Values 𝜖), and Full Multidimensional Model

Relative average Relative
number of cells CPU time

Model (−) (−)

Full VE 0.008 0.003

Multiphysics 𝜖relPerm = 0.06 0.04 0.02

Multiphysics 𝜖relPerm = 0.05 0.11 0.05

Multiphysics 𝜖relPerm = 0.04 0.12 0.06

Multiphysics 𝜖relPerm = 0.03 0.19 0.12

Multiphysics 𝜖relPerm = 0.02 0.3 0.18

Multiphysics 𝜖relPerm = 0.01 0.41 0.22

Full multidimensional 1 1

Note. VE = vertical equilibrium.

the average number of cells and the CPU times for the models. The speedup
in the adaptive model is attributed to the reduction in the number of com-
putational cells. It leads to a smaller linear system to be solved for the
pressure step in the IMPES algorithm and thus lower computational costs.
Note that we expect the adaptive multiphysics model to be even more
computationally efficient for larger, three-dimensional test cases, because
evaluating the coupling criterion and adapting the grid requires relatively
little computational resources.

For different threshold values we plot the number of cells in the domain
over simulated time in Figure 8. As expected, the number of computational
cells is higher for lower threshold values at any time. At the beginning of
injection, the number of cells increases as the plume advances regardless
of which threshold value is chosen. For higher threshold values, the num-
ber of cells remains stable as soon as a VE subdomain develops within the
gas plume. For the lower threshold value of 0.02 the plume develops a VE
subdomain region only when the low-permeability lens is reached and the
gas phase is backed up. This is indicated by a drop in number of cells in the
domain. Until the end of the simulation the gas plume has not yet devel-

oped a VE subdomain after the lens, which is why the number of cells is still increasing at the end of the
simulation time for this threshold value and lower threshold values. For an even lower threshold value of 0.01
the entire plume is discretized with the full multidimensional model over all times. Since the plume advances
into the domain over the entire time of simulation, the number of cells increases steadily for this threshold
value. Even so, a significant speedup compared to a nonadaptive, full two-dimensional model is achieved,
since the one-phase region is a VE subdomain at all times. In many practical cases the extent of the plume in
the horizontal plane may be 1 or 2 orders of magnitude smaller than the domain and is locally restricted due
to alternating injection and extraction cycles, making the adaptive model even more favorable.

5.2. Choice of Threshold Value for Adaptive Coupling
We analyze the influence of the threshold value and give recommendations for the choice of the threshold.
We plot vertically averaged brine phase saturation for the full VE model, for the multiphysics model with dif-
ferent threshold values and the full multidimensional model in Figure 9. For a very low threshold, where the
entire plume is discretized with a full multidimensional model, the results match very well with the full mul-
tidimensional model. Differences with the full multidimensional model increase slightly with an increase in
threshold value, especially for the averaged saturation in front of the low-permeability lens and the location
of the subdomain boundaries. At the subdomain boundaries the averaged brine phase saturation shows

Figure 8. Number of computational cells in the domain over simulated time
for full vertical equilibrium (VE) model, adaptive multiphysics model (with
different threshold values 𝜖), and full multidimensional model.

nonmonotonic behavior with more gas in the VE subdomain than in the
full multidimensional subdomain. This is likely due to small differences
between the two models at the subdomain boundary: The VE model
assumes VE of the two fluid phases, which is not completely represented
by the full multidimensional model at that location, either because of finite
grid size in the vertical direction or because the two phases are physically
not in VE yet. For a high threshold value, the low-permeability lens is not
detected anymore and the results differ greatly from the previous results,
especially at the low-permeability lens and in the region behind it, as a
consequence of gas being trapped within the lens. The same is observed
for the full VE model, with an additional difference in averaged brine phase
saturation close to the injection region.

We identify three major sources of errors in our models: upscaling error
due to applying the VE model in regions that are not in VE, discretization
error due to insufficient grid resolution especially in the vertical direction,
and coupling error at the subdomain boundary. Upscaling error is con-
trolled by the threshold value while discretization error mainly applies
to the full multidimensional model and the full multidimensional subdo-
mains in the multiphysics model. In this context we analyze the influence
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Figure 9. Vertically averaged brine phase saturation over horizontal
distance from injection location at t = 192 hr for full vertical equilibrium (VE)
model, adaptive multiphysics model (with different threshold values 𝜖),
and full multidimensional model.

of the threshold value on the accuracy of the adaptive multiphysics model.
We measure accuracy with the L2-norm error of the brine phase saturation.
The L2-norm error is calculated as the square root of the sum of squares
of the saturation differences in each cell. It is determined with respect to
a full multidimensional reference that was obtained on a very fine grid
determined by grid convergence (Δx = 0.25, Δy = 0.05). The resolution
of this grid is considered to be small enough so that errors due to dis-
cretization are minimized but would be impracticable in real applications.
It is used here to calculate the L2-norm error for the full multidimensional
model on the coarser and more practicable grid, the full VE model, and the
multiphysics model. This way, we can put the accuracy of the multiphysics
model into context of the discretization error of the full multidimensional
model, as shown in Figure 10 for a simulated time t = 192 hr. It can
clearly be seen that the L2-norm error of the multiphysics model is simi-
lar to the L2-norm error of the full multidimensional model, within a wide
range of the threshold values. Even when only small parts of the domain
(injection area, advancing edge of the plume, and low-permeability lens)
are resolved with a full multidimensional model, the multiphysics model

still gives very accurate results. This is because losses in accuracy of the multiphysics model due to coupling
error that leads, for example, to the nonmonotone vertically averaged saturation at the subdomain bound-
ary observed in Figure 9, are outbalanced by a better representation of the plume in the VE subdomains of
the multiphysics model. The coarse grid resolution in the vertical direction however leads to a high discretiza-
tion error and thus a significant L2-norm error for the full multidimensional model. We can see that a large
threshold value (𝜖 = 0.06) leads to an L2-norm error close to that from the VE model, which is significantly
higher than for smaller threshold values (𝜖 ≤ 0.05). The jump in the L2-norm error indicates that in this case
the multiphysics model fails to accurately capture the relevant physical processes in the domain, like the gas
flow around the low-permeability lens. We note that this transition between L2-norms from one criterion
value to another is likely going to be smoother for a situation with more than one relevant local heterogene-
ity. For a threshold value only slightly lower than this critical value (e.g., 𝜖 = 0.05), the multiphysics model is
much faster than the full multidimensional model while showing the same accuracy, which make it a very
efficient model.

An optimal threshold value can be determined by varying the threshold from larger to smaller values. In anal-
ogy to a grid convergence study, we determine the appropriate (average) size of the VE subdomain by adding
stepwise more full multidimensional cells. The threshold value has to be reduced in small steps so that a region
for the threshold value can be identified for which the results do not change significantly anymore with fur-
ther reduction of the threshold value. This can be seen in Figure 9, where for a very high threshold value the
results are much different from all lower threshold values. This approach may require multiple runs of the

Figure 10. L2-norm error of brine phase saturation at t = 192 hr for full
multidimensional model, adaptive multiphysics model (with different
threshold values 𝜖), and full vertical equilibrium (VE) model. Comparison is
done with respect to a full multidimensional reference on a very fine grid
determined by grid convergence.

multiphysics model before the optimal threshold value is found. However,
starting with a high threshold for the multiphysics model results already
in a very fast model, and once the optimal threshold value is found, a large
number of most efficient simulation runs can be carried out, for example,
for a Monte-Carlo type simulation.

6. Conclusions

In this paper we have developed an adaptive multiphysics model that
couples a full multidimensional model to a VE model. The coupling is real-
ized in a monolithic framework. We couple the fluxes over the subdomain
boundaries by using variables in the full multidimensional boundary cells
and reconstructed fine-scale variables in the VE boundary subcells. The
unknown variables in the VE subcells are expressed as fine-scale recon-
structions of the VE cell variables using the assumption of VE. The pressure
and saturation equations are solved sequentially with an IMPES algorithm,
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where we solve the pressure implicitly for the entire domain. The subdomains are assigned adaptively during
simulation based on a local, a posteriori criterion for VE that compares computed and reconstructed vertical
profiles of saturation or relative permeability in the grid columns.

The adaptive multiphysics model showed high accuracy in predicting the gas distribution with a much smaller
number of grid cells and consequently lower computational cost compared to a full multidimensional model.
The multiphysics model can accurately capture full multidimensional flow dynamics, for example, around the
injection location or heterogeneities farther away and has a high accuracy in the VE subdomains where the
VE assumption is valid. The threshold value to determine the VE subdomains can be chosen by decreasing
the threshold value stepwise in a test similar to grid convergence tests. Overall, the multiphysics model cou-
pling VE and full multidimensions is an efficient tool for modeling large scale applications of gas injections
in the underground. We aim to extend the multiphysics model to include nonisothermal and compositional
effects and will investigate applications to more challenging problems of subsurface energy storage as part
of the ongoing work.
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