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Abstract 

Analysis of geological storage of carbon dioxide (CO2) in deep saline aquifers requires computationally efficient 
mathematical models to predict the pressure evolution and the injected CO2 plume migration. The subsurface system 
of CO2 injection into saline aquifers can be modeled as a two-phase flow system, with a non-wetting less dense 
(supercritical) CO2 phase and a denser brine as the wetting phase. For unfractured geological formations, one type of 
simplified model can be developed by integrating the three-dimensional governing equations in the vertical 
dimension. The vertically integrated models that assume buoyant segregation and vertical pressure equilibrium are 
referred to as vertical equilibrium (VE) models. VE models are computationally efficient owing to the dimension 
reduction from vertical integration, and have been extensively applied to field-scale modeling of CO2 injection, 
migration, and leakage in the past decade. For fractured geological formations, it is challenging to directly use 
vertically integrated models, because CO2 migration in fractured formations involves two different characteristic 
time scales due to significant contrast of permeability between the fractures and matrix. The high permeability of the 
fractures leads to fast buoyant segregation of CO2 and brine in the vertical direction within the fractures, while lower 
permeability of the matrix typically leads to much slower flow dynamics that involve longer time scales for 
segregation.  
 
In this paper, we use a dual-continuum approach to conceptualize the fractured geological formation, treating the 
fractures and the rock matrix blocks as overlapping continua, and develop vertically integrated models for CO2 
injection in fractured geological formation. We use a VE model for the fracture domain and explore different model 
options for the matrix domain, including the classical dual-porosity model that treats the matrix as a source/sink 
term for the fracture as well as other more advanced models that explicitly account for the two-phase flow dynamics 
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of the CO2 and brine in the matrix domain. We present the modeling framework and show preliminary model 
comparison results to demonstrate the applicability of the new models.  
 
© 2017 The Authors. Published by Elsevier Ltd. 
Peer-review under responsibility of the organizing committee of GHGT-13. 
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1. Introduction 

Safe and permanent geological storage of carbon dioxide (CO2) requires prediction of CO2 and brine migration as 
well as changes in fluid pressures. The subsurface system of CO2 sequestration can be modeled as a two-phase flow 
problem, with a non-wetting less dense injected CO2 phase and a wetting denser resident brine phase. When the 
geological formation has extensive fractures, the formation consists of high permeability fractures and a low 
permeability matrix. Mass exchange of CO2 and brine between fractures and matrix leads to complex flow 
dynamics.  
 
Fluid flows in fractured geological formations are often modeled with a dual-continuum approach that 
conceptualizes fractures and matrix blocks as two overlapping continua [1]. The early work of both [2] and [3] 
considered the fractures as a continuum. [2] developed a so-called dual-permeability model, where the matrix was 
treated as another continuum with a different permeability and porosity, and the flow in the matrix was considered. 
[3] developed a so-called dual-porosity model, where the authors approximated the rock blocks (matrix) as equal-
sized cubes with homogeneous and isotropic rock properties that are not connected to one another except through 
the fractures. In this latter (dual-porosity) model, fluid in the matrix only exchanges with fluid in the fractures, and 
not directly with any adjacent matrix blocks. For both the dual-permeability and dual-porosity models, the transfer 
of mass between fractures and matrix is a key process, which is often represented by a mass transfer function. In 
principle, the mass transfer function needs to include the shape of the matrix blocks and the various forces that drive 
the mass exchanges, such as capillary pressure, gravity and viscous forces. Many improvements have been made 
after the pioneering work of [2] and [3], especially in the development of the mass transfer functions. Recent 
reviews of various versions of the mass transfer functions can be found in [1] and [4]. 
 
With the dual-continuum conceptualization, modeling approaches for unfractured geological formations can be used 
for fluid flow in each of the two continua – fractures and matrix – for the fractured rock system. For unfractured 
saline aquifers, a set of so-called vertically integrated models has been developed. The dimension reduction 
resulting from vertical integration leads to very computationally efficient models. In the past decade, a range of 
vertically integrated models have been developed and applied to field-scale modeling of CO2 injection, migration 
and leakage (see recent reviews [5-6]). Almost all of those models are based on the vertical equilibrium  (VE) 
assumption, which assumes that the CO2 and brine segregate rapidly in the vertical direction due to strong 
buoyancy, and the fluid phases are always in pressure equilibrium (hydrostatic) in the vertical dimension. Recently, 
more advanced vertically integrated models have been developed that explicitly represent two-phase flow dynamics 
in the vertical direction and therefore do not rely on the VE assumption [11-12]. For fractured geological 
formations, the high permeability of fractures leads to fast buoyant segregation of CO2 and brine in the vertical 
direction, and therefore the VE model is likely to be applicable. Flow in the matrix is typically much slower and 
involves longer time scales for segregation; thus the VE approach is unlikely to apply in the matrix.  

 
In this paper, we use a dual-continuum approach and develop vertically integrated models to simulate CO2 injection 
and migration in fractured geological formations. We use a VE model for the fracture domain and explore different 
model options for the matrix domain, including the classical dual-porosity model that treats the matrix only as a 
source/sink term for the fracture, as well as other more advanced models that explicitly account for the two-phase 
flow dynamics of the CO2 and brine in the matrix continuum. Corresponding vertically integrated mass transfer 
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functions are derived and used to model the mass exchange between the fracture and the matrix domains. We 
formulate equations for the different models and present preliminary results to demonstrate their applicability in 
terms of both accuracy and computational efficiency.  

2. Three-dimensional dual-continuum models 

In this section, we introduce governing equations for dual-porosity and dual-permeability models in a full 
multidimensional domain. We first present the equations for flow in fractures and then outline formulations for fluid 
flow in the matrix for different models, including dual-porosity, dual-permeability, and modified dual-permeability 
models.  

 
 
Figure 1: Schematic of a dual-continuum conceptualization of a fractured geological formation for CO2 storage. The 
red and blue arrows denote CO2 flux from fracture to matrix and brine flux from matrix to fracture, respectively. 
Both fracture and matrix domains are assumed to be homogeneous and isotropic with permeability 𝑘" and porosity 
𝜙" for the fracture domain, and permeability 𝑘$ and porosity 𝜙$ for the matrix domain. 
 
Both the dual-porosity model and the dual-permeability model consider the fractures as a continuum, where Darcy’s 
Law applies for the fluid flow dynamics (Figure 1). For a homogeneous and isotropic fracture domain, we define 𝜙"  
and 𝑘"  as the porosity and permeability (assuming isotropic permeability), respectively, 𝑠&"  the phase saturation, 𝜌&  
the density of the fluid, and 𝑝&

"
 the phase pressure. The superscript 𝑓 denotes that the parameters are defined in the 

fracture domain, and the subscript 𝛼 = 𝑐 or 𝑏 represents CO2 (𝛼 = 𝑐) or brine (𝛼 = 𝑏). Assuming that CO2 and 
brine are immiscible and incompressible, we can write mass balance equations for both the CO2 and brine phases 

𝜕 𝜙"𝑠/
"

𝜕𝑡
+ ∇ ∙ 𝒖/

" = 𝑞/
$6" + 𝜓/

", (1) 

𝜕 𝜙"𝑠9
"

𝜕𝑡
+ ∇ ∙ 𝒖9

" = 𝑞9
$6" + 𝜓9

", (2) 

where 𝑞/
$6"  and 𝑞9

$6"
 represent CO2 and brine volumetric fluxes from the matrix to the fracture domain, 

respectively; 𝜓/
"

 and 𝜓9
"denote the volumetric source terms of CO2 and brine in the fractures, respectively; and the 

CO2 and brine phase fluxes 𝒖𝑐"  and 𝒖𝑏
"  can be obtained from extended Darcy’s Law for two-phase flow 

𝒖/
" = −

𝑘;,/
" 𝑘"

𝜇/
∇𝑝/

" − 𝜌/𝒈 , (3) 

𝒖9
" = −

𝑘;,9
" 𝑘"

𝜇9
∇𝑝9

" − 𝜌9𝒈 , (4) 

where  𝑘;,/
"  and 𝑘;,9

"  are relative permeabilities for CO2 and brine, respectively; 𝜇/  is viscosity for CO2 and 𝜇9 is 
viscosity for brine;  𝒈 is gravity acceleration vector. 
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The difference between the dual-porosity and the dual-permeability models lies in the flow model for the matrix. 
Dual-porosity models consider the matrix as composed of disconnected blocks that provide storage volumes but 
only exchange fluids with the fractures and not with adjacent matrix blocks.  As such, there is no flow within the 
matrix at the continuum scale.  In dual-permeability models, flow can occur within the matrix continuum, so the 
appropriate continuum equations for flow need to be written for both the fractures and the matrix. In the following 
subsections, we outline governing equations for the matrix domain for both dual-porosity and dual-permeability 
models, and also for a modified dual-permeability model. 

2.1. Dual-porosity model 

The dual-porosity model assumes that fluids are immobile (at the continuum scale) within the matrix and only 
exchange mass with the fracture domain. Thus, we obtain the following mass balance equations for the matrix 
domain 

𝜕 𝜙$𝑠/$

𝜕𝑡
= 𝑞/

"6$ + 𝜓/$, (5) 

𝜕 𝜙$𝑠9$

𝜕𝑡
= 𝑞9

"6$ + 𝜓9$, (6) 

where superscript 𝑚 denotes that the variables  are defined in the matrix domain; 𝑞/
"6$ and 𝑞9

"6$ are CO2 and brine 
volumetric fluxes from the fracture domain to the matrix domain, respectively; 𝜓/$ and 𝜓9$ are the volumetric 
source terms of CO2 and brine in the matrix domain. We note that by definition 𝑞/

"6$ = −𝑞/
$6" and 𝑞9

"6$ =
−𝑞9

$6".  

2.2. Dual-permeability model 

The matrix domain has a non-zero permeability at the continuum level in the dual-permeability model, so that fluid 
flows in the matrix are governed by a similar set of equations as those in the fractures 

𝜕 𝜙$𝑠/$

𝜕𝑡
+ ∇ ∙ 𝒖/$ = 𝑞/

"6$ + 𝜓/$, (7) 

𝜕 𝜙$𝑠9$

𝜕𝑡
+ ∇ ∙ 𝒖9$ = 𝑞9

"6$ + 𝜓9$, (8) 

where the phase fluxes 𝒖/$  and 𝒖9$ are 

𝒖/$ = −
𝑘;,/$ 𝑘$

𝜇/
∇𝑝/$ − 𝜌/𝒈 , (9) 

𝒖9$ = −
𝑘;,9$ 𝑘$

𝜇9
∇𝑝9$ − 𝜌9𝒈 . (10) 

2.3. Modified dual-permeability model 

The dual-permeability model can be modified to a simpler model, the so-called “match-stick” model [7-8], where 
the matrix is conceptualized as a collection of vertical columns separated by fractures (“match sticks”) and thus only 
vertical flow is considered in the matrix domain. The “match-stick” model represents a fractured system with 
(primarily) only vertical fractures. The mass balance equations for CO2 and brine in the matrix can then be 
simplified to one space dimension,   

𝜕 𝜙$𝑠/$

𝜕𝑡
+
∂𝑢/,B$

𝜕𝑧
= 𝑞/

"6$ + 𝜓/$, (11) 

 
𝜕 𝜙$𝑠9$

𝜕𝑡
+
∂𝑢9,B$

𝜕𝑧
= 𝑞9

"6$ + 𝜓9$. (12) 
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where 𝑢/,B$ 		and 𝑢9,B$  denote the phase fluxes of CO2 and brine, respectively, in the vertical direction (assumed positive 
upward). 
 
The phase fluxes can also be written using the fractional flow formulation with no explicit presence of the phase 
pressures 

𝑢/,B$ =
𝜆/$

𝜆/$ + 𝜆9$
𝑢FGF,B$ + 𝜆9$𝑘$𝛥𝜌𝑔 − 𝜆9𝑘𝛻𝑝KLM,$ , (13) 

𝑢9,B$ =
𝜆9$

𝜆/$ + 𝜆9$
𝑢FGF,B$ − 𝜆/$𝑘$𝛥𝜌𝑔 + 𝜆/𝑘𝛻𝑝KLM,$ , (14) 

where 𝜆/$ = 𝑘;,/$ /𝜇/	  and 𝜆9$ = 𝑘;,9$ /𝜇9  are the phase mobilities for CO2 and brine, respectively; 𝛥𝜌 = 𝜌9−𝜌/  is the 
density difference between the two fluid phases; 𝑢FGF,B$ = 𝑢/,B$ + 𝑢9,B$  is the vertical total flux, and 𝑝KLM,$ is the capillary 
pressure. Again, for all terms, superscript m denotes quantities defined in the matrix. 

 
Summing Equations (11) and (12) we obtain 

 
𝜕𝑢FGF,B	$

𝜕𝑧
= 𝑞/

"6$ + 𝑞9
"6$ + 𝜓/$ + 𝜓9$. (15) 

If the top and the bottom boundaries of the geological formation are assumed impermeable, 𝑢FGF,B	$  should be zero 
along the vertical column of the matrix, leading to counter-current flows with source and sink terms in the matrix 
columns. 

2.4. Mass transfer function 

The key component of dual-porosity and dual-permeability models is the mass transfer function that governs the 
fluid exchange between fractures and matrix. The transfer function in general should account for various physical 
mechanisms including imbibition, gravity drainage, capillary pressure, fluid expansion and molecular diffusion. In 
practice, simplified versions that capture some of the mechanisms are usually used. In this paper, we adopt mass 
transfer functions from the literature.  
 
For the dual-porosity model, we use the mass transfer function from [1] that considers capillary pressure and gravity 
drainage, and has a functional form for the CO2 flux from fracture to matrix as 

𝑞/
"6$ = 𝜎𝑘$

𝜆/
"

𝜆/
" + 𝜆9$

− 𝑝KLM,$ − 𝑝KLM," +
𝜎B
𝜎
𝛥𝜌𝑔

𝑠/
" − 𝑠/,;

"

1 − 𝑠/,;
" −

𝑠/$ − 𝑠/,;$

1 − 𝑠/,;$
𝐿B , (16) 

where 𝜎	is a shape-factor for the rock matrix block, and 𝜎B is the component of 𝜎 considering only the vertical 
direction; 𝐿B is the height of a matrix block; and 𝑠/,;

"  and 𝑠/,;$  are residual CO2 saturations in the fracture and the 
matrix, respectively. The shape-factor for the rock matrix block has a number of expressions in the literature 
[1]. Here, we introduce a simple expression from [9] 

𝜎 =
1
𝑉
𝛴TUV
W 𝐴T

𝑑T
	, (17) 

where 𝐴T denotes the area for the open surface 𝑗 of a rock matrix block; 𝑑T is the distance from the center of the 
matrix block to the open surface 𝑗; 𝐽 represents the total number of open surfaces; and 𝑉 is the volume of the 
matrix block. 
 
From 𝑞/

"6$, we can obtain 𝑞/
$6" = −𝑞/

"6$. Also, because we assume that the fluids are incompressible, 𝑞9
$6" =

𝑞/
"6$. Therefore, from Equation (16), we can compute all the mass transfer terms 𝑞/

"6$, 𝑞/
$6", 𝑞9

"6$, and 𝑞9
$6". 

 
For the dual-permeability model, we use the mass transfer function from [10] 
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𝑞/
"6$ = 𝜎𝑘$

𝑘;,/
𝜇/

"

𝛿 +
𝑘;,/
𝜇/

$

1 − 𝛿 𝑝9
" − 𝑝9$ + 𝑝/]^," − 𝑝/]^,$

+
𝜎B
𝜎
𝛥𝜌𝑔

𝑠/
" − 𝑠/,;

"

1 − 𝑠/,;
" −

𝑠/$ − 𝑠/,;$

1 − 𝑠/,;$
𝐿B , 

(18) 

where 𝛿 is the upstream weighting indicator that is 1 when CO2 flux is from fracture to matrix, and equals to 0 
otherwise. The transfer function term 𝑞9$6"  can be derived in a similar fashion. Note that 𝑞9$6"  is not necessarily equal 
to 𝑞/"6$  because the mass transfer function includes the driving force due to phase pressure difference from fracture 
and matrix, which might drive both CO2 and brine from fracture to matrix. 

3. Vertically integrated dual-continuum models 

3.1. Vertical equilibrium model for the fracture domain 

The fracture domain has high permeability where the buoyant segregation of CO2 and brine is likely to be rapid and 
thereby a VE model may be a good approximation. In addition, because of large pores in the fracture the capillary 
pressure is likely to be small and therefore can be neglected, leading to a VE sharp interface model (Figure 2). Here, 
we formulate the governing equations of the VE sharp interface model for flow of CO2 and brine in the fracture 
domain.   

Figure 2: Schematic of the VE sharp interface model in the fracture domain.  𝑧 = 𝜁` and 𝑧 = 𝜁a are the top and the 
bottom boundaries of the geological formation respectively, and 𝐻 = 𝜁` − 𝜁a  is the thickness of the formation; 
ℎ(𝑥, 𝑦, 𝑡) is the thickness of the CO2 plume; the red line denotes the macroscopic sharp interface between CO2 and 
brine. To demonstrate the idea, here we assume that the formation is horizontal and homogeneous, although we 
recognize that the VE sharp interface model applies to formations with varying topography and heterogeneity.  
 
In the VE sharp interface model, phase pressures of both CO2 and brine are assumed hydrostatic. A pressure 
(𝑝&

"(𝑥, 𝑦, 𝑧, 𝑡)) at any point in space can be linked to the pressure (𝑃&
"(𝑥, 𝑦, 𝑡)) at the bottom of the formation as 

shown in Equation (19).  

𝑝&
" 𝑥, 𝑦, 𝑧, 𝑡 = 𝑃&

" 𝑥, 𝑦, 𝑡 − 𝜌&𝑔𝑧. (19) 

Due to the assumption of negligible capillary pressure in the fracture domain, CO2 and brine in the fractures form a 
macroscopic sharp fluid-fluid interface. Here, we assume that the residual saturation of CO2 and brine are both zero, 
although they can be easily included in the model. We integrate the mass balance Equations (1) and (2) for CO2 and 
brine along the vertical direction from the bottom (𝑧 = 𝜁a) to the top of (𝑧 = 𝜁`) of the geological formation and 
obtain  

HCO2 Brine

ℎ(#, %, &)

#

(
%

( = *+

( = *,
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𝜙"
𝜕ℎ
𝜕𝑡
− 𝛻 ∙

𝑘"

𝜇/
ℎ 𝛻𝑃9

" + 𝛥𝜌𝑔𝛻ℎ = 𝑄/
$6" + 𝛹/

", (20) 

−𝜙"
𝜕ℎ
𝜕𝑡
− 𝛻 ∙

𝑘"

𝜇9
𝐻 − ℎ 𝛻𝑃9

" = 𝑄9
$6" + 𝛹9

", (21) 

where 

𝑄/
$6" = 𝑞/

$6"d𝑧lm
ln

,            𝑄9
$6" = 𝑞9

$6"d𝑧lm
ln

, (22) 

𝛹/
" = 𝜓/

"d𝑧lm
ln

,            𝛹9
" = 𝜓9

"d𝑧lm
ln

. (23) 

𝐻 is the thickness of the geological formation, and ℎ is the thickness of the CO2 plume in the fracture domain.  
 

Summing Equations (20) and (21) gives a pressure equation for 𝑃9
". With the pressure equation in combination with 

Equation (20) (or Equation (21)), we can solve for the primary variables 𝑃9
"  and ℎ  using an IMPES (implicit 

pressure explicit saturation) method. We note that the phase pressure in the fracture is denoted by upper case letter 
𝑃9
" because it represents the bottom brine pressure defined in the vertically integrated set of governing equations 

(20) and (21), which are often referred to as coarse-scale equations and coarse-scale variables in a multiscale 
framework for vertically integrated models [13, 11]. The variables in the matrix are denoted by lower case letters, 
which correspond to the fine-scale variables [13, 11]. Different model options for the matrix flow lead to different 
pressure equations. For dual-permeability model, the mass transfer function 𝑞&

$6" will depend on the fracture phase 
pressure (and therefore 𝑃9

") and the phase pressures in the matrix. The pressure equations for the fracture and the 
matrix are coupled through the mass transfer functions. For dual-porosity model, the mass transfer functions have no 
dependence on phase pressures, and the pressure equation thus only involves the phase pressure in the fracture 
domain. 

3.2. Modeling options for the matrix domain 

3.2.1. Dual-porosity 
In the dual-porosity model, the mass transfer function does not depend on phase pressures of the two fluids. Thus, 
we locally compute the mass transfer function based on phase saturations (and capillary pressure), and then integrate 
the mass transfer function along the vertical direction to get 𝑄/

"6$ and 𝑄9
$6".  The computation of phase saturation 

in the matrix is the same as the three-dimensional dual-porosity model. 

3.2.2. Dual-permeability 
The dual-permeability model is more complex than the dual-porosity model, because the mass transfer function 
depends on phase pressures, which leads to coupled pressure equations for the fracture and matrix domains. The 
pressure equation gives 𝑃9

" and 𝑝9$, based on which we can solve the transport equation to get the CO2 plume height 
ℎ in the fracture, and 𝑠/$ in the matrix.  

3.2.3. Modified dual-permeability 
For the modified dual-permeability model, we only need to consider the two-phase flow dynamics in the vertical 
dimension of the matrix domain. The mass transfer function from the dual-porosity that does not depend on phase 
pressures can be applied. We solve the one-dimensional columns using fractional flow equations that allow 
elimination of explicit presence of phase pressures. For impermeable top and bottom boundaries of the geological 
formation, the vertical total flux in the matrix is zero.  
 
 



8 Guo et al. / Energy Procedia 114 (2017) 3343–3352 

4. Results and discussion 

Some of the models proposed in this paper are still under development; here we present some preliminary results. 
We first show that the VE sharp interface model is a good approximation for the two-phase flow dynamics in the 
fracture. To demonstrate that, we consider a two-dimensional (x-z) domain, and compare the VE dual-porosity 
model with a full 2D dual-porosity model. Figure 3 shows CO2 saturation distributions in a fractured reservoir after 
five years of injection simulated by a VE dual-porosity model and a full 2D dual-porosity model. The horizontal 
length of the domain is 1500 m, and the thickness of the formation is 50 m. CO2 is injected uniformly throughout the 
left boundary. Permeability and porosity are 100 mD and 0.05 for the fracture domain, and 1 mD and 0.15 for the 
matrix domain. Capillary pressure is set to zero for both fracture and matrix. The Brooks-Corey model with 𝜆 = 2.0 
is used for the relative permeability of matrix in the mass transfer function. Numerical grid sizes of Δ𝑥 = 5 m in x 
and Δ𝑧 = 0.2 m in z are used for the full 2D dual-porosity model. The simulation results from the two models match 
well, measured by both the CO2 plume extent and the mass fraction of CO2 in the fracture and the matrix. The 
leading edge of the CO2 plume in the fracture is 720 m from the VE dual-porosity model versus 575 m from the full 
2D dual-porosity model, and the corresponding mass fraction of CO2 in the matrix is 66.5% and 69.6%, 
respectively. We note that although the leading edge of the CO2 plumes in the fracture domain has notable 
difference from the two models, the majority of the CO2 plumes match well. We also point out that it is difficult to 
eliminate numerical diffusion in the vertical direction to accurately capture the CO2-brine sharp interface for the full 
2D dual-porosity model; here we used	Δ𝑧 = 0.2 m. Much better match between the two models is expected for 
higher permeability of the fracture domain, because we used a fairly low permeability of 100 mD in this test case. 
Also, in our simulations, VE dual-porosity is at least two orders magnitude more computationally efficient than the 
full 2D dual-porosity model. This is because full 2D the dual-porosity model needs to solve a 2D pressure equation 
and requires very high vertical resolution to resolve the sharp interface and small time steps to capture the 
segregation process.  

Figure 3: Simulation results of CO2 distributions in a fractured geological formation using a VE dual-porosity model 
(top row) and a full 2D dual-porosity model (bottom row) after 5 years injection. The left plots are from the fracture 
domain and the right plots are from the matrix domain. The color scale denotes magnitude of CO2 saturations from 
zero to one (residual saturations are neglected in the simulations), and the blue line in the left top plot denotes the 
sharp interface of CO2 and brine.  
 
In the second set of results, we show CO2 distribution simulated by the VE dual-porosity model with different 
parameters in the mass transfer functions (Figure 4). Transfer functions with a lower and a higher rate are used, one 
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with 𝑘$ = 0.1 mD and the other with 𝑘$ = 1.0 mD. Permeability of the fracture domain is set as 𝑘" = 1 Darcy. 
The lower transfer function leads to lower CO2 saturation and a lower total mass fraction in the matrix. We also note 
that the CO2 migrates further for a lower transfer function. 

 

 
Figure 4: Simulation results of the CO2 distributions from the VE dual-porosity model with a lower and a higher 
mass transfer rate between the fracture and the matrix.  

5. Conclusions 

In this paper, we have developed a dual-continuum vertically integrated modeling framework for CO2 injection and 
migration in fractured geological formations. Fluid flow in the fracture domain is always modeled using a VE sharp 
interface model, while the matrix flow can be modeled with different approaches, which leads to different types of 
vertically integrated models. Preliminary results show that the VE sharp interface model is a good approximation for 
CO2 migration in the fracture. By taking advantage of the dimension reduction from vertical integration, these 
models are much more computationally efficient compared to full multidimensional models. Different treatment of 
the matrix flow leads to a range of models with different levels of complexity, which provide useful modeling tools 
for analysis of CO2 sequestration in fractured geological formations.  
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