
Liu & Sadler’s paper studies the effect of different modes (i.e., the computer mediated communication, or CMC, and the traditional mode) of peer reviews on ESL students’ writing. The researchers raise three questions as to 1) whether asynchronous CMC, in this case peer editing using *Word*, will result in different kinds of comment distribution than the traditional mode; 2) whether synchronous CMC, or communication using Multi-user domains Object-oriented (MOO), will result in different distribution of comment types than face-to-face interaction; and 3) to what extent would students revise their drafts based on comments made via these two different modes.

The subjects studied in this project were eight ESL students (four in each group) enrolled in two ENGL108 classes taught by the same instructor. One of the classes met in a computer lab, while the other met in a traditional classroom. For the computer-enhanced class, the students first did peer reviews using *Microsoft Word*’s “Add Comment” function. They then used MOO to exchange ideas about each other’s drafts. The traditional group did peer editing using paper and pen, followed up by a face-to-face group workshop.

Asynchronous comments retrieved from the two modes of peer editing process were compared in their overall numbers, the numbers and percentages in different areas (local vs. global), the numbers and percentages of comments of different types (evaluation, clarification, suggestion, and alteration), and the numbers and percentages of comment of different natures (revision-oriented vs. non-revision oriented). The
technology group was found to have made a larger number of overall comments (316 vs. 180), and revision-oriented comments (291 vs. 136). Data collected from MOO and face-to-face interaction showed that MOO is not as effective as face-to-face interaction, because a large percentage of the students’ input in MOO were for “conversation maintenance” and could not serve for peer review purposes. Finally, the technology group made more actual revisions in number (79 vs. 56), but less in percentage of revision/comments (i.e., 27% vs. 41%).

The study found that a great percentage of the technology group comments are local area comments, and alteration comments, suggesting that spelling and grammar check of WORD may have an effect on the result. Also, the technology group relied heavily on the text itself while the traditional group relied on the peer review sheet. In addition, the researchers suggest the less percentage of revision may be due to the nature of WORD comment presentation. --In the old version of WORD, the inserted comments would be hidden until the user click on highlighted parts of the text, rendering the comments “less visible”.

This study provides an excellent example of data analysis of the peer comments. And unlike most previous researches, this study takes into consideration the actual effectiveness of comments, which is very important for pedagogical purposes. However, while the two researchers claimed that they found “qualitative and quantitative” differences between the two groups, one can infer from the data that such difference would be almost set off as zero (168 vs. 167 comments) if one excludes local alteration, which are pure grammar and spelling check functions achieved by Word. Also, the technology group made far less percentage of global comments than the traditional group
(28% vs. 42%). Thus, a question haunts our mind: are we glad that the students are letting technologies to complete tasks that are supposed to draw on the learners’ critical thinking and writing abilities? Wouldn’t such functions of Word be more beneficial if individual writers can use them at their autonomies? Have we really achieved our purpose of “peer review” if a large number of peer feedbacks are made at the expense of less attention to the essay’s global issues? I believe researchers and educators are still on the way to tease out the optimal combination of CMC and traditional classroom practices.

Reviewed by Yi Xu, 2005.