
Chapter 9  
Estimating the Arithmetic Mean Difference 

 
Sex group and blood pressure 
 
The arithmetic mean difference was not my preferred measure of effect (chapter 3), but 
for several related reasons I decided to give it a place of honor in the second part of the 
book:  First, it is easier to explain key principles of estimation on the additive scale 
(difference) than on the multiplicative scale (ratio).  Second, we often estimate the mean 
difference by linear regression—the historical foundation of all regression models.  Third, 
many of the principles of linear regression hold in other statistical models (by which we 
estimate other measures of effect.)  I have not abandoned, however, my commitment to 
ratio measures of effect and suggest that you do the same.  Try to learn from this chapter 
and the next one about regression and estimation in general, but compute the geometric 
mean ratio in causal inquiry (chapter 11).  
 
In chapter 3, you may recall, we estimated the arithmetic mean difference in FEV1 
between smokers and former smokers.  Here, we will first consider an example of sex 
group (causal variable) and systolic blood pressure (effect).  Assuming that one's sex and 
one's blood pressure have no common cause, we may set aside fears of confounding paths 
(chapter 6).  And if prior knowledge of blood pressure did not affect the chances of 
getting into the sample, we may also assume the absence of selection bias (chapter 7).  On 
these assumptions, some measures of the marginal association between sex and systolic 
blood pressure (SBP) are measures of the effect of sex (chapter 3).  Table 9–1 shows 
relevant variables and several observations in the data file that we'll use. 
 
Table 9–1.  The first six observations in a data file (N=1,000 people) 
Observation SEX 

(0=female; 1=male) 
SBP* 

(mmHg) 
AGE 

(years) 
1 0 161.0 73 
2 0 145.5 77 
3 0 147.0 60 
4 1 111.5 81 
5 0 102.5 59 
6 1   98.0 72 
* Systolic blood pressure 
 
 
The means and the mean difference 
 
In this sample of 1,000 people, 45 to 84 years old, mean SBP was 126.8 and 124.5 mmHg 
in men and women, respectively.  Figure 9–1 schematically illustrates several values of SBP 
in each sex and shows the two means (open circles).  I also drew two lines: a dashed line 
that passes through the means and vertical line that corresponds to the mean difference. 
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                    Figure 9–1.  Illustration of data points, mean values, and the mean difference 
 
As you know, every straight line can be described by a unique equation, Y = β0 + β1 X, 
where β0 is the intercept (the value of Y when X=0) and β1 is the slope.  We define the 
slope as ΔY/ΔX (the "rise" divided by the "run"), or alternatively, as the change in Y when 
X increases by 1 unit.  Every point (x, y) on the line fulfills the equality y = β0 + β1 x. 

Notice that the dashed line in Figure 9–1 contains only two meaningful points:         
(0, 124.5) and (1, 126.8).  All other points do not correspond to any reality (because the 
variable SEX takes only two values: 0 and 1).  We may still write, however, the line's 
equation, SBP = β0 + β1 SEX, and find out the values and meaning of β0 and β1. 

By definition, the intercept (β0) should be the value of SBP when SEX=0.  But we 
already know that number and its meaning from Figure 9–1: it is 124.5 mmHg—the mean 
value of SBP in women.  To find out the meaning of the slope (β1), identify the "rise" of 
SBP when the value of SEX increases by 1 unit, from 0 to 1.  That rise, shown as the 
vertical line, is also known.  It is the mean difference (2.3 mmHg): mean SBP in men 
minus mean SBP in women.  To sum up, the dashed line in Figure 9–1 corresponds to the 
equation "SBP = 124.5 + 2.3 SEX”. 
 
 
Linear regression and the mean difference 
 
In Figure 9–1, I conveniently drew a line to connect the two means, and thereby set its 
intercept to be the mean of SBP in women and its slope to be the arithmetic mean 
difference.  But that is not the only possible line that may connect a column of data points 
in women with a column of data points in men.  I could have connected the median 
values in each sex, or the 25th percentiles, or any other pair of values.  In fact, I could 
have chosen from an infinite number of lines.  What is so special, then, about connecting 



the means?  Why choose a line whose intercept is the arithmetic mean of SBP in women 
and whose slope is the mean difference? 

Linear regression offers an answer to this question by starting from a neutral 
viewpoint, with no a priori preference for any pair of values.  It tells you to look for a line 
that is "as close as possible" to the various data points—a line whose intercept and slope 
are determined by the observations.  In the method of linear regression (or more 
precisely, ordinary least-squares regression), you should select the "winning" line for the 
blood pressure data according to the following theoretical algorithm: 
 
1.   Draw a candidate straight line 
2.   Calculate the vertical distance (call it "e”) between each blood pressure value and the 

candidate line. (Figure 9–2 shows several examples.) 
3.   Square the vertical distance: e2

4.   Sum the squares:  Σ e2  
5.   Among all possible lines, choose the one for which you get the smallest sum of 

squares.  (Rest assured that no two lines would meet that condition.) 
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         Figure 9–2.  A few examples of the vertical distance (e) from a candidate line 
 
The line that generates the smallest sum of squares is called the linear regression line.  
And it happens to be the one that I drew in Figure 9–1: a line whose intercept is the mean 
of SBP in women and whose slope is the mean difference.  This is no one-time 
coincidence.  For every similar example, the mean difference will win the contest, proving 
to be the slope of the line for which the sum of squares is the smallest.  The mathematical 
explanation is simple:  The sum of squares about the arithmetic mean is smaller than the 
sum of squares about any alternative number. 

Linear regression is therefore a method by which we can estimate the mean 
difference.  Of course, you don't really need it to compute the marginal (crude) 
association between a binary exposure and a continuous effect, but it will prove essential 



in more complex tasks of estimation—when we'll need to condition on confounders, for 
example (chapter 6). 
 
 
More on linear regression 
 
Linear regression and other regression models are exploited for causal inquiry, but their 
underlying principle is prediction, not causation.  These equations predict the value of 
one variable from the value of another (or from the values of other variables), regardless 
of which are the causes and which is the effect—if at all.  If we are told, for instance, that 
John belongs to our sample, we may predict his systolic blood pressure ("guess" the 
number) by entering SEX=1 into the equation "SBP = 124.5 + 2.3 SEX”.  Of course, John 
and all of his fellow men share a single predicted blood pressure (126.8 mmHg), and so 
do all of the women (124.5 mmHg).  But if there were other variables next to SEX, we 
would have found a more diversified prediction. 

You can tell from Figure 9–1 that for almost every member of the sample the 
measured blood pressure differs from our model-based prediction (which is the sex-
specific mean).  That difference is the vertical distance (e) from the regression line.  For 
this reason the mathematical relation between measured SBP and SEX takes the following 
form: "SBP = 124.5 + 2.3 SEX + e”.  And if you wish to write precise statistical notation, add 
the subscript "i" to indicate the i-th person: SBPi = 124.5 + 2.3 SEXi + ei.  John’s measured 
value, for instance, is the sum of his predicted value (124.5 + 2.3 x 1 = 126.8) and the 
vertical distance (e) between that prediction and his measured value.  (If measured SBP is 
smaller than predicted SBP, we add the negative of the distance.) 

Textbooks in statistics specify several assumptions about "e", which I will not discuss 
here.  This term goes by several names, neither of which is particularly good: "error term", 
"disturbance", "random disturbance ", and "random noise".  Although I have no better 
name to offer, I suggest that "e" is the expression of indeterministic causation (chapter 
1)—whenever the model claims to estimate an effect.  Male sex generates a propensity 
toward some value of blood pressure, but the actual blood pressure of John has emerged 
as probabilistic realization of that propensity.   

In the absence of randomization, deterministic statisticians usually attribute "e" to 
sampling-related randomness, though they never explain what was "sampled" from what 
(chapter 4).  Sometimes, "e" is attributed to "random measurement error", assuming that 
John and his fellow men share the same true blood pressure (?).  And in some minds, this 
term is supposed to represent the combined effect of unspecified determinants of blood 
pressure, which somehow add up to a random component.  Statistics textbooks list 
mathematical requirements from "e", without which the model does not rest on a solid 
foundation.  They also explain how to check whether some of the requirements are met. 
 
 
SAS PROC GLM 
 
Let's re-examine our example of sex and systolic blood pressure from the very beginning.  
Our goal is to estimate, by linear regression, the mean difference in SBP for the causal 
contrast between male sex and female sex.  We already know that the slope (β1) of the 
regression line "SBP = β0 + β1 SEX” is equal to the mean difference, but we don't know the 
value of the slope, yet.  At the moment, both β1 and β0 are unknown coefficients.  The task 



at hand is, therefore, to solve the equation "SBP = β0 + β1 SEX + e”: to find the values of β0 
and β1 for which the sum of squares (Σ e2) is minimal. 

Statistical theory has found formulae for β0 and β1, which you can find in many 
textbooks.  SAS, the statistical software I will use throughout, offers several procedures to 
fit a linear regression line—that is, to find its coefficients.  Of these, PROC GLM is widely 
used.  (PROC is short for procedure; GLM is the acronym for "general linear models".) 

 
SAS code  
 
PROC GLM; 
 MODEL sbp = sex/SOLUTION CLPARM; 
 run; 
 
Below the PROC GLM statement, you find a "model statement" that specifies the regression 
variables.  Analogous to the equation "SBP = β0 + β1 SEX”, systolic blood pressure is 
written to the left of the equality sign and the sex variable is written to the right.  In the 
language of regression, SBP is called the dependent variable or the response variable, 
whereas SEX carries at least four names: independent variable, explanatory variable, 
regressor, and predictor.  Note that in correct terminology we "regress the dependent 
variable on the independent variable" and not the other way around.  Again, the math of 
the model does not rest on any causal assumption. 

To the right of the slash, I added two key words: SOLUTION requests the solution of the 
regression equation (SBP = β0 + β1 SEX + e), namely, the values of the coefficients (of the 
line with the smallest the sum of squares…)  CLPARM requests confidence limits for the 
regression coefficients (parameters.) 
 
 
Selected SAS printout 
 
SAS printout contains many numbers, some are more useful than others.  Here and 
elsewhere, I selected those pieces that serve my emphasis and pedagogical preference.   
Test statistics and p-values do not show up for reasons that were explained in chapter 8. 
 
                          The GLM Procedure 
 
Dependent Variable: sbp       SYSTOLIC BLOOD PRESSURE (mmHg) 
 
                                               Sum of 
       Source                      DF         Squares      
 
       Model                        1       1304.4140        
       Error                      998     454303.9420        
       Corrected Total            999     455608.3560 
 
                                   Standard 
 Parameter         Estimate           Error       95% Confidence Limits 
 
 Intercept      124.5202991              
 sex              2.2889114      1.35216360      -0.3644985   4.9423213 



As you can see, the method of linear regression indeed identified the same line that I 
drew in Figure 9–1: SBP = 124.5 + 2.3 SEX.  The sum of squares (Σ e2) about this line is 
shown at the top of the printout in the row titled "Error".  No other line would have 
generated a sum of squares smaller than 454,303.942.  If you have taken a course in linear 
regression, you probably know the meaning of DF and other kinds of sum of squares.  (If 
you don't know, it doesn't matter.) 

For our purpose the key number on the printout is, of course, the coefficient of 
SEX— the slope of the regression line.  This is the mean difference in SBP between men 
and women.  Again, in this sample the men's average is 2.3 mmHg higher than the 
women's average.  Assuming that the estimator is unbiased, we may use the standard error 
(1.4) to compute a confidence interval or a confidence limit difference (chapter 8).  The 
95% confidence limits are already provided. 
 
 
Age and blood pressure 
 
Suppose that instead of estimating the effect of sex on systolic blood pressure, we wish to 
estimate the effect of age.  Unlike sex, however, age is a continuous variable so we have to 
compute the mean difference for many causal contrasts (chapter 2): ages 50 and 52; 50 
and 63; 58.2 and 62.9; and many other pairs.  Obviously, it is impossible to replicate the 
method we have just used—for every conceivable contrast.  In some ages the number of 
observations is small; blood pressure was not measured, and cannot be measured, in every 
possible age; and the number of pairs is infinite. 

Linear regression offers several solutions, the simplest of which ask you to make a non-
trivial assumption:  For any specified age difference (call it Δ), assume that the mean 
difference is constant, regardless of the ages you contrast.  For example, if you specify Δ=1 
year, causal contrasts such as [50, 51], [51.5, 52.5], and [62.9, 63.9] should produce the 
same mean difference.  And for Δ=2.5 years, contrasts such as [45, 47.5], [57.5, 60], and 
[60.1, 62.6] should also share a single mean difference.  In the language of causation, you 
are asked to assume that the effect of "Δ years of aging" on mean systolic blood pressure is 
constant (on the additive scale) whatever the starting age may be.   

In Figure 9–3, I plotted several hypothetical data points that satisfy that restrictive 
assumption.  I chose a mean difference of +2 mm Hg per Δ=1 year, and five successive 
contrasts: [50, 51]; [51, 52]; [52, 53]; [53, 54]; [54, 55].   
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     Figure 9–3.  An example of a constant mean difference  (+2 mmHg)  
                          per 1 year of aging 

 
As the graph shows, on the assumption of a constant mean difference, mean SBP must be 
a linear function of AGE:  Mean SBP = β0 + β1 AGE 

 
The intercept of this line is not particularly helpful (mean SBP when AGE=0), but the 
slope, if estimated, should serve us well in causal inquiry.  By definition, β1 is the mean 
difference in SBP per 1 year of aging.  To compute the (constant) mean difference for 
any Δ years of aging (such as 2.5), just multiply β1 x Δ.  Table 9–2 shows a general proof of 
this rule, using the notation "k" and "k+Δ” for the contrasted pair. 
 
   Table 9–2.  Computing the effect of Δ years of aging, on the  
                      restrictive assumption of a constant mean difference 

Causal assignments 
 

Mean SBP = β0 + β1 AGE 

AGE = k+Δ Mean SBP = β0 + β1 (k+Δ) 
AGE = k Mean SBP = β0 + β1  k   
Effect of Δ years of aging  
(mean difference in SBP) 

                    
                            β1 Δ 

    
 
Linear regression of SBP on AGE 
 
If you are willing to make the assumption of a constant mean difference per Δ years of 
aging, the task at hand is reduced to finding a straight line that will pass through many 
mean values of SBP.  Again, linear regression offers a method for choosing that line: Solve 
the equation "SBP = β0 + β1 AGE + e”; find the coefficients for which the sum of squared 
"error" is the smallest. 



Figure 9–3 illustrates several data points and some of the vertical distances that should 
be squared and summed up.  On several assumptions about "e", statistical theory reassures 
us, again, that the "winning" straight line will pass through the (estimated) means of SBP, 
connecting an infinite number of them.  The product "β1 x Δ” will tell us the mean 
difference for any specified Δ of age. 
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                            Figure 9–3.  Illustration of linear regression of SBP on AGE  
 
SAS code 
 
PROC GLM; 
 MODEL sbp = age/SOLUTION CLPARM; 
 run; 
 
As you see, the code is identical to the one I have used to regress blood pressure on sex.  I 
have just substituted the continuous variable AGE for the binary variable SEX.  
 
 
 
Selected SAS printout 
 
                               The GLM Procedure 
 
Dependent Variable: sbp       SYSTOLIC BLOOD PRESSURE (mmHg) 
 
                                      Sum of 

Source                     DF        Squares     
 

Model                       1     58081.6546     
 

Error                     998    397526.7014        
 

Corrected Total           999    455608.3560 
 
 



                                Standard 
Parameter         Estimate      Error          95% Confidence Limits 
 
Intercept      80.53075063       
age             0.73842716      0.06115135    0.61842719   0.85842714 
 
The regression line of SBP on AGE has an intercept of 80.5 and slope of 0.7 (Figure 9–4).  
No other straight line would have generated a sum of squared "error" smaller than 
397,526.7014. 
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         Figure 9–4.  The linear regression line: SBP regressed on AGE 
 
With this line at hand we can estimate the mean difference for any Δ years of interest.  For 
example, the estimated difference in blood pressure for the contrast between the ages of 
79.4 and 67.3 (Δ=12.1) is β1 x Δ = 0.7 x 12.1= 8.5 mmHg. 
 
The printout shows the 95% CI for the slope—for the mean difference in SBP when Δ=1.  
The 95% CI for any other Δ may be computed according to the following formula: 
 

(β1 x Δ) + 1.96 x SE (β1 x Δ) 
 
A rule of arithmetic for standard errors tells us that SE (β1 x Δ) = SE (β1) x Δ.  Therefore, 
the 95% CI may also be written as 
 

(β1 x Δ) + 1.96 x SE (β1) x Δ 
 
For example, when Δ=12.1 years, the 95% CI for the mean difference in SBP is 
 
0.7 x 12.1  + 1.96 x 0.06 x 12.1= [7.1, 9.9] 
 
 
Beyond a straight line 
  
Whenever we fit a regression model to estimate the effect of a continuous exposure (E) 
on a dependent variable (Y), we do not come with empty hands, just asking the model to 



hand us the estimates.  We must first specify a function that connects Y to E (Y=f(E), in 
notation), and inevitably force the dependent variable to change in a pre-specified 
manner.  Such a function is called the dose-response function, because it is supposed to 
tell us how the value of the response variable changes as the "dose" (value) of the 
exposure changes.  For example, by writing the equation "Mean SBP = β0 + β1 AGE”, we 
impose a linear function on the relation of mean systolic blood pressure with age.  That 
constraint, as you recall, has resulted from our assumption about a constant mean 
difference per Δ years of aging.  We supplied a causal assumption. 
 
But how do we know a priori that the mean difference should be constant?  Or 
alternatively, how do we know that a straight line captures the true dose-response function 
for the effect of age on systolic blood pressure? 
 
The simple answer is that we usually don't know.  In rare instances, we may be able to 
display the data and convince ourselves visually that the observations scatter around a 
straight line.  But in most cases we don't have that luxury, either because it is difficult to 
identify a pattern in a cloud of data points, or because there are no data points to display 
on a 2-dimensional graph (when the model contains several regressors, for example.)  
Nonetheless, you will find many advocates for the linear function:  Some invoke the 
principle of simplicity, arguing that scientists should always prefer a simple theory to a 
complex one.  And is there anything simpler than "Mean SBP = β0 + β1 AGE”?  Others tell 
us to learn from experience: in retrospect, many causal relations seem to comply with a 
linear function.  Others, yet, say that a straight line is much more plausible than many 
alternative lines, especially for a causal relation. 

If you subscribe to Popper's philosophy of science (chapter 4) and cherish the pursuit 
of Truth, none of these arguments hold any merit.  Your scientific duty is to discover the 
true dose-response relation, from which you may estimate the effect of various causal 
contrasts.  To that end, you should mercilessly interrogate the data: specify alternative 
functions, examine the resulting graphs, and decide which function to accept as a good 
approximation for the unknown Truth.  A priori preference for a straight line has no 
place in this inquiry and could lead you astray.  Moreover, the first question to be 
answered is "what do the data tell us about the dose-response function?"—regardless of 
whether their story seems "plausible".  Of course, we may later modify the story (smooth a 
bumpy graph, for example), or remain undecided between two graphs, or even decide 
against coherent inference from the data. 

As you might have guessed, alternatives to a linear function are not assumption-free, 
either.  They just replace one set of assumptions with another set, removing some of the 
constraints at the cost of imposing others.  To illustrate two commonly used alternative 
functions, let's return to the example of age and systolic blood pressure. 
 
 
A “step” function 
 
If there were enough observations for some discrete ages, we could have computed the 
mean value of SBP for those ages, display the sequence of means, and perhaps visually 
learn something about the dose-response function.  This method might occasionally 
prove helpful, but at least two drawbacks lurk in the background: we ignore some of the 
data (ages for which we don't have multiple observations), and we run the risk of "noisy 
estimates" (means that are based on too few observations). 



This idea, however, has set the foundation for another method, which has been 
adopted by many researchers.  Rather than computing the mean of SBP at discrete ages, 
compute it for several contiguous age groups.  Figure 9–5 shows an example: I computed 
the mean SBP in four successive 10-year age groups (45-54, 55-64, 65-74, 75-84) and 
displayed each number as a horizontal line.  Then, I added connecting vertical lines to 
create a continuous graph. 

By adding one assumption, we can turn the graph in Figure 9–5 into a dose-response 
function.  Let's assume that the mean in a 10-year interval also estimates the mean in each 
nested age—in each causal assignment within the interval.  The value of 116.5 mmHg, for 
instance, estimates the mean SBP in every age within the first interval [45, 54] whereas the 
value 125.5 mmHg estimates the mean in every age within the second interval [55, 64].  
On this assumption, the "step" function is Figure 9–5 is a primitive dose-response function 
from which we can compute several mean differences, though not all. 

We cannot estimate the effect of age on systolic blood pressure for pairs of causal 
assignments that belong to the same interval, because they share the same mean (zero 
mean difference.)  But pairs of causal assignments that reside in different age intervals 
will generate meaningful estimates: we just have to subtract the mean of SBP in one 
interval from the mean in another.  In Figure 9–5, I show three estimates (9.0, 14.2, 21.9), 
using the youngest group as the reference causal assignment.  Three other mean 
differences may be derived from the first three by subtraction—for a total of six.  For 
example, the estimated mean difference between a causal assignment in the third age 
group and its counterpart in the second is 14.2–9.0 = 5.2 mm Hg (or 130.7–125.5). 
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                Figure 9–5.  Mean SBP by four age groups 
 
 
How do the assumptions of the step function differ from those of a straight line? 

 
As you can tell from the graph, we abandoned the assumption of a constant mean 
difference per Δ years of aging.  On the other hand, we imposed two new assumptions: 



zero mean difference within each 10-year interval and an abrupt change of the mean at 
the junction points. 

Figure 9–5 looks as implausible to me as it looks to you.  Is there any reason for Nature 
to create causal relations that follow a step-like dose-response function?  Is there any 
reason why the mean difference should be zero for the causal assignments [52, 54] and 
9.0 mmHg for the nearby pair [54, 56]?  The answer to both questions is "No".  Again, we 
have imposed the step function on the data, just as we previously imposed a linear 
function (which may be similarly criticized for being simplistic and naïve.)  But we did 
gain something.  We now have the possibility of imagining a smooth line that would pass 
through the steps, and possibly guess the shape of the underlying dose-response function.  
Fitting that imaginary line does not follow any algorithm and may occasionally be as 
subjective as the answers to a Rorscharch inkblot test.  Nonetheless, we got another view 
of the data and moved one step away from a world that contains nothing but straight 
lines. 
 
 
Fitting the “step” function by linear regression 
 
Just as we didn't need linear regression to estimate the difference in mean SBP between 
men and women, we don't really need it to compute the differences between four age 
groups.  The method will become essential, however, when confounding or effect 
modification start playing a role.  For the time being, let's find out how linear regression 
could create the dose-response function in Figure 9–5. 

Our task is to write a regression equation whose coefficients will estimate the means 
and the mean differences (Figure 9–5.)  On first impression, it is not at all clear that a 
single equation could describe a graph that is composed of four horizontal lines.  Since a 
horizontal line corresponds to "Y=constant", it seems that we must write four equations: 
 
If 45 ≤ age < 55,  Mean SBP =  A  
If 55 ≤ age < 65,  Mean SBP =  B   
If 65 ≤ age < 75,  Mean SBP =  C  
If 75 ≤ age < 85,  Mean SBP =  D   
 
One method of reducing these equations into one requires a preliminary step called 
"dummy coding".  In this step we replace the four categories of age with three binary 
"dummy variables" as shown in Table 9–3. 
 
      Table 9–3.  Replacing the four categories of age with three  
                        "dummy variables"  
 

Age 
category 

AGE2 AGE3 AGE4 

45-54 0 0 0 
55-64 1 0 0 
65-74 0 1 0 
75-84 0 0 1 

 
The wisdom behind the conversion is not apparent yet, but notice first that the new 
variables preserve the original data, because the joint values of [AGE2, AGE3, AGE4] 



identify each age category:  The oldest group, for example, is uniquely identified by 
[AGE2=0, AGE3=0, AGE4=1] whereas the youngest group is uniquely identified by 
[AGE2=0, AGE3=0, AGE4=0].  For reasons that will become clear shortly, the group that 
takes a zero value on all dummy variables is called the "reference category."  I chose the 
youngest group, but any other choice is permissible. 
 
Second, it turns out that equation 9–1, below, corresponds to a step function: 
 
Mean SBP = β1 + β2 AGE2 + β3 AGE3 + β4 AGE4   (Equation 9–1) 
 
To convince ourselves, let's derive the mean SBP for each age group by entering the 
appropriate values of the three dummy variables. 
 
If 45 ≤ age < 55:   Mean SBP = β1 + β2 x 0 + β3 x 0 + β4 x 0 = β1

If 55 ≤ age < 65,   Mean SBP = β1 + β2 x 1 + β3 x 0 + β4 x 0 = β1 + β2

If 65 ≤ age < 75,   Mean SBP = β1 + β2 x 0 + β3 x 1 + β4 x 0 = β1 + β3

If 75 ≤ age < 85,   Mean SBP = β1 + β2 x 0 + β3 x 0 + β4 x 1 = β1 + β4

 
Because the expressions on the right hand side are all constants, equation 9–1 indeed 
corresponds to four horizontal lines, one line per age group.  The intercept (β1) is the 
value of the dependent variable when all regressors take the value of zero, namely: mean 
SBP in the reference interval (ages 45 to 54).  The three slopes (β2, β3, β4) estimate the 
mean difference between any causal assignment in the respective age interval and any 
causal assignment in the reference.  Table 9–4 shows one example of the explicit proof: 
 
   Table 9–4.  Deriving the effect of a causal contrast between age 60 (second interval) and  
                      age 50 (reference interval) from equation 9–1  

Causal assignment 
 

Values of 
dummy 
variables 

Mean SBP = β1 + β2 AGE2 + β3 AGE3 + β4 AGE4 

 
AGE = 60 

AGE2=1  
AGE3=0  
AGE4=0 

 
Mean SBP = β1 +   β2 x 1   +    β3 x 0   +   β4 x 0 

 
AGE = 50 

AGE2=0 
AGE3=0 
AGE4=0 

 
Mean SBP = β1 +   β2 x 0   +    β3 x 0   +   β4 x 0 

Effect   
(mean difference) 

                     
                               β2

 
To fit the regression model by SAS, we should create the dummy variables in a data step.  
Then, we add them to the "model statement", replacing the original age variable.    
 
SAS code 
 
DATA one; 
IF     age<55 THEN DO;   age2=0; age3=0; age4=0; END; 
IF 55<=age<65 THEN DO;   age2=1; age3=0; age4=0; END; 
IF 65<=age<75 THEN DO;   age2=0; age3=1; age4=0; END; 
IF 75<=age    THEN DO;   age2=0; age3=0; age4=1; END; 



 
PROC GLM; 
 MODEL sbp = age2 age3 age4/SOLUTION; 
 run; 
 
Selected SAS printout 
 
                               The GLM Procedure 
 
Dependent Variable: sbp       SYSTOLIC BLOOD PRESSURE (mmHg) 
 
                                      Sum of 
Source                     DF        Squares    
 
Model                       3     55825.2486     
 
Error                     996    399783.1074       
 
Corrected Total           999    455608.3560 
 
 
 
                                         Standard 
       Parameter         Estimate           Error     
 
       Intercept      116.5308642            
       age2             8.9982267      1.64269566       
       age3            14.2303298      1.65425898       
       age4            21.9465794      2.06320473      
 
 
The regression equation is therefore, 
 

Mean SBP = 116.5 + 9.0 x AGE2 + 14.2 x AGE3 + 21.9 x AGE4 
 
And the coefficients are identical to the numbers in Figure 9–5.  Again, 116.5 mmHg is 
the mean SBP in the first age interval, whereas 9.0, 14.2, and 21.9 are the mean 
differences between the next three intervals and the first interval. 
 
It is not entirely clear whether the step function supports a straight line.  If the differences 
between adjacent means (the "risers") were identical, then a straight line would have fit 
perfectly.  But the three risers are 9.0; 5.2 (=14.2–9.0); and 7.7 (=21.9–14.2)—not 
identical and not even monotonically increasing or monotonically decreasing.  On the 
other hand, these numbers have followed an arbitrary choice of the intervals and it is 
possible that a different choice (five-year intervals, for example) would have generated a 
different pattern.  So, how do you decide which intervals to choose?  How do you decide 
how to categorize a continuous exposure to explore the dose-response function? 

I have no simple answer to offer.  We should naturally prefer many small intervals 
because a sequence of small steps gets us closer to the image of a smooth line.  But the 
unavoidable cost is fewer observations per interval, which means imprecision of the means 



and a bouncy graph.  Unfortunately, no rule can strike a balance between the preference 
and the cost.  It is another example of the bias-variance tension (chapter 8), and another 
reminder that no algorithm can take us to the Truth.  Many researchers use the percentile 
distribution of the exposure to categorize the sample into quartiles or quintiles (equal size 
groups); and if the sample is small, tertiles may be the limit.  Others choose the cutoff 
points according to prior assumptions about "clinically important values", or simply for 
reasons of simplicity, as I have done here.  The idea of statistical efficiency sometimes 
support an even splitting of the sample size, though at the end, all choices share an 
element of arbitrariness.  If you try a few options and still draw the same inference about 
the dose-response function, that's a good sign. 
 
 
More on “dummy coding” 
 
Dummy coding followed by linear regression is more than a two-step method to explore 
the dose-response function.  This method helps us to compute the mean differences 
between the k values of any categorical variable (k ≥ 3).  Again, neither dummy coding 
nor linear regression is needed to compute marginal associations, but both will prove 
essential when we'll need to account for confounders and effect modifiers. 

To illustrate the two steps of the method, consider the three categories of smoking 
status (never smoking, former smoking, and current smoking) and the same postulated 
effect: systolic blood pressure.  If you want to estimate the mean difference in SBP 
between pairs of smoking categories, choose one category as the reference (say, never 
smokers) and create two dummy variables (Table 9–5.)   
 
     Table 9–5.  Replacing the three categories of  
     smoking status with two "dummy variables"  
 

Smoking Status VAR1 VAR2 
Never smoker 0 0 
Former smoker 1 0 
Current smoker 0 1 

 
 
Then, fit the model "Mean SBP = β0 + β1 VAR1 + β2 VAR2”.  This model provides all that we 
need: three means and three mean differences: 
 

Mean SBP (never smokers)    =  β0 + β1 x 0 + β2 x 0 = β0  
Mean SBP (former smokers)  =  β0 + β1 x 1 + β2 x 0 = β0 + β1

Mean SBP (current smokers) =  β0 + β1 x 0 + β2 x 1 = β0 + β2

 
Evidently, β1 and β2 are mean differences: β1 —between former smokers and never 
smokers; β2—between current smokers and never smokers.  The mean difference between 
current smokers and former smokers can be easily computed: (β0 + β2) – (β0 + β1) = β2 – β1

Dummy variables always take the values 0 and 1, and their number is always k–1: one 
fewer than the k categories of the variable they replace.  A dummy variable may be given 
any name, but it's helpful to check which category is identified by the value of 1, and 
name the variable after that category.  For example, we may give VAR1 the name FORMER 



because the value of 1 identifies the former smokers.  Likewise, we may give VAR2 the 
name CURRENT because the value of 1 identifies the current smokers (Table 9–6). 
  
     Table 9–6.  Replacing the three categories of  
     smoking status with two "dummy variables"  
 

Smoking Status FORMER CURRENT 
Never smoker 0 0 
Former smoker 1 0 
Current smoker 0 1 

 
 
Mean SBP = β0 + β1 FORMER + β2 CURRENT  

 
Naming the dummy variables in this way should help us to interpret the coefficients 
quickly: β1 in front of FORMER is the mean difference between former smokers and the 
reference category, whereas β2 in front of CURRENT is the mean difference between 
current smokers and the reference. 

 
If you took a course in statistics, you might have learned about analysis of variance 
(ANOVA) as a method to compute and compare three means or more.  To set the record 
straight, you should know that what is called one-way ANOVA is equivalent to linear 
regression on dummy variables.  So what is the difference between the two approaches?   

ANOVA puts the emphasis on the means themselves rather than on the mean 
differences, and on statistical hypothesis testing of the global null "all of the means are 
equal".  As we realized earlier, however, the means are also available from a comparable 
regression model with dummy variables: one mean shows up on the printout (the 
intercept) and the others can be computed easily by adding the coefficient of the 
appropriate dummy variable.  Even the global null hypothesis of ANOVA is tested in 
linear regression, but I deleted the test statistic and the p-value for two reasons:  First, my 
arguments against the use of p-values hold here as well (chapter 8).  Second, the "overall 
null" should be of little interest because its rejection endorses the statement "at least two 
means are not equal", which entails the possibility that just two (unspecified) means are 
not equal.  What do we learn from the last statement?  Not much, if anything at all.  In 
ANOVA you can also directly test null hypotheses about the equality of any pair of means, 
but the merit of these tests is just as questionable as the merit of any p-value.  In summary, 
unless you have residual sympathy for null hypothesis testing, or have unique interest in 
the means themselves, I suggest that you think about ANOVA as a special case of the 
linear regression model and archive the term in your mind.  (By the way, two-way ANOVA 
is also not much more than linear regression.) 
 
 
A quadratic function 
 
Less restrictive than a linear function but perhaps more restrictive than a step function—
is a quadratic function.  Its rationale is simple.  Rather than forcing a straight line, allow 
the dose-response line to express some curvature.  Not any curved shape, of course, but 
the kind of structured curvature of a quadratic equation (Y = a + bX + cX2). 
 



In our example:  Mean SBP = β0 + β1 AGE + β2 AGE2

 
To fit this regression model in SAS, you have two options:  
1)  Create a new variable "AGESQUARE=AGE*AGE” in a data step, and add it to the 

"model statement".    
2)  Add the term "AGE * AGE” directly to the "model statement", as shown below.   
 
Regardless of the method you choose, the variable AGE should be retained in the model.  
Whenever a "high-order term", such as AGE2, enters the model, all lower-order terms must 
be included as well. 
 
 
SAS code 
 
PROC GLM; 
 MODEL sbp = age age*age/SOLUTION; 
 run; 
 
Selected SAS printout 
 
                               The GLM Procedure 
 
Dependent Variable: sbp   SYSTOLIC BLOOD PRESSURE (mmHg) 
 
                                      Sum of 
Source                     DF        Squares     
 
Model                       2     58179.9051      
 
Error                     997    397428.4509       
 
Corrected Total           999    455608.3560 
 
 
                                          
       Parameter         Estimate               
 
       Intercept      68.95768659             
       age             1.12145239            
       age*age        -0.00308108            
 
The linear regression equation is therefore, 
 

Mean SBP = 69.0 + 1.1 x AGE – 0.003 x AGE2

 
You might be wondering why I used the term "linear regression" for such a quadratic 
equation.  The explanation is simple: "linear" refers to the regression coefficients, not to 
the variables.  The coefficients, β1, β2, and β3, form a linear combination; we do not use 
terms such as the square of β1 or β1 x β2. 



As you may know, the graph of a quadratic function (Y = a + bX + cX2) is a parabola, 
which has a maximum value ("dome" shape), or a minimum value ("inverted dome"), 
depending on the signs of the constants b and c.  Since the coefficient of AGE is positive 
and that of AGE2 is negative, the function we found should resemble a dome, having a 
maximum value of SBP.  Figure 9–6 displays the graph of that quadratic function for the 
age range of the sample.  As you can tell, the graph barely differs from a straight line and 
no parabola is in sight.  Why do we see only minimal curvature?  Where is the dome?  

Figure 9–7 reveals the answers.  When the function is displayed over the non-existing 
age range of 30 to 330, we see a parabola with a maximum value around the "age" of 180.  
(Calculus tells us that the maximum will be reached at "AGE"= –β1/2β2.)  It also becomes 
clear why the graph in Figure 9–7 resembles a straight line.  In that segment of the 
function, there is very little curvature.  To sum up, the quadratic function largely agrees 
with the linear function over the age range of the sample. 
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             Figure 9–6.  Mean SBP as a quadratic function of AGE (ages 45-84) 
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              Figure 9–7.  A wide view of mean SBP as a quadratic function of AGE  
                                  ("ages" 30-330) 



 
How do we compute estimates of the mean difference from a quadratic dose-response 
function? 
 
The coefficients of AGE and AGE2 are not interpretable individually, but the method is 
not different from the method we have used to compute the mean difference from a 
linear function.  Table 9–7 shows an example for the causal contrast [50, 60]. 
 
Table 9–7.  Computing the effect of a causal contrast between age 60 and age 50 from the 
                    quadratic function  
 

Causal assignment 
 

Values of 
age variables 

Mean SBP = 69.0 + 1.1 x AGE – 0.003 x AGE2

 
 
AGE = 60 

 
AGE  =     60  
AGE2 = 3600 

 
Mean SBP = 69.0 + 1.1 x 60 – 0.003 x 3600 = 124.2 

 
AGE = 50 

 
AGE  =     50 
AGE2 = 2500 
 

 
Mean SBP = 69.0 + 1.1 x 50 – 0.003 x 2500 = 116.5 

Effect   
(mean difference) 

                     
                                                                         7.7 mmHg 

 
 
Notice that the estimate (7.7 mmHg) is similar to the estimate from the straight line  
(0.74 x 10 =7.4), which is not surprising.  We have already realized that in the sample's 
range of ages, the graph of the quadratic function is not that different from a straight 
line.  The estimate from the step function (Figure 9–5) is a little larger (9.0 mmHg). 
 
 

* 
 
Quadratic functions are typically fit to explore the dose-response function, as we have 
done here, but the model hides a deeper secret—a special kind of effect modification.  To 
detect that property of the function, let's compute again the effect of 10 years of aging, 
but this time we'll try a different causal contrast: AGE=70 versus AGE=60 (Table 9–8). 
 
Table 9–8.  Computing the effect of a causal contrast between age 70 and age 60 from the 
                    quadratic function  
 

Causal assignment 
 

Values of 
age variables 

Mean SBP = 69.0 + 1.1 x AGE – 0.003 x AGE2

 
 
AGE = 70 

 
AGE  =     70  
AGE2 = 4900 

 
Mean SBP = 69.0 + 1.1 x 70 – 0.003 x 4900 = 131.3 

 
AGE = 60 

 
AGE  =     60 
AGE2 = 3600 
 

 
Mean SBP = 69.0 + 1.1 x 60 – 0.003 x 3600 = 124.2 

Effect   
(mean difference) 

                     
                                                                         7.1 mmHg 



The effect of 10 years of aging starting at age 60 (Table 9–8) is different from the effect of 
10 years of aging starting at age 50 (Table 9–7).  In fact, for each pair of ages that differ by 
10 years, you will find a unique estimate. 

Unlike a linear function, the estimated mean difference from a quadratic function is 
not a constant coefficient anymore.  In the language of causation, the model assumes that 
the effect of Δ years of aging on mean systolic blood pressure varies by age, which is 
nothing but a claim of effect-modification.  The effect of the exposure is modified by the 
exposure itself!  Furthermore, calculus-based math, as well as the convexity of the graph, 
reveals two interesting derivations from our quadratic function: First, the effect of aging 
on systolic blood pressure is attenuated with aging.  Second, that effect is attenuated in a 
monotonic fashion, precisely as a linear function of age.  The first derivation may be 
tolerated as "plausible", but the second reveals the restrictive face of a quadratic function.  
Not only does age modify the effect of age, but it also does so in a strictly monotonic 
fashion with a constant degree of attenuation.  You might agree that the last derivation 
does not sound much more plausible than the assumption of a constant mean difference 
of the linear function or the two assumptions of the step function.  But, again, had we 
chosen to obey the vague psychological idea of "plausibility", scientific inquiry would not 
have taken us very far.  (Just recall how implausible Einstein's ideas were to the human 
mind.) 
 
Where do we go from here? 
 
Linear function, step function, and quadratic function are not the only methods to 
explore the dose-response function.  In chapter 21, you will find another approach that 
allows the data to express greater flexibility of the dose-response line: quadratic spline 
regression.  To some extent, that method is a hybrid of the step function and the 
quadratic function:  First, we decide on cutoff points for the exposure distribution, just as 
we do in a step function.  Then, we fit a quadratic function in each interval, but ensure 
that the end of one segment smoothly merges with the beginning of the next segment, so 
the resulting line is continuous.   

Methods to discover the dose-response relation are not restricted to linear regression; 
they are helpful in other regression models as well (logistic, Poisson, Cox.) 
 
 
Deconfounding by linear regression 
 
The marginal association between systolic blood pressure and age, as estimated by the 
"crude" mean difference, might contain not only the effect of age but also the effect of 
confounding paths.   For example, on the naïve assumptions of the causal diagram below 
(Figure 9–9), the various mean differences we have computed so far do not estimate the 
effect of age.  They are biased.  Or more precisely (chapter 8): the estimators from which 
they emerged embed confounding bias due to sex group. 
 

AGE SBP 

SEX

Figure 9–9.  A causal diagram relating age, sex, and systolic blood pressure 



 
Before finding out how linear regression could deconfound the mean difference, let's 
spend another moment on Figure 9–9.  I had assumed that sex group is antecedent to age 
and not vice versa, which is my background conjecture about the determinants of life 
expectancy.  But this claim may be challenged.  After some thinking about surrogate 
variables (chapter 2), I could have also rationalized an arrow in the opposite direction, 
turning SEX into an intermediary variable between AGE and SBP.  If, for example, AGE 
were a surrogate for the efficiency of metabolic pathways and SEX were a surrogate for the 
levels of sex hormones (which are products of such pathways), I could have proposed that 
AGE SEX, and thereby eliminate the need to deconfound.  In short, causal diagrams and 
the analytical route they dictate are as good as our underlying theories. 
 
Assuming that Figure 9–9 correctly describes causal reality, we should deconfound the 
marginal association between age and systolic blood pressure by conditioning on sex.  
That is: we should stratify on sex, compute the mean difference in men and women, and 
calculate a (weighted) average of the two mean differences (chapter 6).  Regression 
models perform the very same task, albeit behind the scenes—and much more.  Not only 
do they allow us to condition the association on one binary variable such as sex, but they 
also offer simultaneous conditioning on several variables, including continuous variables 
on which stratification is not possible. 
 
Regression-based conditioning is achieved by simply adding the confounders as 
"covariates" to the right hand side of the model, thereby creating a multivariable model.  
(Many researchers refer to these models as multivariate regression, but the correct 
adjective is multivariable or multiple.  "Multivariate" denotes a model with several 
dependent variables.) 
 
In our example, where only one confounder is proposed, we should fit the following 
equation:  SBP = β0 + β1 AGE + β2 SEX + e 
 
And look for a solution, for the values of the coefficients.   
 
If we use the method of linear regression to solve the equation, the coefficient of AGE will 
estimate the conditional mean difference per 1 year of aging, acting like a weighted 
average of the sex-specific mean differences.  Most people will call that number the "sex-
adjusted" mean difference, but the term conditional is far more accurate.  The word 
"adjusted" delivers the promise of something better than the "crude", yet we never know 
that one estimate is better than another, because the causal diagram we drew might be 
wrong.  Conditional is always a true claim about reality; adjusted is not. 
 
How do we solve the regression equation? 
 
When a linear regression model contains two regressors or more, it is no longer possible 
to display pairs of data points in a 2-dimentional graph, fit a candidate line, and calculate 
vertical distances.  At most we may display triplets of data points (AGE, SEX, SBP) in a 3-
dimentional graph, fit a candidate surface, and calculate the vertical distances of observed 
SBP values from the surface.  And if there are three regressors, no graphical display is 
possible anymore.  Nonetheless, the method to solve the equation is identical in all cases, 



regardless of the number of variables.  Instead of drawing a candidate line or a candidate 
surface, we simply have to propose candidate values of the coefficients.   
 
In our example (SBP = β0 + β1 AGE + β2 SEX + e), you would solve the equation according 
to the following theoretical steps: 
 
1.  Propose candidate values of the coefficients (β0, β1, β2). 
2.  Use the candidate coefficients to compute the predicted value of SBP for each person: 

SBP (predicted) = β0 + β1 AGE + β2 SEX 
3.  Calculate the difference, e, between the observed SBP of each person and the 

predicted value:  e = SBP (observed) – SBP (predicted) 
4.  Square the difference: e2

5.  Sum the squares:  Σ e2  
6.  Among all possible values of β0, β1, and β2, choose the set of values for which you get 

the smallest sum of squares.   
 
SAS code 
 
PROC GLM; 
 MODEL sbp = age sex/SOLUTION CLPARM; 
 run; 
 
Selected SAS printout 
 
 
                               The GLM Procedure 
 
Dependent Variable: sbp   SYSTOLIC BLOOD PRESSURE (mmHg) 
 
                                      Sum of 
Source                     DF        Squares   
 
Model                       2     58795.1134    
 
Error                     997    396813.2426     
 
Corrected Total           999    455608.3560 
 
 
                                         Standard 
       Parameter         Estimate           Error   95% Confidence Limits 
 
       Intercept      79.82561708       
       age             0.73522359      0.06117390   0.61517923   0.85526796 
       sex             1.69409655      
 
 
The conditional mean difference per 1 year of aging (0.735 mmHg before rounding) 
barely differs from the marginal estimate we computed earlier (0.738 mmHg), implying 



that confounding by sex did not exist.  This little surprise, which is not uncommon in 
causal inquiry, gives us the opportunity to entertain a few explanations and to understand 
better the constraints of scientific uncertainty.  First, there is no guarantee that a true 
theory will always be corroborated in the empirical world—including a true theory about 
confounding paths.  Second, both 0.735 and 0.738 are single estimates from different 
estimators whose expected values remain unknown (chapter 8).  We tend to forget—
perhaps wish to forget—that remarkable similarity of two point estimates does not 
necessarily imply remarkable similarity of the corresponding expected values.  
(Remember that each estimate is no more than what the word means.)  Third, properties 
of the sample at hand inevitably affect the results of conditioning (chapter 7).  In this 
sample, the marginal association between age and sex was weak, in part because of 
sampling procedures, and therefore conditioning on sex was not expected to have made a 
striking difference, if at all.  Fourth, as we'll see in the next chapter, it is possible that both 
estimates have originated in biased estimators so their near-perfect agreement might be 
irrelevant. 
 
Just as we conditioned the linear association between age and blood pressure on sex, we 
may also condition other functions by which we explored the dose-response relation.  
Here are the models we would fit to deconfound (SAS code and printout omitted): 
 
Step function:   Mean SBP = β1 + β2 AGE2 + β3 AGE3 + β4 AGE4 + β5 SEX 
 
Quadratic function:   Mean SBP = β1 + β2 AGE + β3 AGE2 + β4 SEX 
 
Finally, you might wonder why I didn't comment on the coefficient of SEX in the 
multivariable model (1.7 mmHg), and even deleted its standard error.  Well, this 
coefficient is also a conditional mean difference: the mean difference in SBP between 
men and women—after conditioning on age.  But according to the causal diagram I drew 
(Figure 9–9), we should not condition on age if we wish to estimate the effect of sex group 
on systolic blood pressure.  AGE is an intermediary variable on a path from SEX to SBP, 
rather than a confounder!  More on this topic in the next section. 

To make matters worse, notice that we cannot confidently predict the effect of 
conditioning just from knowledge of some qualitative properties of the sample.  Even 
though AGE and SEX were weakly associated in our sample and the coefficient of AGE 
barely changed after adding SEX to the model, conditioning on AGE did change the 
coefficient of SEX: from 2.3 in the model "Mean SBP = β0 + β1 SEX”  (the first printout in 
this chapter) to 1.7 in the last printout.  Part of the explanation has to do with a strong 
association between age and blood pressure in the sample. 
 
 
Beware of biased coefficients! 
 

"Not all regression coefficients are created equal."      –Miguel Hernán 
 
Some researchers assume that each coefficient in a multivariable model is estimating the 
effect of the respective variable after "adjusting for all other covariates."  They would say, 
for instance, that when we regress systolic blood pressure on SEX and WEIGHT, the 
coefficient of SEX estimates the sex effect whereas the coefficient of WEIGHT estimates 
the weight effect, each "adjusted for the other."  Those who avoid using the words cause 



and effect might cautiously write "estimates the independent association of each 
variable"—and still have cause-and-effect in mind. 

This assumption may be false in many regression models.  The theory of causal 
diagrams has taught us that conditioning (or what is called "adjustment") is not a 
symmetrical process in causal inquiry (chapter 6).  Some conditional estimates serve to 
deconfound, whereas others could be worse than the marginal estimates, because 
confounding is not a reciprocal idea.  To illustrate the pitfall, let's compare the estimated 
effect of sex group on systolic blood pressure from two linear regression modes: a model 
with SEX alone (the marginal association we've already seen) and a model that includes 
SEX, AGE, and WEIGHT (measured in pounds). 
 
Model 1: Mean SBP = β0 + β1 SEX 

 
Model 2: Mean SBP = β0 + β1 SEX + β2 AGE + β3 WEIGHT 
 
Selected SAS printout from the two models is shown side by side: 
 
Dependent Variable: sbp  SYSTOLIC BLOOD PRESSURE (mmHg) 
 

             Model 1      Model 2 
 

  Sum of                       Sum of 
Source           DF        Squares   Source           DF     Squares   
 
Model       1       1304.4140     Model             3    76710.7659     
Error      998     454303.9420        Error           996   378897.5901        
 
Corrected Total 999     455608.3560          Corrected Total 999  455608.3560 

 
 
Parameter         Estimate             Parameter         Estimate 
 
Intercept      124.5202991             Intercept      56.34767205   
sex              2.2889114    sex            -0.85095005 
       age             0.79548598 
       weight          0.11963538 
 
By statistical criteria, every statistician will prefer model 2 because "it fits the data better".  
The sum of the squared "error", Σ e2, is much smaller in model 2, which means that the 
model should predict the value of systolic blood pressure much better.  Nonetheless, you 
will shortly see that bias may be lurking behind the negative coefficient of SEX (–0.85).  
That a regression model might do a better job in predicting John's blood pressure does 
not endow all of its coefficients with the title "measure of effect".  Try to keep in mind the 
asymmetrical relation between causal inquiry and statistical prediction, which so many 
seem to forget: to estimate a causal parameter, we often seek help from a prediction 
model, but not every prediction model, however good it may be, delivers unbiased 
estimators of causal parameters.   Please read the last sentence again and be sure to share 
it occasionally with your fellow statisticians. 
 



Figure 9–10 (panel a) shows a diamond-shaped causal diagram that connects the four 
variables of interest.  In addition to arrows from SEX to AGE and from SEX to SBP, which 
we had assumed earlier, I drew a path from SEX to SBP via the variable WEIGHT.  
According to this simplistic diagram, the marginal association between sex group and 
systolic blood pressure (model 1) is not confounded.  The expected value of the estimator 
behind the coefficient of SEX should be equal to the causal parameter—to the net effect 
of sex on blood pressure via the three causal pathways.  No conditioning is needed.   
 
Could conditioning (model 2, for example) cause any harm? 
 
As you might recall from chapter 6, it certainly can—if we happen to condition on 
colliders.  Suppose that weight and blood pressure share a common cause, U, such as a 
genotype or a hormone (Figure 9–10, panel b).  On this assumption, WEIGHT is a collider 
on the path SEX WEIGHT U SBP, and conditioning on it will open a confounding 
path via the colliding variables (panel c).  As a result, the "adjusted" mean difference 
between men and women (model 2) will not deconfound anything.  On the contrary: it 
will contain the confounding effect of the path we have opened. 
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Figure 9–10.  A causal diagram relating sex, age, weight, and systolic blood pressure 
(panel a); a common cause, U, of weight and systolic blood pressure was added (panel b); 
causal and confounding paths after conditioning on weight (panel c). 
 
At this point, some researchers might be inclined to say that adjustment for weight and 
age (model 2) has "explained" the effect of sex group on systolic blood pressure, or 
perhaps has estimated the direct effect, SEX SBP, alone.  Unfortunately, neither is 
necessarily true.  First, if U does exist (panel b), we have just realized that the coefficient 
of SEX in the second model contains an artificial component, which we have created by 
conditioning on a collider.  Whatever the difference between the two coefficients of SEX 
may tell us, if anything useful at all, it is not only an "explanation" of causal pathways.  
Second, even if U is absent, other assumptions must be invoked when we try to separate a 
direct effect from indirect effects by adjusting for intermediary variables.  
 
 
The proportion difference: a special kind of a mean difference:  
 
Suppose that the effect of interest is not a continuous variable such as SBP, but a binary 
variable called HTN (hypertension status): 1=hypertension; 0=normotension.  If we fit a 
linear regression model, regressing hypertension status on sex group, the model will 
predict the mean of HTN, and the coefficient of SEX will estimate the mean difference in 
HTN between men and women: 
 
Mean HTN = β1 + β2 SEX  
 
But what is the meaning of that mean? 
 
After thinking for a moment, you would probably realize that "mean HTN” is simply a 
proportion: the proportion of people with hypertension.  (The mean of a binary  
"0, 1" variable turns out to be the proportion of "ones", because the sum of "zeros" and 
"ones" divided by the number of observations is simply the proportion of "ones".)  
Moreover, if the proportion in question may also be called "probability", we seem to have 
found a model that estimates the probability difference, a measure of effect.  It is called 
the linear probability model:   
 

Pr (HTN=1) = β1 + β2 SEX 
 

Life is never simple, though.  As you may recall, the precise specification of linear 
regression includes notation for the i-th person and an "error term".  Unfortunately, when 
the dependent variable is binary, rather than continuous, some of the assumptions about 
the behavior of the error term do not hold, and therefore, it is not strictly valid to fit such 
a model.  Another problem arises because the expression on the right (β1 + β2 SEX) can 
predict probability values that do not exist (greater than 1, for example).  Nonetheless, 
knowledgeable authors have reassured us that the coefficients of the linear probability 
model are still unbiased and that the consequences of violating some of the statistical 
assumptions should not disrupt our sleep.  Just remember to not give too much weight to 
the standard errors because they are wrong. 

To illustrate how we would estimate the (marginal) probability difference between 
men and women, I created a binary variable called HTN by dichotomizing systolic blood 



pressure at 140 mmHg.  Every blood pressure value greater than 140 qualified for HTN=1; 
otherwise HTN=0.  In our sample of 1,000 people, 22.9% of men and 21.1% of women met 
that criterion of hypertension, a difference of 1.8 percentage points against men.  Keep 
these numbers in mind as we fit the linear probability model (below). 
 
SAS code 
 
PROC GLM; 
 MODEL htn = sex/SOLUTION; 
 run; 
 
 
 
 
Selected SAS printout 
 
 
                               The GLM Procedure 
 
Dependent Variable: htn   HYPERTENSION STATUS 
 
                                      Sum of 
Source                     DF        Squares     
 
Model                       1      0.0787513       
Error                     998    172.0802487      
Corrected Total           999    172.1590000 
 
 
       Parameter         Estimate            
 
       Intercept     0.2115384615           
       sex           0.0177848467             
 
The regression equation of this linear probability model is therefore: 
 

Pr (HTN=1) = 0.211 + 0.018 SEX 
  
For women, Pr (HTN=1) = 0.211 + 0.018 x 0 = 0.211, identical to the actual proportion of 
hypertensives among women (21.1%). 
â 
For men, Pr (HTN=1) = 0.211 + 0.018 x 1 = 0.229, identical to the actual proportion of 
hypertensives among men (22.9%). 
 
As is always the case with linear regression, the coefficient of SEX estimates the mean 
difference in the dependent variable between men and women.  Here, that coefficient is 
the probability difference of having hypertension.  It is 0.018—identical to the percentage 
difference in the sample (22.9% – 21.1% = 1.8 percentage points). 

Of course, you don't really need the linear probability model to compute marginal 
associations, but the model becomes essential when you have to deconfound.  Consider, 
for instance, the following task:  Estimate the probability difference of hypertension in 



ascending age groups (reference: the youngest) after conditioning on sex group.  The 
simple code below, with three dummy variables for age, provides the requested estimates. 
 
 
SAS code 
 
PROC GLM; 
 MODEL htn = age2 age3 age4 sex/SOLUTION; 
 run; 
 
 
 
 
 
Selected SAS printout 
    
                            The GLM Procedure 
 
Dependent Variable: htn    HYPERTENSION STATUS 
 
                                      Sum of 
Source                     DF        Squares     
 
Model                       4     13.2435394     
Error                     995    158.9154606       
Corrected Total           999    172.1590000 
 
 
       Parameter         Estimate           
 
       Intercept     0.0963533943       
       age2          0.0867445207       
       age3          0.1956133640       
       age4          0.3446042887       
       sex           0.0047652453       
 
 
The regression equation: 
 
Pr (HTN=1) = 0.096 + 0.087 x AGE2 + 0.196 x AGE3 + 0.345 x AGE4 + 0.005 x SEX 
 
Compare this equation to the regression of systolic blood pressure on age group (the step 
function.)  To interpret the coefficients here, you just have to substitute the words 
"probability of hypertension" for "mean systolic blood pressure".  For example, the 
coefficient of AGE4 (0.345) is the probability difference of hypertension for the contrast 
between the oldest group and the youngest group, after conditioning on sex.   

Before leaving this chapter behind, let's reflect for a moment on the conversion of 
systolic blood pressure to the binary variable HTN.  Was it wise to do so?  May we transform 
a continuous dependent variable (presumed effect) into a categorical variable, using one 
or more cutoff points of its distribution? 



We may do whatever we want, of course, but in my view this common practice is 
mistaken.  The effect of sex group on the binary variable we created (HTN) is solely due to 
its effect on systolic blood pressure; there is no other mechanism by which sex group 
could affect hypertension (as defined here).  Why, then, model an artificial surrogate for 
the real effect if we can model the real effect?  Moreover, by replacing a continuous 
dependent variable with some categorical version of it, we are making two mistakes:  First, 
we unnecessarily increase the standard errors of the estimators.  Second, we throw away 
detailed data (blood pressure values) for no good reason.  (Do not draw analogy to 
categorization of a continuous exposure, which serves our interest in the dose-response 
function.)   
 
We will return to the linear probability model toward the end of the next chapter.  
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