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ABSTRACT

We reproduce Bruno Rossi’s 1933 experiment on the detection of cosmic rays. We
use a simple apparatus consisting of two Geiger counter tubes, a lead incasing with a
variable thickness roof, and coincidence counter electronics. We confirm that coincident
counts, indicative of cosmic rays, result from two competing effects: the aptitude of
cosmic rays to penetrate a given thickness of lead and the aptitude for a cosmic ray to
create a shower of particles due to its interaction with a given thickness of lead.

1. Introduction

Cosmic rays are energetic particles that
originate from outside earth’s atmosphere.
Being mostly light, atomic nuclei, cosmic rays
are thought to originate from supernova ex-
plosions although this fact has not been ob-
servationally confirmed. The world’s largest
high energy cosmic ray detector, coving many
square kilometers in Argentina, is the Pierre-
Auger observatory. Recently, that telescope
has hinted at the possibility that cosmic rays
originate from highly energetic extragalactic
sources, not necessarily just supernovae (The
Pierre Auger Collaboration et al. 2007).

Cosmic rays were not found to be outside
earth’s atmosphere until the 1912 balloon ex-
periment by Victor F. Hess at an altitude of
5000 m, and it was not until 1933 that Bruno
Rossi confirmed that cosmic rays are energetic
enough to interact with earth’s atmosphere
and even with lead of thicknesses ∼cm (Jack-
son & Welker 2001). See Figure 1 for the
distribution of cosmic ray fluxes for given en-
ergies in eV1.

Cosmic rays shower into many particles
due to their interaction with earth’s atmo-

1http://upload.wikimedia.org/wikipedia/commons/8/8b/Cosmic
ray flux versus particle energy.svg

Fig. 1.— The cosmic ray flux at varies ener-
gies in eV.
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sphere or even with lead. Figure 2 shows how
a high energy primary can shower into three
different types of showers, which in turn cas-
cade even further. Figure 3 is a cloud cham-
ber, in which cloud particles condense due to
energetic particles’ perturbations, which also
shows a cosmic ray shower. The three types
of showers are the meson shower, nucleon cas-
cade, and electromagnetic shower (Jackson &
Welker 2001).

1.1. Nucleon Coscade & Meson Shower

The nucleon cascade consists of particles
from the initial interaction of the cosmic ray
with earth’s atmosphere. From this interac-
tion, pions (π), with a 10−8 s lifetime, are
created. Pions decay into muons via the re-
action π± → µ± + ν(ν̄). Since the muons
cannot decay fast enough via the reaction
µ± → e± + ν + ν̄, many of them survive by
the time they reach the ground. Pions and
muons comprise the meson shower.

1.2. Electromagnetic Shower

Pair production, the reaction γ → e+ +
e−; neutral pion decay, the reaction µ0 → 2γ;
and bremsstrahlung or free-free emission, the
reaction e± → e± + γ all contribute to the
electromagnetic cascade.

2. Experimental Setup & Procedure

Shown in Figure 4 is our experimental
setup. It consists of two simple Geiger tubes,
such as those in Figure 52, connected to a
single channel analyzer circuit, which cleans
up and amplifies the Geiger counter signals’
pulses. From the single channel analyzer we
fed the amplified signal to a counter circuit
which electronically increments a number for
each Geiger counter pulse. We also connected
a coincidence counter which counts how many
Geiger counter pulses occurred within a small

2http://upload.wikimedia.org/wikipedia/commons/f/f0/Geiger.png

time interval of one another. These coinci-
dences are indicative of cosmic ray showers
because only a shower is most likely to trig-
ger both Geiger counters simultaneously.

For each thickness of the lead enclosure’s
roof, we recorded the number of single counts
each of our Geiger counter registered as well
as the coincidence in counts between the two
Geiger counters. From these data we com-
puted the number of counts per hour, tak-
ing into account the fact that errors in Pois-
son distributions are proportional to the

√
N ,

where N is the number of counts detected.
Because we sampled many events, our errors
due to Poisson statistics are very small.

3. Theory

According to the simple derivation of Jack-
son & Welker (2001), single counts Nsingle as
a function of lead thickness x should obey the
law

Nsingle = Nni +Nie
−µx, (1)

whereNni is the component of the counts that
does not interact with the lead, Ni is the in-
teracting component, and µ is a free parame-
ter.

The second equation that Jackson &
Welker (2001) derive is that of the coinci-
dences Ncc as a function of lead thickness x.
It states that

Ncc = Nas + PN0(1− e−βx)e−µx, (2)

where Nas is a component due to the atmo-
spheric muons, P is the probability that an
shower is detected by the Geiger counters, and
β is a free parameter.

4. Analysis and Results

Shown in Table 1 are our raw data.
Figures 6 and 7 show the single counts from

RM1 and RM2 Geiger counters. The first
counter did not obey the law of Equation 1
as did the second counter. This may be due
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Table 1

Experimental Results

RM1 Counts RM2 Counts Coincidences Integration Time Lead Thickness
(s) (mm)

46708 69222 199 82011.7± 0.1 4.85± 0.05
58203 156858 261 91224.4± 0.1 7.75± 0.05
51281 51059 231 82196.9± 0.1 18.7± 0.05
166615 241743 688 258835.0± 0.1 29.1± 0.05
112471 69361 424 172800.0± 14400 35.0± 0.05
50526 36334 174 85713.1± 0.1 39.8± 0.05
53017 35652 152 86569.9± 0.1 47.0± 6.
207357 148441 669 345092.0± 0.1 51.0± 0.05

Note.—Two of our data points suffered larger errors than normal in the lead thickness and
integration timing measurements due to human error.

Fig. 2.— Cosmic ray shower from Jackson &
Welker (2001) Fig. 3.— Cloud chamber representation of

cosmic ray shower Jackson & Welker (2001)
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Fig. 4.— Our experimental setup. RM sig-
nifies “radiation monitor,” which in our case
were Geiger tubes. We did not use the third
RM, RM3. (Jackson & Welker 2001)

Fig. 5.— Geiger tubes such as those used in
our experiment. The figure shows voltages of
∼500 V, which is similar to the voltages at
which we drove our tubes.
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Fig. 6.— Single counts for RM1

to the fact that the second counter’s voltage
was stabler than that of the first. Figure 8
shows the ratio of the counters’ single counts,
again as a function of the lead thickness x.
Because this graph is not unity, there were
systematic errors introduced into our mea-
surements. Had our Geiger counters been cal-
ibrated better and remained stable, our single
counts would have looked like Figure 9.

For our coincidences, we observed behav-
ior like that of Equation 2 as shown in Fig-
ure 10. It peaked at low lead thickness due
to the competing effects of more lead thick-
ness blocking out lower energetic particles and
more lead thickness increasing the interaction
cross section for showering due to the lead.

For reference, we show Rossi’s results in
Figure 11. Rossi used three Geiger counters
instead of our two.

5. Conclusion

Although there is only one point in Fig-
ure 10 that shows a turnover in the coinci-
dence versus lead thickness trend, we inter-
pret this as real and not due to any system-
atic uncertainties. Because the error bars are
overly small, due to our long integration times
per lead thickness, it would have been better
to take more points just to see if our first data
point in Figure 10 is an outlier or not. Nev-
ertheless, the we do believe that, despite our
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Fig. 7.— Single counts for RM2
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Fig. 8.— Ratio of RM1 and RM2 counts

Fig. 9.— Expected single counts from Jack-
son & Welker (2001)
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Fig. 10.— Measured coincidences

Fig. 11.— The Rossi experiment’s coinci-
dences
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seeming scatter plots (Figures 6 and 7), both
the laws of Equations 1 and 2 are obeyed.
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A. Mathematica plotting commands

We used Mathematica to generate the plots in this paper. The following Mathematica commands
also illustrate how we propagated Poisson and measurement errors.

Needs["ErrorBarPlots‘"]

TableForm[
data = ReadList[
SystemDialogInput["FileOpen"], {Number, Number, Number, Number,
Number, Number, Number}]]

ErrorListPlot[
plotlist =
Table[{{data[[x, 6]], data[[x, 3]]/(data[[x, 4]]/3600)},
ErrorBar[data[[x, 7]],
data[[x, 3]]/(data[[x, 4]]/3600) Sqrt[
1/data[[x, 3]]^3 + (data[[x, 5]]/data[[x, 4]])^2]]}, {x, 1, 8}],

PlotStyle -> Thick,
FrameLabel -> {{"Coincidences per Hour",

Null}, {"Lead Thickness (mm)",
"Coincidences vs. Lead Thickness"}}, Frame -> True,

Axes -> False]

ErrorListPlot[
Table[{Log[10, {data[[x, 6]], data[[x, 3]]/(data[[x, 4]]/3600)}],
ErrorBar[data[[x, 7]],
data[[x, 3]]/(data[[x, 4]]/3600) Sqrt[
1/data[[x, 3]]^3 + (data[[x, 5]]/data[[x, 4]])^2]]}, {x, 1, 8}],

PlotStyle -> Thick,
FrameLabel -> {{"log(Coincidences per Hour)",

Null}, {"Lead Thickness (log(mm))",
"Coincidences vs. Lead Thickness"}}, Frame -> True,

Axes -> False]

ErrorListPlot[
counter1 =
Table[{{data[[x, 6]], data[[x, 1]]/(data[[x, 4]]/3600)},
ErrorBar[data[[x, 7]],
data[[x, 1]]/(data[[x, 4]]/3600) Sqrt[
1/data[[x, 1]]^3 + (data[[x, 5]]/data[[x, 4]])^2]]}, {x, 1, 8}],

PlotStyle -> Thick,
FrameLabel -> {{"Counts per Hour", Null}, {"Lead Thickness (mm)",

"Counter #1 Counts vs. Lead Thickness"}}, Frame -> True,
Axes -> False]

ErrorListPlot[
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Table[{Log[10, {data[[x, 6]], data[[x, 1]]/(data[[x, 4]]/3600)}],
ErrorBar[data[[x, 7]],
data[[x, 1]]/(data[[x, 4]]/3600) Sqrt[
1/data[[x, 1]]^3 + (data[[x, 5]]/data[[x, 4]])^2]]}, {x, 1, 8}],

PlotStyle -> Thick,
FrameLabel -> {{"log(Counts per Hour)",

Null}, {"Lead Thickness (log(mm))",
"Counter #1 Counts vs. Lead Thickness"}}, Frame -> True,

Axes -> False]

ErrorListPlot[
counter2 =
Table[{{data[[x, 6]], data[[x, 2]]/(data[[x, 4]]/3600)},
ErrorBar[data[[x, 7]],
data[[x, 2]]/(data[[x, 4]]/3600) Sqrt[
1/data[[x, 2]]^3 + (data[[x, 5]]/data[[x, 4]])^2]]}, {x, 1, 8}],

PlotStyle -> Thick,
FrameLabel -> {{"Counts per Hour", Null}, {"Lead Thickness (mm)",

"Counter #2 Counts vs. Lead Thickness"}}, Frame -> True,
Axes -> False]

ErrorListPlot[
Table[{Log[10, {data[[x, 6]], data[[x, 2]]/(data[[x, 4]]/3600)}],
ErrorBar[data[[x, 7]],
data[[x, 2]]/(data[[x, 4]]/3600) Sqrt[
1/data[[x, 2]]^3 + (data[[x, 5]]/data[[x, 4]])^2]]}, {x, 1, 8}],

PlotStyle -> Thick,
FrameLabel -> {{"log(Counts per Hour)",

Null}, {"Lead Thickness (log(mm))",
"Counter #2 Counts vs. Lead Thickness"}}, Frame -> True,

Axes -> False]

ListPlot[Table[{data[[x, 6]], data[[x, 2]]/data[[x, 1]]}, {x, 1, 8}],
PlotStyle -> Thick,
FrameLabel -> {{Null, Null}, {"Lead Thickness (log(mm))",

"Counter #2/Counter #1 counts ratio vs. Lead Thickness"}},
Frame -> True, Axes -> False, Joined -> True]
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